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Reuse-Driven Tiling for Improving
Data Locality

Jingling Xue' and Chua-Huang Huang?

This paper applies unimodular transformations and tiling to improve data
locality of a loop nest. Due to data dependences and reuse information, not all
dimensions of the iteration space will and can be tiled. By using cones to repre-
sent data dependences and vector spaces to quantify data reuse in the program,
a reuse-driven transformational approach is presented, which aims at maxim-
izing the amount of data reuse carried in the tiled dimensions of the iteration
space while keeping the number of tiled dimensions to a minimum (to reduce
loop control overhead). In the special case of one single fully permutable loop
nest, an algorithm is presented that tiles the program optimally so that all data
reuse is carried in the tiled dimensions. In the general case of multiple fully per-
mutable loop nests, data dependences can prevent all data reuse to be carried
in the tiled dimensions. An algorithm is presented that aims at localizing data
reuse in the tiled dimensions so that the reuse space localized has the largest
dimensionality possible.

KEY WORDS: Tiling; loop transformation; data locality; nested loops.

1. INTRODUCTION

This paper applies unimodular transformations and tiling to tile a perfect
loop nest to improve data locality of the loop nest. Due to data dependen-
ces and reuse information, not all dimensions of the iteration space will and
can be tiled. In general, the tiled program consists of a sequence of loops
that iterate over the untiled dimensions followed by a sequence of loops
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that iterate over the tiled dimensions, improving untilization of a single
cache. The vector space spanned by the tiled dimensions is called the tile
space of the program. Only the data reuse localized in the tile space can be
exploited. The data locality problem addressed in this paper is to maximize
the amount of data reuse localized in the tile space while minimizing the
dimensionality of the tile space. By minimizing the dimensionality of the
tile space, the number of tiled dimensions is kept to a minimum, and conse-
quently, loop control overhead is reduced.

An example is used to illustrate the data locality problem addressed
and the approach used.

Example 1. Consider a triple loop nest:

doi=1,N
doj=1,N
dok=1, N
A(i—k, k)= A(i— k, k)+ 1

Wolfe’s Tiny'" reports the following dependence matrix:

To avoid arithmetic on direction values, D will be represented equivalently
by cone((0, 1, 0)). Both representations describe the same set of distance
vectors: {(0, 1, 0), (0, 2,0),...}.

How do we tile the program so that all data reuse is localized in the
tile space? Since the entries in the dependence vector (0, + , 0) are all non-
negative, a straightforward solution is to tile all three dimensions of the
iteration space. The tile space is three-dimensional and will include all data
reuse in the program. However, an analysis of the data reuse in the
program reveals that tiling two dimensions of the iteration space suffices to
capture all data reuse in the cache optimally.

Suppose all arrays are stored in row-major order. Each reference
A(i— k, k) has self-temporal reuse in the space span{(0, 1, 0)} because it
accesses the same element for all iterations (i, j, k), where i and k are fixed
and 1< j<< N. In addition, A(i— k, k) has self-spatial reuse in the space
span{(0, 1,0), (1,0, 1)} since each cache line is reused / times, where 7 is
the cache line size. Observe, for example, that A4(2, 3), 4(2, 4), 4(2, 5),...,
are accessed at the iterations (5, *, 3), (6, *,4), (7, *,5),.., where the #’s
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denote any values in the range of the j loop. In this program, the data reuse
is summarized by the following reuse matrix:

0 1
R=1]11 0
0 1

The vector space spanned by the column vectors of R is called the reuse
space of the program, which includes all data reuse—both temporal and
spatial—of the program.

Based on the data dependences and reuse information of the program,
we want to find a unimodular transformation to restructure the program so
that in the transformed program:

1. The data dependence of the program are respected;

2. The inner two loops are fully permutable and can thus be tiled
legally; and

3. As much data reuse as possible is carried in the inner two loops.
(In this example, the reuse space coincides with the tile space.)

The following unimodular transformation satisfies all these three
requirements:

The tile space is the vector space spanned by the last two columns of H™' |
which coincides with the reuse space R of the program. The number of tiled
dimensions is, thus, two.

The transformed program can be obtained as follows:

doi'=1-N,N—1
doj'=1,N
do k'= max(1,i'+ 1), min(N, i"+ N)
A K)= AG KD+ 1

To exploit the two-dimensional data reuse, the inner two loops j’ and
k' can be tiled:
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doi'=1-N,N—1
doj'j'= 1, N, B,
do k'k'= max(1,i'+ 1), min(N, i'+ N), By
doj'= j'j', min(;'j'+ By~ 1, N)
do k'= K'k', min(k'k'+ By—1,N,i'+ N)
A k)= AG KD+ 1

The size of tiles is B; X B, which has to be fixed as machine-depen-
dent parameters.

Figure 1 depicts the cubic iteration space of the original program,
which are sliced into parallelograms parallel to the reuse space of the
program. The largest slice is picked up to illustrate how a slice is tiled.
Each slice is divided into tiles that are parallelograms whose edges are
parallel to (0, 1,0) and (1,0, 1), i.e., the last two columns of H™'. In the
tiled program, the i’ loop steps through all the slices and the j'j" and k'k’
loops step between the tiles in each slice, and the j' and k' loops enumerate
the points within a tile.

This example has outlined our approach to improving data locality of
a program:

(a) Based on data dependences and reuse information, a (legal)
unimodular transformation is found and applied to the program
to maximize the amount of data reuse carried in the inner r loops
of the transformed program with ¢ made as small as possible.
The inner 7 loops of the transformed program—being fully per-
mutable—are tiled so that all data reuse carried in these loops is
exploited in the cache. Maximizing the amount of data reuse
tends to maximize the amount of data locality. Minimizing =
minimizes loop control overhead.

(b) The size of tiles is adjusted as a machine-specific optimization.

This paper focuses on (a), improving and extending Wolf and Lam’s
earlier data locality work.”> A detailed comparison with that and other

0 -1

.ys 1
o Tiling: H = ]:?(1) 0
¢ Reuse Space: span{(0,1,0)(1,0,1)}
o Tile Space: span{(0,1,0),(1,0,1)}
¢ Tile Shape: the edges are (0,1,0) and (1,0,1)
o Tile Size: B;: x By

Fig. 1. Iteration space tiling for Example 1.



Reuse-Driven Tiling for Improving Data Locality 675

related work is provided in Section 8. We use cones to represent the data
dependences and vector spaces to quantify the data reuse in the program.
This combination allows us to use matrix transformations to solve our data
locality problem. In the special case of one single fully permutable loop
nest, an algorithm is given that tiles the program optimally so that all data
reuse is localized in the tile space and can thus be exploited in the cache.
In the general case of multiple fully permutable loop nests, data dependences
can prevent all data reuse to be localized in the tile space. The algorithm
proposed in this general case aims at localizing data reuse in the tile space so
that the reuse space localized has the largest dimensionality possible.

The rest of this paper is organized as follows. Section 2 introduces the
basic terminology and definitions. Section 3 describes some background
information. In particular, the concept of time cone is introduced and an
algorithm for solving the so-called time-cone problem is presented. This
algorithm is the basis of several algorithms discussed in the paper. Sec-
tion 4 presents an algorithm for creating the canonical form of fully per-
mutable loop nests for a loop nest. Section 5 defines loop tiling considered
in the paper. Section 6 reviews the reuse analysis framework due to Wolf
and Lam.® Section 7 describes our approach to improving data locality of
the program. Section 8 discusses the related work, and finally the paper is
concluded in Section 9.

2. NOTATION AND TERMINOLOGY

Z and ® denote the set of integers and rationals, respectively. All rela-
tional operators, such as =, on two vectors are component-wise. The
dimensions of vectors and whether they are row or column vectors are
implied by the context in which they are used. We use e¢,..., ¢, to represent
the n elementary vectors, where e, is the vector whose entries are all zeros
except that the kth entry is 1. A square integer matrix is unimodular if its
determinant is +1. If A4 is a matrix, ker(A4) stands for the set {x | Ax= 0}
and A7 its transpose. If x,..., x,, are vectors in Z", span{x,,..., x,,} is the
linear space spanned by these vectors. If S is a set of vectors, span{S }
denotes the linear space spanned by all vectors in S. If x is an element of
a set S, the notation x €S is used, and this notation is abused to indicate
that a column vector x is a column of a matrix M, ie, xeM. If L is a
linear space, L™ represents its corresponding orthogonal linear space.

For the purposes of this paper, the concept of Hermite normal form
is defined as follows.

Definition 1 (Hermite Normal Form). Let 4 €Z™ " be a non-
singular square matrix. Then there exists a unimodular matrix U eZ"™ "
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such that UA= H, where H €™ " is a nonnegative nonsingular lower tri-
angular matrix, called the Hermite normal form, of A.

Let S be a set of vectors. The notation matrix(S) stands for an
arbitrary but fixed matrix formed with all vectors in S as its rows. For
example, if S= {(1,2,0),(0,1,0)}, then matrix(S) is either [ ; o] or

010
[120'

3. BACKGROUND

Section 3.1 introduces some relevant results about perfectly nested
loops. Section 3.2 explains how to use cones to represent data dependences.
Section 3.3 discusses the time cone and contains an algorithm for solving
the so-called time cone problem.

3.1. Perfectly Nested Loops

This paper considers perfectly nested loops with dependences represen-
ted as direction or distance vectors. A dependence vector for an n-deep
loop nest is an n-vector d= (d,,..., d,), where the kth entry d, corresponds
to the kth loop (counting from the outermost to the innermost). Each
entry d; can be either an integer in Z or a direction value in {+ , —, + },
where “+ ,” “—” and “4+” are Wolf and Lam’s shorthands'® for Wolfe’s
“< ”“>” and “*,” respectively.”’ A dependence vector is a distance vector
if all its entries are integer values.

Let D eZ"™ ™ be the dependence matrix whose columns are the m
dependence vectors of the program. Let ¢ (d) be the set of all distance vec-
tors represented by a dependence vector. All relational and lexicographic
order operators such as > and > on dependence vectors have
straightforward extensions. Let °© be one such operator. We define d°0 if
Vzeé(d):z°0.

In a sequential program, all its dependence vectors are lexicographi-
cally positive.

Assumption 1. D3>0, ie, VdeD :d>0.

Definition 2 (Legality of Transformation). A transformation
T eZ™" is legal for an n-deep loop nest if T is nonsingular and
VdeD : (Vzeé(d): Tz >0).

Definition 3 (Fully Permutable Loops'®). In a loop nest, the ith
through the jth loop are fully permutable if Vd €D : ((d,,..., d- ;)>0 or
(dsoe d;)> 0).
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Definition 4 (Canonical Form'). The canonical form of a loop
nest is a supernest of multiple fully permutable nests, with each nest made
as large as possible with respect to the outer nests.

Definition 5 (Canonical Transformation). A legal transformation
for a loop nest is canonical if the transformed loop nest it creates is in the
canonical form.

When searching for a unimodular transformation, we find it con-
venient to first construct a nonunimodular transformation and then use the
algorithm in Fig. 2 to obtain a unimodular one.

Theorem 1. Let T eZ"”” be a legal nonunimodular transformation
for a loop nest and U be returned from toUnimodular(T). Then:

U is legal
2. If the ith through the jth loops are fully permutable in the trans-

formed program by T, then the ith through the jth loops are fully
permutable in the transformed program by U.

3. The last p columns of U span the same vector space as the last p
columns of T.

Proof. All three statements follow from the fact that U= HP '=
(1/a) HT, where ais positive and H is a nonnegative nonsingular lower tri-
angular matrix (Definition 1). 1

Assumption 2. All arrays are assumed to be stored in row-major
order.

3.2. Dependence Cone and Integer Dependence Matrix

By exploiting the transitivity of dependence relations, cones can be
used to represent the data dependences in the program. This abstraction
dispenses with direction values, making it possible to use integer arithmetic
to check the legality of a transformation.

Algorithm toUimodular(7": matrix)

Let P = oT~1, where « is a positive integer such that P € Z"*™;
Reduce P to its Hermite normal form H such that UP = H;
return U;

Fig. 2. Construction of a unimodular transformation.
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As is customary, we define cone(b,,.., b,)= {Ab+ ...+ A,b, |
At sy 2y =0}
In Ref. 6, Irigoin discussed to represent a dependence vector d as:

#(d)= o+ cone(ry,..., 1) (3.1)

where o and S= {ry,..,r,} are constructed as follows:

1. Initially, S == { }.

2. For every entry d, of d, where 1<< k< n, repeat the following steps:

(a) Ifd, e is an integer, then o, := d,.

(b) Ifd,=“+ ., theno,:=1and S:= S+ {e.}.

(¢) Ifdy=%“—,theno,= —1 and S:= S+ {—e;}.
(d) Ifd,=“4 . theno,:=0and S:= S+ {er, —ei}.

By construction, # (d)= ¢(d). If d is a distance vector, then S= { },
implying that » (d)= {d}.

2 (d) is sometimes referred to as the dependence cone for the single
dependence vector d. Precisely, #(d) is a polyhedron generated by the
single vertex o and the extremal rays ry,..,r,. #(d) can be considered as
the translation of the cone cone(r,..., r,) by the distance o.

Given a dependence cone # (d) of the form (3.1), we define ¢ (d)= o
and % (d)= [ry,.., r,]. In the case when # (d)= {d}, #(d)= [ ], indicating
an empty matrix.

The integer dependence matrix, D', is defined as follows:

D'= [0(dy), #(dy) s, 0 (d), % (dp)] (3.2)

where d,,..., d,, are the m dependence vectors in D.

Example 2. Consider a triple loop nest with the dependence
matrix:

1

0
D=ld,d]1=1+ 1
0 o0

The dependence cones for the two dependence vectors are:

»(d;)=(1,0,0)+ cone((0, 1,0), (0, —1,0))
7 (d»)=(0,1,0)



Reuse-Driven Tiling for Improving Data Locality 679

0 0
Thus, ¢ (d))= (1,0, 0), # (d,)= {1 ~1 ] 0(dy)= (0,1,0) and # (d>)=[ 1.
0 0

This leads to the following integer dependence matrix:

10 0 0
D'=[o(dy), 2 (d)),0(dy), 2(dx)]=]0 1 —1 1
00 0 0

3.3. Time Cone and Bases

In this paper, a basis of a cone P= {x|xA4> 0} is defined as a set of
maximally linearly independent vectors contained in the cone. P is pointed
if ker(47)= 0.

The following cone is known as the time cone:

C(D)= {t|tD>0}

Because # (d)= ¢ (d) for every d eD, we have C(D)= C(D").

The time cone is related to the canonical form of a loop nest. The first
dim(C(D)) rows of any canonical transformation form a basis of C(D).
This implies that the number of loops in the outermost fully permutable
nest of the canonical form is exactly dim(C(D)).

Because D >0, we always have 1<<dim(C(D))<<n. If D contains dis-
tance vectors only, then dim(C(D))= n. In this special case, the canonical
form consists of one single fully permutable loop nest. In the general case
when D contains “ or “+ ,” we usually have dim(C(D))< n. For exam-
ple, the time cone in Example 2 is two-dimensional: dim(C(D))= 2< n= 3.

Several algorithms proposed in this paper require us to find a basis for
the time cone C(D).

Because C(D)= C(D'), the problem of constructing a basis for C(D)
is reduced to one of constructing a basis for C(D"). Several methods based
on the simplex method can be used to construct a basis for C(D’)."”® In
practice, the number and magnitudes of the vectors in D’ are small. The
algorithm ConeBasis, given in Fig. 3, is proposed to find a basis for a cone
based on a classic decomposition of the cone into a linear space and a
pointed cone [Ref. 5, p. 100]. PointedConeBasis, which finds a basis for a
pointed cone, is not explained here because it is a slight modification of an
algorithm fully discussed in [Ref. 9, Fig. 10].

Let us apply the time cone algorithm ConeBasis to Example 2 to find a
basis for C(D). The cone C(D’) in the example is not pointed: ker((D*)")=
{(0,0,1)}.So K= [00 1]. PointedConeBasis([ — K, K, D']) is called to find

2
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Algorithm PointedConeBasis (D7: matrix in Z"*™)

S=A1}
for every set of n — 1 columns x1,-- - ,z,_1 in Dido
Let A =[zy,---,zn—1) bean n x (n — 1) matrix;

Reduce A to row echelon form B, i.e, find a unimodular matrix
U € Z™" such that U A = B, where B is in row echelon form [15, p. 115];
if the last row of B is the only row of B that is entirely zero then
[ T1, -, Zn_1 are linearly independent, and w,, is the n-th row of U */
if u, DT > 0 then [x Uy =21 X+ X Ty up to scaling +/
S:=S+{un}; /xuy, isanextremal ray x/
else if u,, D’ < 0 then
S =S+ {-u.}; /7 —u, isan extremal ray ¥/

endif
endif
if |S| = n then break; /+ only n rays to be found when dim{C(D?)) = n */
endfor
return S,

Algorithm ConeBasis (D: matrix in Z"*™)

Construct D{ from D according to (2);
/% The basic idea of finding a basis for C (D) is to decompose C(D') as:
C(DH = L+ Q, where L = ker((DY!) and Q = L+ nC(DY)
Here, L is known as the linearity space of C(D') and Q is pointed [11]. %/
Let [by, - - - , be] be the column vectors forming a basis of ker(D);
Express () as: Q = {t | t{{-K, K, DY] > 0}, where K = [by,--- , b);
return {by,- -, b;} + PointedConeBasis([— K, K, D1]);

Fig. 3. Construction of a basis for a cone.

a basis for the pointed cone C([ — K, K, D']), which is {(1, 0, 0)}. Hence,
{(1,0,0),(0,0, 1)} is found to be a basis for C(D).

4. CANONICAL TRANSFORMATIONS

When constructing a legal transformation, we often need to know at
which loop of the transformed loop nest, a dependence vector is carried (in
its entirety). The usual concept of dependence-carrying loop'" is extended
for general dependence vectors.

Definition 6 (Dependence-carrying loop). Let T be a legal trans-
formation and ¢; be its ith row. A dependence vector d €D is carried at the
kth loop in the transformed loop nest if Vz e¢(d): (t,z,..., t,z)> 0 and
Jzet(d): tiz= .. = tp—,z= 0.
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The polyhedron cone #(d) is useful in identifying the dependence-
carrying loop for d.

Lemma 1. Let T be a legal transformation and ¢, be its ith row. In
the transformed loop nest, a dependence vector d €D is carried at the kth
loop if VI<i< k: t;0(d)= 0 and t,0(d)> 0.

Proof. Based on the dependence cone # (d) given in (3.1), all dis-
tance vectors z €¢(d) can be expressed as z= o(d)+ AL+ ...+ 4,71,
where A,.., A, are any arbitrary nonnegative integers and ry,.., r, are the
rays in # (d). This means that z'= ¢ (d)+ A;r; is also a distance vector.
Since T is legal, Tz'= To(d)+ TA;r;>>0. We are given the fact that
Vi<i< k:t,0(d)= 0 and #,0(d)> 0. So we must have (#,7;,..., t,7;) > 0.
(If (£17yes tx—1r;)= 0, then 7,70 must be true. Otherwise, Tz >0
cannot hold when A4, is made arbitrarily large.) This implies that
(t,2',.., t,2')> 0, and consequently, (?,z,..., t,z)> 0 for every distance vec-
tor z € (d). 0(d) is also a distance vector, which satisfies #,0(d)= ...,
ti—10(d)= 0 by the hypothesis. Hence, the lemma is true by Defini-
tion 6. 1

Darte and Vivien’s algorithm"'” for finding a canonical transformation
is refined and depicted in Fig. 4. Note that Wolf and Lam’s heuristics-based
algorithm'>’ does not guarantee to succeed in all cases.''”’ CanonicalTrans
first finds a nonsingular canonical transformation T and then uses the algo-
rithm in Fig. 2 to derive from T a unimodular canonical-transformation U.
Let B be the number of times FPNest is called. B represents the number
of fully permutable nests in the canonical form. By calling our time cone

Algorithm FPNest(D : matrix, T": matrix, & : integer)

S :=ConeBasis((~TT,TT, D),  /+ build the k-th FPNest «/

Ty = matrix(Sg);

T:=[1];

if T is of size n x n then return;

Dk+1 = {d [ Yde D: Tk(_/)(d) = 0}',

/% D41 contains dependence vectors not carried so far (Lemma 1) +/
FPNest(Dyy,, T, k + 1);

Algorithm CanonicalTrans(/ : loop nest (of depth n))

Dy :=D;

T :=[]; /+anempty matrix for notational convenience */
FPNest(D1, T, 1);

U := toUnimodular(T);

return U;

Fig. 4. Construction of a unimodular canonical transformation.
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algorithm ConeBasis recursively, CanonicalTrans builds recursively the
following nonsingular transformation:

T,

Tp
where T, is obtained when FPNest is called the kth time and is used to
create the kth fully permutable nest in the canonical form.

Example 3. Let us apply CanoninalTrans to Example 2. In the first
call FPNest(D,, T, 1), where D,= D and T= [ ], ConeBasis finds, say,
S:=1{(1,0,0),(0,0,1)} as a basis of C(D,). Let T=T,=[4 § 7]1. The
dependence vector (1, +, 0) is already carried in the outermost loop in the
transformed loop nest. We have D,=[010]. In the second call
FPNest(D,, T, 2), ConeBasis will return S,= {(0,1,0)} as a basis for
C[—-TT,TT,D,]). Let T,=[010], we obtain:

1 00
T=10 0 1
01 0

T is already unimodular: U= toUnimodular(T )= T. The canonical form has
two fully permutable nests: the outer nest consists of the original outermost
and innermost loops and the inner nest consists of the original middle loop.

Theorem 2. U returned from Fig. 4 is a canonical unimodular
transformation.

Proof. In the kth call to FPNest, let D,= D. C(D,) must be at least
one-dimensional larger than C(D,. ), implying the existence of T, and the
eventual termination of the algorithm. By construction, we have (a) Con-
eBasis returns a basis of C([—T", T", D]), which is used to create the
largest kth fully permutable nest with respect to the outer kK — 1 fully per-
mutable nests, and (b) T is legal. Thus, T is a canonical transformation.
According to both (a) and (b) in Theorem 1, U is a canonical unimodular
transformation. 1

5. TILING TRANSFORMATIONS

As mentioned in Section 1, our approach to improving data locality of
a loop nest proceeds as follows. Firstly, a unimodular transformation is
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found and applied to the program to maximize the amount of data reuse
carried in the inner t loops of the transformed program with ¢ made as
small as possible. Secondly, the inner r loops of the transformed program
are tiled so that all data reuse carried in these loops can be exploited in the
cache. In this section, loop tiling used in this paper is defined and some
related concepts ate made precise.

Definition 7 (Tiling and Related Concepts). Consider an n-deep
loop nest of the form given in Fig. Sa.

1. A tiling for the loop nest is a legal unimodular transformation
H.el"™" as follows:

p— yl —
: X,
Vn—=< = HT H
Z Xp
Z:
2. The transformed Ipop nest,|depicted in Fig. 5b, is the loop nest

restructured by H.. The Tirst n— t loops are referred to as the
y-loops. The inner t loops are fully permutable and are referred to
as the z-loops. In the original loop nest, the kth loop enumerates
the iteration space along the direction ¢, . In the transformed loop
nest, the kth loop enumerates the iteration space along the direc-
tion given by the kth column of H_'. This leads directly to the
following formal definition of the tile space.

3. The tile space, 7 (H.), is the linear space spanned by the last 7
columns of H.'.

(a) LoopP NEST (¢) TILED LoOP NEST

dOzI:al, b d0y1:617d1

doz,=a,, b
L do Yn—r = Cnr, dnr

(b) TRANSFORMED LOOP NEST do 21z = £, ¢}, By

doy =e1, dy
do z-2- = f, g7, Br
do Yy r = Cnr, dn_r do z; = max(z121, f1), min(z121 + By — 1,91)

doz = f1, ¢u

doz, = f., g, do z, = max(z,z,, fr), min(z;2, + B, — 1,9,)

Fig. 5. Tiling of a loop nest.
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4. The tiled loop nest, given in Fig. 5c, is an (n+ t)-deep loop nest
obtained from the transformed loop nest with the inner t loops
tiled with the tile size of B;X ... X B,. Techniques for generating
tiled code are discussed by Irigoin and Triolet;''" and Xue."'”
Geometrically, by tiling the loop nest, we cut the iteration space
into slices parallel to the tile space 7 (H.) and then tile each slice
with rectangular tiles of size B; X ... X B,. In the tiled loop nest,

the yi,.., V.- . loops enumerate all slices, the, z,z,.., z,z, loops
step between tiles, and the z,,..., z, loops execute the points within
a tile.

5. The tile shape is determined by its edges (adjoining at a common
vertex), which are parallel to the last r columns of H,' and the
tile size is B; X ... XB,.

All concepts defined here are introduced in Example 1 and illustrated
in Fig. 1.

6. REUSE ANALYSIS

For completeness, we review Wolf and Lam’s reuse framework on
uniformly generated references.'”’ The basic idea is to use vector spaces to
represent the directions in which reuse is found. These are the directions to
be included in the tile space.

Let {A(Mx+ ¢y),.., A(Mx+ c,)} be the set of all uniformly generated
references for an array A in the loop nest. Let Mg be the matrix M with
its last row removed. Let cg ; (s, ;, resp.) be the vector ¢; (¢;, resp.) with
its last entry removed. The four types of reuse within this uniformly
generated set are quantified as follows:

1. The self-temporal reuse space for a single reference is ker(M ). Two
iterations x; and x, access the same element of 4 if and only if
X, — X, eker(M).

2. The self-spatial reuse space for a single reference is ker(M). Two
iterations x; and x, may access the same cache line only if
X1 — X, eker(Msy).

3. The group-temporal reuse space for the set is ker(M )+ span{r},
where r= {r, ;|VI<i j<gr,; is a particular solution to
Mx+ ¢;= Mx+ ¢;}.

4. The group-spatial reuse space for the set is ker(Mg)+ span{rg},
where rg= {r, ;|V1<<i, j< g:r,; is a particular solution to Myx
+ cs.i= Mgx+ cg ;).
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5. The reuse space for the set is the linear space spanning all four
individual spaces, which is always equal to the group-spatial reuse
space because it contains all the other three.

Definition 8 (Reuse Space and Reuse Vectors). The reuse space, R,
for a loop nest is the linear space spanning the reuse spaces for all
uniformly generated sets in the loop nest. A vector in R is called a reuse
vector or direction.

For convenience, R is represented as a matrix such that its column
vectors form a basis of R.

7. REUSE-DRIVEN TILING FOR LOCALITY

The notion of reuse-carrying loop is formally defined next.

Definition 9 (Reuse-Carrying Loop). Let T be a legal transforma-
tion and ¢; be its ith row. The kth loop of the transformed loop nest is said
to carry a reuse vector r eR if VI<i< k:t,r= 0 and ¢,r+ 0, and in this
case, the loop is said to carry reuse.

According to this definition, the k X#n top submatrix of a transforma-
tion T completely determines the reuse carried in the innermost (n— k)
loops in the transformed loop nest. This property is stated as Lemma 2 and
will be used to construct a tiling transformation incrementally.

Lemma 2. Let T be the kXn top submatrix of a legal transforma-
tion. The reuse space carried in the innermost n— k loops of the transfor-
med loop nest, called the localized reuse space, is ker(T )~ R.

Proof. A reuse vector r eR is carried in the innermost n— k loops if
and only if VI< i< k: t,r= 0, i.e, if and only if » eker(T), where ¢, is the
ith row of T. Hence, ker(T ) R is the reuse space localized in the inner-
most n— k loops in the transformed loop nest. 1

Based on this lemma, the reuse space localized in the tile space is given
by 7 (H.)n R.

Definition 10 (Optimal Tiling). A tiling H., is optimal if for every
tiling H',, we have:

e dim(s (H,)n R)=dim(7 (H)n R), and

e <7 when dim(7 (H,)n R)= dim(7 (H) " R).

An optimal tiling H, is said to be locality-optimal if 7 (H,)> R
because all data reuse is localised in the tile space and can thus be
exploited in the cache.
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We make use of the canonical form of fully permutable loop nests and
distinguish two cases. In the special case of one single fully permutable loop
nest, the algorithm presented always finds a locality-optimal tiling. In the
general case of multiple fully permutable nests, the algorithm presented
aims at localizing data reuse in the tile space so that the reuse space
contained in the tile space has the largest dimensionality possible. This
algorithm finds a locality-optimal tiling in the special case considered in
Theorem 5.

7.1. One Single Fully Permutable Loop Nest

In this special case, we can always find a locality-optimal tiling H,
such that 7 (H,)o R and t is the smallest possible. Due to data dependen-
ces, 7 (H.) may contain R as a strict subspace. This means that the num-
ber of tiled dimensions may be larger than the dimensionality of the reuse
space. If dim(R)= n, all dimensions of the iteration space must be tiled, in
which case, any canonical transformation is locality-optimal. In general, an
optimal solution H, is found using the algorithm in Fig. 6, which calls our
time cone algorithm twice, once to construct its first n— 7 rows and once
to construct its last  rows.

Theorem 3. H. returned by OptTiling given in Fig. 6 is locality-
optimal.
Proof. By Definition 10, we show that 7 (H,)o R and t is the

smallest possible.

Existence. We show that OptTiling returns a unimodular transfor-
mation H,. By examining the three steps of the algorithm, it suffices to

Algorithm OptTiling(L: loop nest)

Step 1. /+ Construct a basis of Cy = {t | tR = 0,tD > 0} #/
Sy := ConeBasis([— R, R, D]);
T := matrix(S);

Step 2. /+ Construct a basis of Co = {t | tTT = 0,tDy 2 0} #/
Dy:={d|Y¥de D:T.0(d) =0};
Sy 1= ConeBasis([-T7, T7, D,]);

Step 3.7 := [matr?x(sz) ;
H := toUnimodular(7);
T:=1S2|; /+ Theorem 3 +/
return H;

Fig. 6. Construction of a locality-optimal tiling for one fully per-
mutable loop nest.
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show that |S,|= t, i.e., dim(C,)= = The canonical form for the loop nest
under consideration has one fully permutable nest. Thus, dim(C(D))= n.
Since all columns of D, are taken from D. we must have dim(C(D,))= n.
After Step 1 is completed, rank(T )= n— 7 (i.e, dim(C,)= n— t) because
the n— t rows of T are a basis of C,. Thus, dim({z|¢T"= 0})= r, and con-
sequently, dim(C,)= 7. So in Step 3, a basis of = vectors in C, can be found
to complete T as a nonsingular matrix. Finally, according to Theorem 1,
H . is unimodular.

Legality. H, is legal due to the fact that T is legal by construction
and Theorem 1.

Optimality. By construction, 7 (H,)o R. If H. is not optimal,
there must exist a tiling H' such that 7 (H',)> R and 7' < 7. This implies
that the first n— 7' rows of H'. are a basis of C,, which is impossible since
n— 1> n—t= dim(C,).

Hence, H. is locality-optimal by Definition 10. 1

Example 4. Let us trace the algorithm of Fig. 6 to construct the
optimal tiling transformation discussed in Example 1. In Step 1, ConeBasis
is called to find S;= {(1,0, —1} as a basis for the cone C,. Let T=
[10—11]. The outermost loop in the transformed loop nest thus created
does not carry any dependences. Thus, D,= D= [0+ 0]. Calling Con-
eBasis on C,, we obtain S,= {(0,1,0),(1,0,1)} a basis of C,. In Step 3,
we obtain:

I 0 1
|
0 1 0
I 0 0

T is not unimodular because |det(T)|= 2. So the algorithm finally returns
the optimal tiling:

1 0 —1
H,= toUnimodular(T )= ~0- . .1. . ,0,
1 0 0

Since 7 (H,)= R, two dimensions of the iteration space are tiled to exploit
two degrees of reuse.
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Sometimes, in order to localize all reuse in the tile space, the number
of tiled dimensions has to be larger than the dimensionality of the reuse
space.

Example 5. Consider the following loop nest:

1 1 0 0 0

+ 0 0 1 0
D= R=

o o0 27 1 1

0 0 -1 0 1

Because C, is one-dimensional, in Step 1, {(1,0,0,0)} is found as a basis
of C;. We have T=[1000]. In Step 2, the first two dependence columns
of D are found to be carried in the outermost loop in the transformed loop
nest. So D,=[0,0,2, —1]. Because C, is three-dimensional, {(0, 1,0, 0),
(0,0,1,1), (0,0,1,2)} is a basis of C,. In Step 3, we obtain:

_ 1 0 0 0 _
T= 01 00
0 0 1 1
0 3 1 2
Since T is unimodular, H;= toUnimodular(TT= T. The tile space 7 (H3)

strictly contains the reuse space R:dim(7 (H;3))= 3 and dim(R)= 2. To
exploit two degrees of reuse in the program, three dimensions of the itera-
tion space have to be tiled.

7.2. Multiple Fully Permutable Loop Nests

When the canonical form of a loop nest consists of several fully per-
mutable nests, it is only profitable to tile the innermost permutable nest.
Two complications must be recognized.

e Firstly, the approach of first transforming the loop nest into the
canonical form and then tiling the innermost permutable nest to
optimize reuse cannot always exploit all reuse available. This is
because the reuse information is not used in the construction of the
canonical form. Any reuse that is carried in outer permutable nests
cannot be exploited, even though an appropriate transformation
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may move the reuse into the innermost permutable nest. For exam-
ple, the following loop nest

00 10
p=|lo 1 of, R=|-1 0 (7.1)
— 0 1 0 1

is already in the ctanonical form of two fully petmutable nests with
the first two loops in the outer nest and the last loop in the inner
nest. Tiling the last loop alone does not exploit any reuse more than
the original program does. Using the algorithm in Fig. 7, the follow-
ing tiling transformation is found to exploit all reuse of the program:

1 1 0

| .

2 2 1 0 (7.2)
0 0 1

e Secondly, it is no longer always possible to exploit all reuse in the
program. Due to dependence constraints, some data reuse cannot be
localised in the innermost permutable nest. In the extreme case, a
program is simply untilable because all data reuse will be carried in
outer fully permutable nests. This is illustrated by the following

example:
1 0 0 O 1 0
p=| " + 0 0 R 0 1
0 — 1 0) 0 0
0 — 0 1 0 0

The first loop must be in a fully permutable nest by itself, and
likewise for the second loop. The last two loops can be placed in the
same fully permutable nest. Therefore, the reuse is all carried in the
first two loops. Tiling the last two loops does not exploit any reuse
in the program. Thus, this program does not have any locality.

Our data locality algorithm depicted in Fig. 7 evolves naturally from
Fig. 4. The two algorithms are identical except two differences: (a) FPNest
is renamed to LoopNest with a fourth parameter added to export the num-
ber of loops to be tiled, and (b) a number of statements, inside the box
highlighted, are added for the purposes to be explained later.

Our data locality algorithm creates the transformed loop best recur-
sively and greedily, loop by loop, starting from the outermost loop. In line
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Algorithm LoopNest(D : matrix, T": matrix, k : integer, 7 : integer)

Calculate the reuse space Ry, localised in ker(7") by Lemma 2;
if Ry =[] then
Print “No locality can be exploited™;
Stop;
endif
(a) | Sy :=ConeBasis([— Ry, Ry, —T7,TT, D)),
if |Si| = 0then /« C([—Ry, Ry, —T7,TT,D]) = {0} &/
(b) Sk = ConeBasis(-=1'T, TT, Dy;
if |Sk| = n — rank(T') then /x T has full-row rank /

(©) 7:=|Sil;  /* the inner T loops to be tiled ¥/
else
/x this dimension of reuse not localised in the tile space +/
(d) Replace all vectors 21, 29, - in Sy by 27 + 29+ - - -5
endif
endif

T := matrix(Sk);

Ti=[4];

if T is of size n X n then return;

Dy :={d|¥d e D:TO(d)=0};

/+ Dy contains dependence vectors not carried so far (Lemma 1) +/
LoopNest(Dyy1, T, k+ 1, 7);

Algorithm Tiling(L : loop nest (of depth n))

D1 = D,

T:=[];

LoopNest(Dy, T, 1,7);
H := toUnimodular(7");
return H;

Fig. 7. Construction of a tiling in the general case.

(a), we create as many y-loops as possible that do not carry any reuse. If
this fails, we check in line (b) to see if it is possible to generate all remaining
loops as the z-loops. That being the case, line (c) will be executed and the
recursion will terminate at the current recursive call. Otherwise, line (d) will
be executed, creating one y-loop using the row vector obtained as a sum of
all vectors in S;. This step has a well-founded explanation. Consider the
case where all vectors of S are used to create a total of |S,| loops. We can
always apply the wavefront transformation of appropriate size:

1
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to these |S,| loops so that after transformation, the first transformed
loop—the y-loop created in line (d)—carries all dependences that are
carried by all these |S;| loops and the other |S,|— 1 loops can be moved
into the innermost permutable nest.

We repeat the same process recursively until either all data reuse has
been carried in the y-loops constructed so far, in which case, the program
will not be tiled, or a tiling transformation has been found when line (c)
has been finally reached.

Theorem 4. H_found in Fig. 7 is a legal tiling transformation.

Proof. The algorithm in Fig. 7 is adapted from the algorithm in
Fig. 4 for constructing a canonical transformation. If S;,= { } for the S,
constructed in line (a), we ignore the reuse space R and call S, :=
BasisCone([— T 7, T”, D]) in line (b). We must have S, # { } for the same
reason why S,# { } holds for the same statement in Fig. 4 (Theorem 2).
Thus, if LoopNest returns normally to the caller Tiling, T must be a legal
transformation. According to Theorem 1, H, must be a legal tiling transfor-
mation. 1

Theorem 5. H. found in Fig. 7 is locality-optimal if line (d) is not
executed.

Proof. If the construction of H, never involves line (d) executed,
then all reuse of the loop nest must be carried in the inner 7 loops of the
transformed loop nest, i.e., 7 (H.)o> R. According to Definition 10, it suf-
fices to show that 7 is the smallest possible. Assume, to the contrary, that
there exists a tiling transformation H'. such that 7 (H.)> R and 7'< 7. We
show that this contradicts to the greedy nature of the algorithm in Fig. 7.
Let i) be the first row of H' such that &) ¢span{h,,.., h,- .}; such a row
always exists because 7'< 7. Since span{h’,.., hi- {} Cspan{hy,.., h,- .},
the dependence matrix D' carried in the inner n— k+ 1 loops of the trans-
formed loop nest by H' must contain as a submatrix the dependence
matrix D carried in the inner t loops of the transformed loop nest by H..
This means that A, D=0 because 4, D'>0. We also know that 4, R= 0
because 7 (H'/)o R. Therefore, before constructing the last r rows of H, in
line (c), the algorithm in Fig. 7 would have found /) as a row vector for
creating one more y-loop in the transformed loop nest. This contradicts to
the fact H, generates only n— ¢ y-loops. 1
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Example 6. Consider the following quadruple loop nest:

I 0 0 0 0 0

0 + 0 0 I 0
D= , R=

- 0 1 0 0 0

- 0 - 1 -1 1

The canonical form consists of two permutable nests with first two loops
in the outer nest and the last two loops in the inner nest. The following
transformation is found to be locality-optimal because line (d) is not
executed (Theorem 5):

_ 0 0 0 _
00 1 0
H=| .........
01 0 0
0 0 1

LoopNest is called three times. The first two rows of H, are found in line
(a) in the first two calls, respectively, and the last two rows of H, are found
in line (b) in the third call. In this example, tiling the innermost two loops
exploits all two degrees of reuse available.

Example 7. Consider the last example in the paper:

doi=1,N
doj=1, N
dok=1N
dom=1, N
A(i, j,2+k)= A(i— 1, j— 1, k+ m)+ C(k, m, i)

Wolfe’s Tiny reports the following dependence matrix (with simplifica-
tions):

H H+ - —~
+ o o o
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The reuse space for the loop nest can be computed as follows:

00 0 10
R= 00 0 01
1 0 1 00
01 -1 0 O

In the first call to LoopNest, S;= { } in line (a) because dim(R)= 4 and
|S1|= 2 in line (b) because dim(C(D))= 2. S, contains a basis for the time
cone C(D). Assuming that S;= {(1,0,0,0),(0,1,0,0)}, we obtain T= T,
=[1100].

The dependence matrix and the reuse matrix for the three remaining
loops are as follows:

0 0 0 0 1
D,= 0 R,= 00 o0 -1
0 1 0 1 0
+ 01 -1 0

In the second call to LoopNest, S,= { } in line (a) because dim(R,)= 3.
In line (b), we find that S,= {(0,1,0,0),(0,0,1,0),(0,0,0,1)}. Since
= n—rank(7T )= 3, we obtain:

0 (7.3)

T is unimodular, so H;= toUmimodular(T )=-F. In the transformed loop
nest nest, the innermost three loops will be tiled to exploit three out of four
degrees of reuse in the program. H; is optimal by Definition 10 because
one degree of reuse has to be carried at the outermost loop in the trans-
formed loop nest due to data dependences.

8. RELATED WORK

This work is directly related to Refs. 2, 6, 9, and 10. Based on Irigoin’s
dependence cone work,'® the search space for legal transformations is
defined by the time cone. An algorithm presented in our previous work’
is modified to find a basis for the time cone. Based on this algorithm,
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Darte and Vivien’s algorithm for finding canonical transformations is
implemented. The reuse framework based on vector spaces is due to Wolf
and Lam."”

The relevance of cones to solving compiler problems is being
increasingly recognized. Successful applications are dependence abstrac-
tion,"">'* loop scheduling,''” and tiling for parallelism.””'>"'”) One more
application considered in this paper is tiling for data locality.

The concept of fully permutable loop nests introduced by Wolf and
Lam' has emerged to be a useful. Initially, the concept by Wolf and
Lam¥ is related to the maximal degree of doall parallelism inherent in the
program. In Refs. 15 and 18 and this paper, the concept is also exploited
in loop tiling.

This work improves and extends Wolf and Lam’s earlier data locality
work.”” There are three main differences. Firstly, we use arbitrary vectors
to represent the reuse directions while Wolf and Lam use only elementary
vectors. In the case of Example 1, Wolf and Lam will split the reuse direc-
tion (1,0, 1) into (1,0, 0) and (0, 0, 1) and approximate the reuse space as:

01 0
R=11 0 0
0 0 1

As a result, Wolf and Lam’s algorithm will tile all three loops, which is not
optimal.

Secondly, we consider a much larger search space than Wolf and Lam.
Their search space consists of a total of 2” different ways of dividing the
transformed loop nest into y-loops and z-loops. In the case of the example
given in (7.1), one optimal solution we find is given in (7.2). In Wolf and
Lam’s approach, the reuse space for the loop nest will be approximated as:

I 0 O
R=10 -1 O
0 0 1

A total of 2° possible ways to tile the loop nest will be considered:
Had, {nkyy, (U taky s, (k4 g3y, ik ik, ik {73,
and {{J, k}, {i}}. In each case, the first subset contains the loops that are
left untiled and the second subset contains the loops to be tiled innermost.
The final transformation found cannot include the reuse direction
(1, =1, 0) in the tile space and is thus not optimal.

Thirdly, Wolf and Lam use a simple data locality model to select
optimal solutions. Their model includes the cache line size as the only
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machine-specific parameter. In this paper, we show that, in many impor-
tant cases, such as the case when the canonical form has one single per-
mutable nest (Theorem 3) and the special cases covered in Theorem 5, the
optimal solutions that exploit all reuse can be found based on the reuse
information only. In the general case when |S;|> 1 in line (d) of Fig. 7,
accurate locality estimates can help to choose alternative solutions, which
is the future work. our algorithm in Fig. 7 reduces the number of times
locality estimates are calculated and contains a placeholder in line (d),
where different locality models can be plugged in and experimented with.

9. CONCLUSION

We have provided algorithms for improving data locality of a perfect
loop nest. In the case of one single fully permutable nest, the program is
tiled optimally so that all reuse, and consequently, all locality is exploited.
In this special case, optimizing reuse always optimizes data locality. In the
general case, the program is tiled in order to localize as much data reuse
as possible in the tile space. In the general case, optimising reuse optimizes
potentially data locality of the program. Presently, our algorithm in Fig. 7
relies on the reuse information only to construct a transformation matrix.
For each row of the matrix created in line (d) of Fig. 7, the corresponding
loop in the transformed loop nest carries one dimension of reuse that can-
not be exploited because the loop is not in the innermost permutable nest.
A data locality model can help to make alternative choices in line (d).
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