
International Journal of Parallel Programming , Vol . 26, No. 6, 1998

Introduction

In recent years there has been an increase in the number of parallel com-
puters shipped by computer vendors, which, to a large extent, can be
attributed to the popularity of small-scale multiprocessor workstations and
servers. Large-scale parallel computers have also gained wider acceptance
in the commercial world. With the rapid advance of VLSI technologies,
multiple processors on a single chip may soon be commercially available,
which will give rise to even wider use of parallel computers.

Parallel computers not only can increase system throughput but also
present opportunities to speed up individual programs. However, writing
parallel programs is still much more difficult than writing sequential programs.
It is equally challenging, if not more so, to develop tools which can
automatically restructure sequential programs for parallel machines.
Designers of parallel languages and compilers have long worked toward
bringing parallel computing to mainstream. The increased availability of
commercial parallel computers makes such effort even more urgent and
challenging.

In August 7± 9, 1997, over seventy researchers working in this field met
at the Tenth Annual International Workshop on Languages and Compilers
for Parallel Computing (LCPC’97) held at the University of Minnesota, to
exchange ideas and present their state-of-the-art results. Based on the
program committee’s recommendations, we invited several research groups
to present their revised papers as formal articles for a special issue in the
International Journal of Parallel Programming . The articles presented in
this special issue on Languages and Compilers for Parallel Computing
represent an important part of the current research efforts in the field.

This special issue is published in two parts. The first part contains four
articles. The first article, `̀Parallel Programming and Performance Evaluation
with the Ursa Tool Family,’’ by Park, Voss, Armstrong, and Eigenmann,
deals with compilers which automatically parallelize sequential programs.
It addresses the question of how to make such parallelizing compilers more
interactive. The other three articles in this first part are on the analysis and

639

0885-7458 / 98 / 1200-0639$15.00/ 0 Ñ 1998 Plenum Publishing Corporation

performance enhancement of parallel programs. The article by Lee, Midkiff,
and Padua, entitled `̀A Constant Propagation Algorithm for Explicitly
Parallel Programs,’’ presents a new intermediate representation (IR) of
programs written in parallel forms by programmers. Based on the new IR,
they present a constant propagation algorithm which takes interaction
between parallel threads into consideration. The article by Han, Tseng, and
Keleher, entitled `̀Reducing Barrier Synchronization for Compiler-Paral-
lelized Codes on Software DSMs,’’ targets a software distributed-shared-
memory (DSM) system built on top of an IBM SP2, a message-passing,
distributed-memory parallel computer. The article by Mellor-Crummey and
Adve, entitled `̀Simplifying Control Flow in Compiler-Generated Parallel
Code,’’ presents algorithms, which have been implemented in the Rice dHPF
compiler, to remove redundant conditionals often seen in the code generated
by the HPF compilers. Their experiments are performed on an IBM SP2.

The second part of this special issue consists of three articles. The first two
articles concern an important compiler transformation called tiling. The article
by Mitchell, HoÈ gstedt, Carter, and Ferrante, titled `̀Quantifying the Multi-
Level Nature of Tiling Interactions,’’ illustrates the difficulty in tiling due to
multi-level parallelism and multi-level memory systems in some new computer
architectures. They propose to use multi-level cost functions to guide tiling in
order to overcome such difficulty. The second article, `̀Reuse-Driven Tiling for
Improving Data Locality,’’ by Xue and Huang, presents a solution to maxi-
mize the amount of data reuse in the cache memory while minimizing the
number of tiled loops (thus reducing the extra control overhead associated
with the tiled loops). The last article, entitled `̀Compiler Techniques for the
Superthreaded Architectures,’’ by Tsai, Jiang, and Yew, looks beyond current
parallel architectures and considers a new form of parallel execution called
superthreading which provides some hardware support for speculative parallel
execution at the thread level. They explore compiler techniques for such a
processor architecture and present simulation results.

We thank the LCPC’97 committee for their help in the reviewing pro-
cess and their recommendation of these articles. We also thank the external
reviewers for their valuable comments and suggestions.

The last article, `̀Compiler Techniques for the Superthreaded Architec-
tures,’’ by Tsai, Jiang, and Yew was originally scheduled to appear in Inter-
national Journal of Parallel Programming , Volume 26, Number 6, December
1998, but has been moved to Volume 27, Number 1, February 1999.

Zhiyuan Li1 and Pen-Chung Yew2

Guest Editors

1 Department of Computer Sciences, Purdue University.
2 Departement of Computer Science and Engineering, University of Minnesota.

640 Introduction

