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Abstract. In this paper, we solve the call admission control and routing problem in multimedia networks via
reinforcement learning (RL). The problem requires that network revenue be maximized while simultaneously
meeting quality of service constraints that forbid entry into certain states and use of certain actions. The problem
can be formulated as a constrained semi-Markov decision process. We show that RL provides a solution to this
problem and is able to earn significantly higher revenues than alternative heuristics.
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1. Introduction

A number of researchers have recently explored the application of reinforcement learning
(RL) to resource allocation and admission control problems in telecommunications, e.g.,
channel allocation in wireless systems, network routing, and admission control in telecom-
munication networks (Nie & Haykin, 1999; Singh & Bertsekas, 1997; Boyan & Littman,
1994; Marbach, Mihatsch, & Tsitsiklis, 2000). This paper focuses on applications of the RL
method to call admission control (CAC) and routing in broadband multimedia communica-
tion networks, such as Asynchronous Transfer Mode (ATM) networks and Multi-Protocol
Label Switching (MPLS) networks. Broadband networks carry heterogeneous traffic types
simultaneously on the same channel (so called multiplexing). The channels are packet-based
so that customers can send at varying rates over time. Calls arrive and depart over time and
the network can choose to accept or reject connection requests. If the new call is accepted,
the network will choose an appropriate route to deliver the call from its source node to its
destination node. The network provides Quality of Service (QoS) guarantees at the packet
level, e.g., maximum probability of congestion, and at the call level, e.g. limits on call
blocking probabilities. In return, the network collects revenue (payoff) from customers for
calls that it accepts into the network. The network wants to find a CAC and routing policy
that maximizes the long term revenue/utility and meets QoS constraints.

Maximizing revenue while meeting QoS constraints suggests a constrained semi-Markov
decision process (SMDP) (Mitra, Reiman, & Wang, 1998). The rapid growth in the number
of states with problem complexity has led to RL approaches to the problem (Marbach &
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Tsitsiklis, 1997; Marbach, Mihatsch, & Tsitsiklis, 2000). However, these RL applications
have ignored QoS criteria. This work draws on a closely related and more fundamental
problem of constrained optimization of (semi-)Markov decision processes, which has been
studied by researchers from control theory, operation research and artificial intelligence
communities, see e.g. Altman and Shwartz (1991), Feinberg (1994), and Gabor, Kalmar,
and Szepesvari (1998).

Unlike model-based algorithms (e.g. linear programming in Mitra, Reiman, and Wang
(1998)), the RL algorithm used in this paper is a stochastic iterative algorithm, it does not re-
quire a priori knowledge of the state transition models (i.e., the state transition probabilities)
associated with the underlying Markov chain, and thus can be used to solve real network
problems with very large state spaces that cannot be handled by model-based algorithms,
and can automatically adapt to real traffic conditions.

This work builds on earlier work of the authors (Brown, Tong, & Singh, 1999) in that it
provides a more general framework for studying the CAC and routing problem, under QoS
constraints. It also provides more detailed information and proofs for the RL algorithms
used in the study which were not reported in Tong and Brown (2000).

Section 2 describes the problem model used in this study. Section 3 formulates the CAC
problem as a SMDP, and gives a RL algorithm that solves the SMDP. Section 4 considers
QoS constraints in more details. Simulations for CAC on a single link system is presented
in Section 5. Combined CAC and network routing is studied in Section 6, with simulation
results for a 4-node, 12-link network. Section 7 concludes the paper.

2. Problem description

This section describes the CAC problem for a single-link communication system. There is a
substantial literature on CAC in one link multiservice networks, e.g. Marbach and Tsitsiklis
(1997), Mitra, Reiman, and Wang (1998), and references in Dziong and Mason (1994). The
single link case is significant since it is the basic building block for larger networks and,
as shown in Section 6 of this paper, combined CAC and routing for a multi-link network
system can be decomposed into single link processes. We thus first focus on a single-link
system.

Users attempt to access the link over time and the network immediately chooses to accept
or reject the call. If accepted, the call generates traffic in terms of bandwidth as a function
of time. At some later time, the call terminates and departs from the network. For each call
accepted, the network receives an immediate revenue payment. The network measures QoS
metrics such as transmission delays, packet loss ratios, or call rejection probabilities for
each service class, and compares them against the guarantees given to the calls.

The problem is described by the call arrival, traffic, and departure processes; the revenue
payments; QoS metrics; QoS constraints; and network model. To be concrete, we describe
the choices used in the later examples. Calls are divided into discrete classes indexed by
i, i = 1, 2, . . . , I . The calls are generated via independent Poisson arrival processes (arrival
rate λi ) and have exponential holding times (mean holding time 1/µi ). Within a call the
bandwidth is an ON/OFF process where the traffic is either ON, generating packets at rate ri ,
or OFF at rate zero with mean holding times 1/νON

i and 1/νOFF
i . The ON/OFF holding times
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are not restricted to be exponentially distributed, this allows us to treat more general CAC
problems with long-range dependence traffic (also referred to as self-similar or chaotic
traffic, Leland et al., 1993). When a class i call is admitted, the system collects a fixed
amount of revenue ηi ∈ [0, ∞), which can be interpreted as the average reward for carrying
the i th class call (Dziong & Mason, 1994). The network element connects to the network
with a fixed bandwidth B. The total bandwidth used by accepted calls varies over time.

One important packet-level QoS metric is the fraction of time that the total bandwidth
exceeds the network bandwidth and causes packet losses, i.e., the congestion probability,
pi , 1 ≤ i ≤ I . We choose the packet-level QoS guarantee to be the upper limit of congestion
probability, p∗

i , which we denote the Capacity constraint. In previous works (e.g. Carlstrom
& Nordstrom, 1997; Marbach, Mihatsch, & Tsitsiklis, 2000) each call had a constant band-
width over time so that the effect on QoS was predictable. Variable rate traffic is safely
approximated by assuming that it always transmits at its maximum or peak rate. This peak
rate allocation under-utilizes the network; in some cases by orders of magnitude less than
what is possible. Network efficiency can be improved by statistical multiplexing: Statis-
tically, bursty sources are unlikely to all simultaneously communicate at their peak rates.
Thus it is possible to carry more bursty or variable rate traffic than would be possible by
allocating capacity according to peak rate requirements, while maintaining service quality.
Stochastic traffic rates in real traffic, the desire for high network utilization/revenue, and
the resulting potential for QoS violations characterize the problem in this study.

Another important QoS metric is the call-level blocking probability. When offered traffic
from each class must be cut back to meet the capacity constraint, it is important to do so
fairly, which we denote the Fairness constraint. Fairness can be defined in a number of
different ways, but one intuitive notion is that calls from every class are entitled to the same
admission probability, or equivalently, the same rejection probability (Dziong & Mason,
1994). This will be more precisely defined in Section 4.

Ultimately our goal is to find a policy, π , that for every system state, s, chooses the correct
control action, a, so that we maximize revenue subject to the QoS constraints. Formally,
we consider the following problem of finding the CAC policy, π , that

maximizes J0(π) (1)

subject to Jj (π) ≤ l j , j = 1, . . . , K , (2)

π ∈ {set of all policies} (3)

where K is the number of QoS constraints, l j , j = 1, . . . , K are real numbers that charac-
terize the QoS constraints, J0(π) characterizes the average network revenue under policy
π , and Jj (π), j = 1, . . . , K characterize the QoS under policy π . We consider objectives
of the form

Jj (π) = lim
N→∞

∑N−1
n=0 c j (sn, an)∑N−1
n=0 τ(sn, an)

(4)

for j = 0, 1, . . . , K . Action an is chosen at state sn according to the policy π , c j (sn, an) are
the reward functions associated with revenue (for j = 0) and QoS metrics (for j = 1, . . . , K ),
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and are assumed to be bounded. τ(sn, an) are the average sojourn times at state sn under
action an , while n indexes the n–th decision time point. (A sojourn time is the time from
one transition to the next, when action an is applied at sn . In the problem studied here the
sojourn times are exponentially distributed.)

3. Semi-Markov decision processes and reinforcement learning

The following sections develop the components to the problem and finish by justifying a
particular method suitable for the CAC problem.

3.1. States and actions

This section develops the state action model and a reduced state space representation suitable
for the CAC problem.

The CAC problem can be formulated as a semi-Markov decision process (SMDP) in
which state transitions and control selections take place at discrete times, but the time from
one transition to the next is a continuous random variable. At any given point of time, the
system is in a particular configuration, x, defined by the numbers of each type of ongoing
calls, and y, the numbers of calls in the ON state of each type if ON/OFF distributions are
exponential. If ON/OFF distributions are not exponential, the y would have to include, in
addition, the elapsed ON/OFF holding time for each call in progress. At random times an
event e can occur (only one event can occur at any time instant), where e is an I -vector
indicating for class i either a call arrival, a call termination, a call being turned ON, or a
call being turned OFF event, 1 ≤ i ≤ I . The configuration and event together determine the
state of the system, s = (x, y, e). Clearly, s is at least a 3I -dimensional vector for an I -class
system. Since the number of possible choices for e is in general small compared to those
for x, y, the size of the state space is dominated by the configuration part of the state. It can
be shown that using the nearly complete decomposability approximation we can reduce the
state descriptor into the form of s = (x, e), where ei stands for a call arrival or departure
event of class i . Let x = (x1, x2, . . . , xI ) be the configuration, ei denote the I -vector whose
elements are equal to zero except the i th element, whose value is unity. Then the states
associated with a class i call arrival are s = (x, ei ), and the states associated with a class i
call departure are s = (x, −ei ), 1 ≤ i ≤ I . This reduction, by ignoring the number of calls
in the ON state and the events of a call being turned ON or OFF, gives us enough accuracy
for the CAC problem, as shown experimentally by Mitra, Reiman, and Wang (1998).

Here we give two reasons for this simplification. First, the moment a call turns ON or OFF

is not a decision point for the admission controller, and therefore no action needs to be taken
and no reward will be incurred. Theorem 2 and its Corollary in the Appendix show that
ignoring the events of a call being turned ON or OFF is valid. Section 3.4 provides further
discussions on similar simplifications. Second, it is intuitively clear that this simplification
is a good approximation when the ON/OFF process (indicated by y) reaches equilibrium in
a time faster than the call arrival/departure process (indicated by x). Hence, when making a
call admission decision, the number of calls of each class in progress is important, but the
number of calls of each class in the ON state is not, because these quantities oscillate rapidly
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relative to call arrivals and departures. If we view the dropping off of y as state aggregation,
and reasonably assume that for a fixed x, the Q-values do not change much for different y,
then the discussions in Section 3.6 further justify this state reduction.

We note that y does affect the congestion probability. Assuming the y process reaches
equilibrium and corresponds to fixed x, and assuming source independence, the probability
for the configuration (x, y) is given by the binomial distribution

ψ(x, y) =
I∏

i=1

(
xi

yi

)
byi

i (1 − bi )
xi −yi (5)

where bi is the fraction of time a class i call spends in the ON state,

bi = (
νON

i

)−1/[(
νON

i

)−1 + (
νOFF

i

)−1]
.

The average congestion probability for class i with fixed x is thus

pi (x) =
x1∑

y1=0

· · ·
xI∑

yI =0

{
ψ(x, y)1

{
y :

∑
j

y j r j − B > 0

}
1 {y : yiri > 0}

}
(6)

where 1{·} is the indicator function. So the average congestion probability depends only
on x.

Capacity constraints associated with (6) are conservative in that the set

Cc = {x : pi (x) ≤ p∗
i , 1 ≤ i ≤ I } (7)

is the set of x such that the long run average packet-level QoS constraints are always satisfied,
and we will never go into any state for any period of time where the capacity constraint will
be violated if we stay there forever. The set Cc uniquely determines a state space S: for any
i , (x, ei ) ∈ S if and only if x ∈ Cc; and (x,−ei ) ∈ S if and only if xi ≥ 1 and x ∈ Cc. Mitra,
Reiman, and Wang (1998) considers a more aggressive approach to the packet-level QoS
constraints, that averages across all the allowable configurations x. Let T = ∑

x∈Ca
T (x)

be the total system time, T (x) be the portion of T the system spends at x, and Ca is the set
of the allowable configurations x such that

pi = lim
T →∞

∑
x∈Ca

pi (x)T (x)

T
(8)

are less than or equal to target p∗
i , for all i = 1, . . . , I . In some occasions, to emphasize the

dependence of Cc and Ca on p∗ = (p∗
1, . . . , p∗

I ), we also write Cc(p∗) and Ca(p∗).
In summary, we choose the state descriptor to be s = (x, ± ei ), where xi is the number

of class i calls in progress, and ei stands for a new class i call arrival, −ei for a class i call
departure, 1 ≤ i ≤ I .

When an event occurs, the learner has to choose an action feasible for that event. The
action set is A(s) = {0 = reject, 1 = accept} upon a new call arrival. Call terminations are
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not decision points, so no action needs to be taken. Symbolically, at such states A(s) =
{−1 = no action due to call departures}. Note that the actions available at state s, A(s), in
general depend on s. For example, if adding a new call at a state s will violate the capacity
constraint, then the action set at that state should be constrained to A(s) = {0}. At some
subsequent random time another event occurs, and this cycle repeats. The network only
earns revenue for accepted calls and the revenue depends on the call types:

c0(s, a) =
{

ηi , if e = ei and a = 1

0, otherwise
(9)

The task of the learner is to determine a policy for accepting calls given s, that maximizes the
long-run average revenue, over an infinite horizon while meeting the QoS requirements. For
CAC, the system constitutes a finite state space S = {(x, e)}, (due to the capacity constraint),
finite action space A = {−1, 0, 1}, semi-Markov decision process.

3.2. Transition probabilities

This section considers the probability model and concludes that for large state spaces,
classical approaches based on the transition probability model are not feasible. Theoretically,
a state transition probability p(s, a, s ′)—the probability of going from state s under action
a to next state s ′—can be derived (Mitra, Reiman, & Wang, 1998), which depends on the
configuration x and call arrival/departure rates. But exact system models are often infeasible
for several important reasons. First, call arrival rates may depend not only on each call class,
but also on the configuration x (Dziong & Mason, 1994). Therefore, the call arrival rate
for each class may not be a constant in general. Second, for any network of reasonable
size, the state space is extremely large. As an example, a 4-node, 12-link network with 3
service types has more than 1045 states (Marbach, Mihatsch, & Tsitsiklis, 2000). It is not
even possible to explicitly list all the states. Finally, fixing a model before computing the
optimal policy means that it will not be robust if the actual traffic condition departs from
the assumed model.

For the above reasons, it is clear that for any practical system with large state space,
it will be very difficult, if not impossible, to determine the exact transition model for the
Markov chain before performing any model-based algorithm to compute the optimal policy.
This is the main motivation for this study to apply model-free RL algorithms to solve CAC
problems. In particular, the Q-learning algorithm (Watkins & Dayan, 1992) is used in this
paper. Q-learning can be performed using the actual system as a simulator to obtain sample
transitions. In addition, the fact that Q-learning is an off-policy learning method (Sutton
& Barto, 1998, Section 7.6), means that even with arbitrary exploration actions, the final
policy learned by Q-learning will still be optimal, see Section 3.5 for more discussions.

Although we will not explicitly compute the transition probabilities, we make the fol-
lowing assumptions in this study:

Assumption A1. Calls arrive according to independent Poisson processes, call holding
times are exponentially distributed.
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Let ξss ′(a) be the continuous random inter-transition time from state s to state s ′ under
action a, with probability distribution Fss ′(ξ | a). We have

Assumption A2. 0 < τ(s, a) < ∞, where τ(s, a) is the expectation of ξss ′(a), for any
s ∈ S, a ∈ A(s),

τ(s, a) =
∑
s ′∈S

p(s, a, s ′)
∫ ∞

0
ξd Fss ′(ξ | a) (10)

In particular, there exists δ > 0, ε > 0, such that∑
s ′∈S

p(s, a, s ′)Fss ′(δ | a) ≤ 1 − ε, ∀s ∈ S, a ∈ A(s) (11)

Assumption A3 (Unichain Condition). For every stationary policy π , transition matrix
(p(s, π(s), s ′)){s,s ′ ∈ S} determines a Markov chain on S with one ergodic class and a (pos-
sibly empty) set of transient states.

Assumption A1 guarantees the transition probabilities are well defined. Assumption A2
states that the number of transitions in a finite time interval is, almost surely, finite. A3
guarantees that except for some initial transient states, any state can reach any other state
with non-zero probability.

3.3. Q-learning

This section develops the RL methodology used in this paper for the unconstrained maxi-
mization of revenue. The QoS constraints will be considered in Section 4.

We learn an optimal policy using Watkins’ Q-learning algorithm. Given optimal Q-values,
Q∗(s, a), the policy π∗ defined by

π∗(s) = arg max
a∈A(s)

Q∗(s, a) (12)

is optimal. In particular, (12) implies the following procedures. When a call arrives, the
Q-value of accepting the call and the Q-value of rejecting the call is determined. If rejection
has the higher value, we drop the call. Else, if acceptance has the higher value, we accept
the call. Only one action (and Q-value) exists at a call departure.

To learn Q∗(s, a), we update our value function as follows: on a transition from state s
to s ′ under action a in time ξss ′(a),

Qk+1(s, a) = (1 − γk(s, a))Qk(s, a)

+ γk(s, a)
(

c0(s, a) + e−αξss′ (a) max
b∈A(s ′)

Qk(s
′, b)

)
(13)

where γk(s, a) ∈ (0, 1] is the step size or learning rate, k is an integer variable to index
successive updates, and α > 0 is chosen to be sufficiently close to 0 so that the discounted
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problem is equivalent to the average reward problem (the Tauberian approximation (Gabor,
Kalmar, & Szepesvari, 1998)). Note that (13) is a general description of the Q-learning
algorithm, and this algorithm is well known to be the Robbins-Monro stochastic approxi-
mation method that solves the so-called Bellman optimality equation associated with the
decision process. Let

(HQ)(s, a) = c0(s, a) +
∑
s ′∈S

[
p(s, a, s ′)

∫ ∞

0
e−αξ dFss ′(ξ | a)

]
max

b∈A(s ′)
Q(s ′, b) (14)

for all s, and a ∈ A(s). Assumption A2 guarantees that H is a contraction mapping with
contraction factor

ζ
�= max

s,a∈A(s)

∑
s ′∈S

[
p(s, a, s ′)

∫ ∞

0
e−αξ dFss ′(ξ | a)

]
< 1 (15)

with respect to the maximum norm.

Theorem 1. Suppose that

∞∑
k=0

γk(s, a) = ∞ (16)

∞∑
k=0

γ 2
k (s, a) < ∞ (17)

for all s ∈ S, a ∈ A(s), and each state-action pair is updated an infinite number of times.
Then, Qk(s, a) converges with probability 1 to Q∗(s, a), for every s and a.

Proof: See Bertsekas and Tsitsiklis (1996). ✷

3.4. A simplified learning process

There is a practical issue concerning the implementation of Q-learning (13). From the
above discussions, Q-learning needs to be executed at every state transition, including the
transition caused by a call departure, at which the feasible action set is A(s) = {−1}, and
c0(s, a = −1) = 0. Since there is only one action at states associated with call departures,
it is not necessary to learn the optimal Q-values at these states to induce the optimal policy
at these states.

Is it possible to avoid the updates of Q-values at departure states, and still get the same
optimal policy? This will reduce the amount of computation and storage of Q-values signif-
icantly, since the state space is almost halved by dropping the call departure states. We note
that the only interesting states at which decisions need to be made are those associated with
call arrivals, {s = (x, e j )}. So the decision point jumps from one arrival to the next arrival,
where an interarrival period may contain zero, one, or more departures. Given s = (x, ei ),
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a, and s ′ = (x′, e j ), where e j is the first arrival after ei , for the cases with n > 0 departures
between two adjacent arrivals, by Chapman-Kolmogorov equations (Bertsekas & Gallager,
1992), the transition probability for the actual decision process is

p(n+1)(s, a, s ′) =
∑

ŝ

p(s, a, ŝ)p(n)(ŝ, b = −1, s ′) (18)

ŝ is the intermediate state corresponds to a call departure. More generally, let
S1 = {s : |A(s)| = 1 and c(s, b) = 0, b ∈ A(s)} be the set of the intermediate states, S2 = S −
S1 = {s : s ∈ Sand s �∈ S1}, then p(n)(s, a, s ′) is the joint conditional probability p(s ′, N =
n | s, a), where N is the random variable such that s0 = s ∈ S2,

N = min{n > 0 : sn ∈ S2} (19)

It is shown in the Appendix that the same optimal policy can be obtained by only doing
Q-learning at the states associated with call arrivals. This result is intuitive since the call
departures are random disturbances that only affect the state transitions. Even though (18)
further complicates the already intractable transition model for the SMDP, since Q-learning
does not depend on the explicit model, the asymptotic convergence to the optimal policy
follows.

3.5. Exploration

In order for Q-learning to perform well, all potentially important state-action pairs (s, a)

must be explored. Specifically, the convergence theorem of Q-learning requires that all state-
action pairs (s, a) are tried infinitely often. This section develops an exploration strategy
suitable for the CAC problem.

A common way to try all state-action pairs in RL is, with a small probability ε, a random
action rather than the action recommended by RL is chosen at each decision point during
training, the so-called ε-random exploration. For the CAC problem considered in this paper,
without exploration some states will be visited with probabilities several orders higher than
some other states, and experiments have shown that ε-random exploration is very unlikely to
help in this situation. Therefore, after training some states will be visited many times while
some other states will only be visited for a few times, and the resulting Q-value functions
are far from converging, and an optimal policy cannot be expected in reasonable time.

To see this, the call arrival process can be modeled as truncation of I independent M/M/∞
queues system. The truncated system is the same as for the untruncated system, except
all configurations x = (x1, x2, . . . , xI ) for which capacity constraint is violated have been
eliminated. The stationary distribution of this system, assuming the greedy policy (in this
paper the greedy policy means the policy that always accepts a new call if the capacity
constraint will not be violated by adding the call), is given by Bertsekas and Gallager
(1992)

P(x1, x2, . . . , xI ) =
ρ1

x1

x1!
ρ2

x2

x2! · · · ρI
xI

xI !

G
(20)
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G is a normalization constant,

G =
∑

(x1,x2,...,xI )∈C

ρ1
x1

x1!

ρ2
x2

x2!
· · · ρI

xI

xI !
(21)

where ρi = λi/µi , and C is the allowed set of configurations of the truncated system. As an
example, consider the same experimental parameters shown in Table 1 of Section 5 below,
except that to simplify the calculation of the allowable configuration set C of the truncated
system, we use the peak-rate allocation, so C = {(x1, x2) : x1 × 0.08 + x2 × 0.2 ≤ 1}. Using
(20) and (21) we have, for the most visited state, Pmax = 0.2297, and for the least visited
state, Pmin = 1.1641 × 10−6, which result in approximately five orders of difference in the
stationary distribution of state-action pairs for this small system. It is shown in Szepesvari
(1998) that the convergence rate of Q-learning can be approximated by

|Qk(s, a) − Q∗(s, a)| ≤ L

k(1−ζ )Pmin/Pmax
(22)

for some suitable constant L > 0, where k is the same index as in (13), and ζ as defined
in (15).

To overcome the slow convergence caused by the small value of Pmin/Pmax in the station-
ary distribution, a controlled exploration scheme is derived based on the facts that Q-learning
is an off-policy learning method (Sutton & Barto, 1998), and that the state-action pair dis-
tribution is linearly dependent on the distribution of configurations (Tong, 1999). At each
state during training where there are more than one feasible actions, with probability ε the
control action is chosen that leads to the least visited configuration. This ε-directed heuristic
effectively reduces the difference in the number of visits between state-action pairs, and
significantly speeds up the convergence of the value functions. In terms of the Q-learning
formula (13), action a is chosen according to the exploration scheme.

In real CAC applications, to minimize possible performance degradation caused by the use
of exploration, the following two-step learning procedure can be used. The CAC controller
is first trained off-line using recorded traffic data from recent history which is expected to
be very close to the actual traffic seen by the controller when it is put on-line. A large value
of ε can be used for quick convergence. Once the algorithm converges and the controller is
put on-line, ε is changed to a much smaller value to track any (typically slow and small)
changes in the actual traffic condition.

3.6. Function approximation vs. lookup tables

Q-learning deals effectively with the curse of modeling (an explicit state transition model
is not needed, and a simulator can be used instead). Another major difficulty with SMDP
problems is the curse of dimensionality (the exponential state space explosion with the
problem dimension). In the above treatment, we have assumed that the problem state space
is kept small enough so that a lookup table can be used. Clearly, when the number of state-
action pairs becomes large, lookup table representation will be infeasible, and a compact
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representation where Q is represented as a function of a smaller set of parameters using a
function approximator is necessary.

In this paper, we choose a state aggregation approximation architecture. We consider
the partition of the state space S into disjoint subsets S1, S2, . . . , SM and introduce a
M-dimensional parameter vector φ whose mth component is meant to approximate the
Q-value function for all states s ∈ Sm under action a. In other words, we are dealing with
piecewise constant approximation

Q̃(s, a, φ) = φ(m, a), if s ∈ Sm (23)

When the value of M is small, a lookup table can be used for the aggregated problem where
we learn φ(m, a) instead of Q(s, a). In this case, it can be shown (Bertsekas & Tsitsiklis,
1996) that Q-learning converges to the optimal policy for the aggregated problem. Other
function approximators can be used, they may perform well in practice, however, there is
no convergence result as for the state aggregation case, and we choose to avoid them here.

In CAC, state aggregation can be interpreted as a feature-based architecture whereby
we assign a common value φ(m, a) to all states s, given a, that share a common feature
vector. For example, a feature vector may involve for each call class a three value indi-
cator, that specifies whether the load of each call class is “high”, “medium”, or “low” in
the system, instead of specifying precisely the number of ongoing calls of each class, x.
Since states with similar numbers of calls would be expected to have similar Q-values,
the error bounds in Tong (1999) guarantee the performance loss due to state aggrega-
tion is small. Therefore, the state space can be greatly reduced, and lookup table can be
used.

3.7. Summary

This section formulates the CAC problem as a SMDP, and justify the Q-learning approach
to solving the CAC problem. It shows that we can simplify the problem by ignoring the
details of the within call processes and not computing Q-values for states that have no
decision. Standard ε-random exploration policies will significantly slow down learning
in this problem, so a simple ε-directed exploration strategy is introduced. Aggregation
of states is shown to be a simplifying heuristic that follows readily from the problem
structure. The next section develops a method for incorporating the constraints into this
framework.

4. Constraints

We restrict the maximization to policies that never violate QoS guarantees, (1)–(3). For
general SMDP problems, the constrained optimal policy is a randomized stationary policy,
which randomizes in at most K states for a problem with K -constraints (Feinberg, 1994).
However, model-based linear programming algorithms have to be employed to derive such
a policy, which is impractical for CAC where the number of states can be very large.
Since randomizations are needed at only K states, which is usually much smaller than
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the total number of states, the non-randomized stationary policy learned by RL is often
a good approximation to the constrained optimal policy (Gabor, Kalmar, & Szepesvari,
1998).

In general SMDP, due to stochastic state transitions, meeting such constraints may not
be possible (e.g. from any state no matter what actions are taken there is a possibility of
entering restricted states). In admission control, service quality depends on the number
of calls admitted into the system and adding calls is strictly controlled by the admission
controller, so that meeting such QoS constraints is possible.

We consider two important classes of QoS constraints in CAC in an integrated service
network. One is the State-dependent constraints, the other is the Past-dependent constraints.
The (conservative) capacity constraint is an example of state-dependent constraints. State-
dependent constraints are QoS intrinsic to a state. The congestion probability is a function
solely of the number of calls in progress of the current state, [cf. (6)]. Past-dependent
constraints depend on statistics over the past history. An example is the fairness criterion.
Fairness depends on the statistics of the rejection ratios over the past history. We address
these two constraints separately.

4.1. Capacity constraint

For simplicity, we consider a total packet congestion probability upper bound, p∗. For the
conservative approach, this means the set Cc(p∗) = {x : p(x) ≤ p∗}, where [cf. (6) and (7)]

p(x) =
x1∑

y1=0

· · ·
xI∑

yI =0

{
ψ(x, y)1

{
y :

∑
j

y j r j − B > 0

}}
(24)

As stated, the conservative capacity constraint is an intrinsic property of a state and it
only depends on the current state. This allows us to collect QoS statistics about each state
and treat them in a principled way (e.g. computing confidence intervals on the estimates).
The current state and action (sn, an) uniquely determine the next configuration, xn+1, and
the projected congestion probability for the next state sn+1 is determined only by xn+1.
Therefore, to forecast the impact of an at sn , we need to evaluate if p(xn+1), the expected
congestion probability, is greater or less than the constraint p∗. If an action will cause
p(xn+1) > p∗, this action should be eliminated from the feasible action set A(sn). In CAC,
if adding a new call will violate the capacity constraint, then the only feasible action is to
reject the new call request.

When considering the aggressive capacity constraint, we need to determine the set
Ca = Ca(p∗) of allowable configurations, defined implicitly from

lim
T →∞

∑
x∈Ca

p(x) · T (x)

T
≤ p∗ (25)

where T (x) is the total time the system spends at x, and T = ∑
x∈Ca

T (x). We note that
the distribution T (x)/T depends on the control policy. Generalization to the case where
different service types have different packet-level QoS requirements can be easily made.
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To construct the aggressive set Ca(p∗), we choose conservative loss rate p∗
c ≥ p∗. We

gradually decrease p∗
c from 1, and find a series of sets Cc(p∗

c ) corresponding to the changing
p∗

c . Clearly, the size of Cc(p∗
c ) is non-increasing with the decrease of p∗

c , however, it
must always contain Cc(p∗). In practice, at some value p∗

c0 under the learned policy, if
the aggressive congestion probability will be sufficiently close to, and still less than the
constraint p∗, then the search for Ca(p∗) can stop, and we choose the Ca(p∗) = Cc(p∗

c0)

for the aggressive capacity constraint. In essence, we try to find a corresponding value
of conservative threshold p∗

c to the aggressive threshold p∗, and construct Ca from the
conservative approach. This way, the aggressive capacity constraint remains to be a state-
dependent constraint, and as for the conservative capacity constraint, we can implement this
constraint by constraining the action set at each state. Although Ca determined in the above
way may not be the most aggressive one in term of the revenue maximization (1)–(3), the
loss of optimality is small (Tong, 1999).

4.2. Fairness constraint

Let Ri (sn) be the measured rejection ratio for class i upon the nth call arrival (before the nth
decision is made). For arbitrary constraints on Ri (sn), we may not be able to find a feasible
policy. The fairness constraint involves comparisons of rejection ratios for all types of calls.
We formulate the fairness constraints as

f (R(sn)) = max
1≤i≤I

Ri (sn) − min
1≤i≤I

Ri (sn) ≤ ld (26)

where ld is the maximum allowed rejection ratio discrepancy. A feasible policy exists by
always rejecting all call types. The aggressive fairness constraint can be formulated as

lim
N→∞

∑N−1
n=0 f (R(sn+1)) · ξsnsn+1(a)∑N−1

n=0 ξsnsn+1(a)
≤ ld (27)

where ξsnsn+1(a) is the inter-transition duration from state sn to sn+1 under action a. This for-
mulation is a constrained SMDP problem (1)–(3) with K = 1, since the capacity constraint
is implemented by constraining the feasible action set at each state as described in the
preceding subsection.

To deal with the fairness constraint, we use the Lagrange multiplier framework studied
in Beutler and Ross (1986). Since the fairness constraint is a past-dependent constraint
(the vector R(sn+1) depends on the rejection ratios over the past history), to fit into this
framework, we need to include this history information into our state descriptor. The new
state descriptor, s̄, has the form

s̄ = (req, rej, ξ, s) (28)

where the I -vector req (resp. rej) denotes the total number of call requests (resp. rejections)
from each class before the current call arrival, ξ is the time interval between the last and
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the current call request, and s = (x, e) is the original state descriptor. We obtain a Markov
chain by doing this expansion, however, the state space has been enlarged significantly.
Specifically, due to the inclusion of req, rej, and ξ , the state space is now infinite, and we
must resort to some form of function approximation to solve the SMDP problem. Again, we
use state aggregation as our approximation architecture, by quantizing the rejection ratios
Ri = reji/reqi and ξ .

In terms of a Lagrange multiplier ω, we consider the unconstrained optimization for the
parametrized reward

cω(s̄, a, s̄ ′) = c0(s̄, a, s̄ ′) − ωc1(s̄, a, s̄ ′) (29)

where c0(s̄, a, s̄ ′) = c0(s, a) is the original reward function associated with the revenue,
c1(s̄, a, s̄ ′) is the cost function associated with the constraint

c1(s̄, a, s̄ ′) = f (R(s̄ ′)) · ξs̄ s̄ ′(a) (30)

i.e., c1 equals the numerator term of (27).
If there exists a non-randomized policy πω∗

that solves the Bellman optimality equa-
tion associated with reward function (29), and in the mean time, achieves the equality
in (27), then Beutler and Ross (1986) shows that πω∗

is the constrained optimal policy.
In case such optimal policy does not exist, it is shown that the constrained optimality is
achieved by randomization at only one state s̄0, between two non-randomized policies,
πω∗

1 and πω∗
2 , that only differ from each other in s̄0, with πω∗

1 (resp. πω∗
2 ) slightly un-

dershooting (resp. overshooting) ld . Clearly, in case that the non-randomized constrained
optimal policy does not exist, πω∗

1 is the next best non-randomized policy, and the loss of
optimality is minimal. For the above reasons, and to avoid the complications of random-
ized policies, we concentrate on non-randomized policies in this study. A nice monotonic-
ity property associated with ω shown by Beutler and Ross (1985) facilitates the search
for ω∗.

4.3. Summary

This section shows how the constraints can be introduced to the problem, either by mod-
ulating the action space or modifying the reward function. While optimality requires a
randomized policy, since the policy only needs to be randomized in two (K = 2) states
out of many states, we greatly simplify the search by restricting ourselves to deterministic
policies.

5. Simulation results

The experiments use the following model. The total bandwidth is normalized to 1.0 unit of
traffic per unit time. The target congestion probability is p∗ = 10−3. Two source types are
considered with the properties shown in Table 1. The fairness constraint is that the average



REINFORCEMENT LEARNING FOR CALL ADMISSION CONTROL 125

Table 1. Experimental parameters.

Source type

Parameter I II

ON rate (r) 0.08 0.2

Mean ON period (1/νON) 5 5

Mean OFF period (1/νOFF) 15 45

Call arrival rate (λ) 0.067 0.2

Call holding time (1/µ) 60 60

Immediate payoff (η) 5 1

rejection ratio discrepancy for two service types should not differ more than ld = 5%. As
noted before, all holding times are exponential.

We first concentrate on the conservative approach to the capacity constraint. Since ex-
ploration is employed to ensure that all potentially important state-action pairs are tried, it
naturally enables us to collect statistics that can be used to estimate QoS at these state-action
pairs. It should be emphasized that a single visit to a state is not sufficient to determine
the long run QoS metrics due to variability in the within call process. As the number of
times that each state-action pair is visited increases, the estimated service quality becomes
more and more accurate and, with confidence, we can gradually eliminate those state-
action pairs that will violate QoS requirements. As a consequence, the value function is
updated in a gradually correct subset of state-action space in the sense that QoS require-
ments are met for any action within this subspace. As stated in Section 4, the capacity
constraint eliminates those state-action pairs that violate the congestion probability upper
limit.

In the experiments, we use a simple way to eliminate state-action pairs with confi-
dence. Since our target congestion probability is p < p∗ = 10−3, let T (x) be the total
number of visits to the configuration x, (counted as the number of time steps in the sim-
ulation), and w(x) be the number of these visits that were congested, then if w(x)

T (x)
> 10−1

and T (x) > 200, or if w(x)

T (x)
> 10−2 and T (x) > 2000, or if w(x)

T (x)
> 10−3 and T (x) > 20000,

we conclude that (s, a) is not acceptable. These thresholds provide close approximations
to the confidence intervals in Brown (1997). A more sophisticated way to estimate p(x)

is proposed in Tong and Brown (1998), where artificial neural networks are trained based
on the maximum likelihood principle so that the neural network estimates of p(x) extrap-
olate well down to p∗ = 10−8. In simulations, the discount factor α is chosen to be 10−4,
learning rate γ = 0.01, and exploration probability ε = 1. Initial Q-values for RL are ar-
tificially set such that Q-learning started with the greedy policy, i.e., Q(s, accept) > Q(s,
reject).

After training is completed, we apply a test data set to compare the policy obtained
through RL with alternative heuristic policies. The final QoS measurements obtained at the
end of the RL training while learning QoS are used for testing different policies. To test the
RL policies, when there is a new call arrival, the algorithm first determines if accepting this
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call will violate QoS. If it will, the call is rejected, else the action is chosen according to
a = arg maxa∈A(s) Q(s, a), where A(s) = {1 = accept, 0 = reject}. For the QoS constraint
we use three cases: Peak rate allocation; statistical multiplexing function learned on-line,
denoted QoS learned; and statistical multiplexing function given a priori, denoted QoS
given. We examine six different cases: (1) RL: QoS given. Since the statistical multiplexing
function is given, only the RL policy needs to be learned; (2) RL: QoS learned, where both
statistical multiplexing function and RL policy are learned at the same time; (3) RL: peak
rate, where RL policy is learned assuming no statistical multiplexing; (4) A heuristic that
only accepts calls from the most valuable class (type I), with statistical multiplexing (QoS
given); (5) Greedy: QoS given, where the greedy policy is used with the given statistical
multiplexing function; and (6) Greedy: peak rate, i.e., greedy policy with no statistical
multiplexing.

From the results shown in figure 1, it is clear that simultaneous Q-learning and QoS
learning converges correctly to the RL policy obtained by giving the QoS a priori and
doing standard Q-learning only. We see significant gains (about 15%) due to statistical
multiplexing in (6) vs (5), and (3) vs (1). The gains due to RL are about 25% in (6) vs
(3), and (5) vs (2). Together they yield about 45% increase in revenue over conservative
peak rate allocation in this example. It is also clear from the figure that the RL policies

Figure 1. Comparison of total rewards of RL while learning QoS (capacity constraint only), RL with given QoS
measurements, RL with peak rate, greedy policies and peak rate allocation, normalized by the greedy total reward.
Uses the conservative capacity constraint.
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Figure 2. Comparison of rejection rates for the policies learned in figure 1. For each pair of bars: left bar for
type I, right bar for type II.

(1, 2, 3) perform better than the heuristic policies (4, 5, 6). Figure 2 shows the rejection
ratios for different policies. There are four pairs of bars in this figure for four different
policies, the left bar of each pair is the rejection ratio for type I calls, and the right bar for
type II calls. Clearly, RL policies accept much more type I (more valuable) calls than the
heuristic polices.

Now we consider the aggressive approach to the capacity constraint. From the simula-
tion, it is found that the value of p∗

c0 = 3.9 × 10−3 corresponds to the aggressive capacity
constraint p∗ = 10−3. The acceptance regions (i.e., Ca and Cc) for both the aggressive and
conservative approaches are shown in figure 3. The aggressive acceptance region is much
larger than the conservative one. In the figure, the number of type II users starts at two
due to insufficient measurement data (for the confidence level) in the region below that.
Comparing figures 4 and 5 with figures 1 and 2, we can see that the aggressive approach
earns significantly more revenue than the conservative approach, for both greedy policy
and RL policy, note that the peak rate allocation earns the same total amount of rewards
(un-normalized) with both approaches. In figure 4, the Q-values are initialized so that the
RL policy starts with the greedy policy.

In the above examples, the performance improvement due to RL is more significant than
the improvement due to statistical multiplexing. Because no fairness constraint is imposed
for this case, rejection ratios for the two types of calls differ significantly.
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Figure 3. Comparison of acceptance regions for aggressive and conservative capacity constraints.

Our fairness constraint requires that the two rejection ratios cannot differ more than
5% on average. To test RL under the fairness constraint, we set the reward parameters
for a type I call to be 1, and for a type II call to be 10, and keep other parameters in
Table 1 unchanged. As stated before, we use feature-based state aggregation to cope with
the difficulty of the large state space caused by the fairness constraint. Specifically, we
learn Q(h(s̄), a) instead of Q(s̄, a), where the feature h(s̄) = ([R1(s̄) − R2(s̄)], [ξ ], s), [·]
denotes quantization. In the following experiment, the experienced rejection ratio discrep-
ancy R1(s̄) − R2(s̄) is quantized into 100 levels, and ξ is quantized into only 2 levels, with
[ξ ] = 1 corresponding to ξ ≤ 4 (the approximate average inter-arrival time), and [ξ ] = 2 to
ξ > 4. Although s is not aggregated in this experiment, for cases where s is more com-
plicated, it is also possible to aggregate s into a simpler feature. Using binary search,
ω∗ is found to be 80.0 in the simulation. The learned RL policy is compared with a
greedy policy under the fairness constraint, which accepts all calls as long as the fair-
ness constraint is met, otherwise, if the fairness constraint is violated, it only accepts
calls from the class experiencing highest rejection ratio. The results are shown in fig-
ures 6 and 7. With fairness as a strong constraint on possible policies, we are forced to
accept more less valuable calls, resulting in rejecting more call requests from the more
valuable class due to the limited bandwidth resource, therefore, RL gain reduces in this
case.
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Figure 4. Figure 1 with aggressive capacity constraint.

From figures 1, 4 and 6, we see that Q-learning converges quickly. The fact that the RL
curves in these figures show oscillations is connected with the learning rates, γk(s, a) in
(13). Specifically, in order for Q-learning to converge, γk(s, a) have to satisfy (16) and (17)
for all (s, a). But in the simulations, we used a small constant learning rate, γ = 0.01, i.e.,
condition (17) is not met. The reason that (17) is not adhered to is because typically, there
is no prior knowledge as to how and when γk(s, a) should be decreased—once the learning
rate becomes very small, the algorithm may stop making any noticeable progress, and the
training process could become too long.

6. Combining CAC with network routing

In general, the issues of CAC and routing are closely related in a communication network.
Combined CAC and routing can also be formulated as a SMDP. However, the exact charac-
terization of network state would require the specification of the number of calls in progress
from each class on each possible route in the network. Such a detailed specification of
state is intractable for computation. By assuming statistical independence of the links in
the network (Dziong, 1997; Krishnan, 1990), some form of decompositions of network
routing process into single link processes is usually employed (Dziong & Mason, 1994;
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Figure 5. Comparison of rejection ratios for the policies learned in figure 4. For each pair of bars: left bar for
type I, right bar for type II.

Marbach, Mihatsch, & Tsitsiklis, 2000). Based on the preceding results for single link
CAC and the link state independence approximation, a new decomposition rule is derived
in Tong (1999), it allows decentralized training and decision making for combined CAC
and routing in a network, which also tries to maximize the network revenue. Due to the
space limitation, we briefly describe the algorithm and present simulation results in this
paper.

Let R denote all the predefined routes in the network, the action space for the system
is A = {−1 = no action due to call departures, 0 = reject, r = route the new call over route
r ∈R}. Each link (i, j), from node i to node j , keeps a separate Q-function, Qi j (si j , r),
where si j is the link state variable. Whenever a new call of type k is routed over a route r
which contains link (i, j), the immediate reward associated with the link (i, j) is equal to
ci j satisfying

∑
(i, j)∈r

ci j = ηk (31)

For example, ci j = ηk/|r |, where |r | is the number of links along the route r . Q-learning can
be performed for each link similarly as in the single link case. At each arrival, we update
the Q-value of link (i, j), only if this arrival is associated with the link, meaning the new
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Figure 6. Comparison of total rewards obtained from RL policy and Greedy policy, when both capacity constraint
and fairness constraint are imposed, normalized by the greedy total reward.

call can be potentially routed over link (i, j). For a new call originated at node o, destined
for node d , the decision is made at node o in the following way:

(i) Set g0 = 0, and let A(sod) be the set of routes that can carry the call without violating
QoS constraints.

(ii) Define the net gain gr of routing the new call over route r ∈ A(sod) by

gr =
∑

(i, j)∈r

[Qi j (s
i j , r) − Qi j (s

i j , 0)]. (32)

The admission and routing decision is

r∗ = arg max
r∈A(sod )∪{0}

gr (33)

Decision Making: If r∗ = 0, then reject the call. Otherwise, accept the call and route it
over route r∗.

That is, the routing policy chooses an action r∗ that achieves maximum net gain gr∗ .
The determination of the set A(sod) is out of the scope of this paper, we only mention
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Figure 7. Comparison of rejection ratios with both capacity constraint and fairness constraint for the policies
learned in figure 6. For each pair of bars: left bar for type I, right bar for type II.

that our approach of handling QoS in the single link case (see also Tong & Brown, 1998;
Brown, 2001) can be extended to determine A(sod) in the network case by using QoS
routing algorithms described by Lee, Hluchyj, and Humblet (1995), since the end-to-end
QoS in a network is determined by the QoS of each link that consists the route (Pornavalai,
Chakraborty, & Shiratori, 1997).

In the above approach, although the network state s is simplified into the link state si j for
each link, the action space for each link is not simplified into {0 = reject, 1 = accept}, as in
Dziong and Mason (1994) and Marbach, Mihatsch, and Tsitsiklis (2000). This is important
since by doing so the link Q-functions can distinguish single-link calls from multi-link calls,
and avoid accepting too many multi-link calls, and block single-link calls that may bring
the same amount of revenue while using less network resources (Tong, 1999).

We present simulation results obtained for the case of a network consisting of 4 nodes
and 12 unidirectional links. There are two different classes of links with a total bandwidth
of 1.5 and 2 units, respectively (indicated by thin and thick arrows in figure 8). We assume
three different source types, whose parameters are given in Table 2. Call arrivals at each
node are independent Poisson processes with mean λ, the destination node is randomly
selected among the other three nodes. For each source and destination node pair, the list of
possible routes consists of three entries: the direct path and two alternative 2-hop routes.
To emphasize the effect of RL, we only consider the capacity constraint and assume peak
rate allocation on each link in the simulations.
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Table 2. Experimental parameters.

Source type

Parameter I II III

On rate (r) 0.05 0.1 0.2

Call arrival rate (λ) 0.06 0.125 0.045

Call holding time (1/µ) 200 240 154

Immediate payoff (η) 1 1 8

Figure 8. Network model.

We use feature-based state aggregation to approximate the Q-values for each link, where
we learn Q(h(s), r) instead of Q(s, r), and h(s) = ([x]8, e), i.e., the numbers of ongoing
calls from each type are aggregated into eight levels.

The policy obtained through RL is compared with a commonly used heuristic policy that
gives the direct path priority. When the direct path reaches its capacity, the heuristic will
try the 2-hop routes, and find one that does not violate the capacity constraint. If no such
route exists, the call is rejected.

The results are given in figure 9 (Total revenue), figure 10 (Call rejection ratios), and
figure 11 (Routing behavior). The results show that the RL policy increases the total revenue
by almost 40% compare to the commonly used heuristic routing policy. The RL policy
accepts almost all calls from the most valuable type (type III), and uses two-hop alternative
routes only for a small portion of type III calls, while routes the less valuable type I and II
calls almost exclusively over the direct routes. This indicates that RL policy allows more
efficient use of network resources.
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Figure 9. Comparison of the total rewards for the 4-node network, normalized by the Heuristic total reward.

Figure 10. Comparison of the rejection ratios for the policies in figure 9.
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Figure 11. Comparison of the routing behavior for the policies in figure 9.

7. Conclusion

This paper formulates the CAC and routing problem as a constrained SMDP, and provides
a RL algorithm for computing the optimal control policy. We incorporate two important
classes of QoS constraints, state-dependent and past-dependent constraints, into a RL so-
lution to maximize a network’s revenue. The formulation is quite general and has been
applied to the capacity and fairness constraints. The approach was experimented with on a
single link as well as a network problem, and we showed significant improvement even for
simple examples.

Future work includes studying other function approximators, such as neural networks,
to approximate Q-value functions.

Appendix

Proof for the simplified learning process

The following Theorem shows that we can avoid learning Q-values at state transitions cor-
responding to calls being turned ON or OFF (Section 3.1), and call departures (Section 3.4).
Let J α(s)

�= maxa∈A(s) Q∗(s, a) when the discount rate is α, let S1 and S2 be as defined in



136 H. TONG AND T.X BROWN

Section 3.4. Since in our problem calls arrive according to independent Poisson processes
and the holding times are exponentially distributed, the state transition processes are
memoryless.

Theorem 2. Assume that from each s ∈ S2, a ∈ A(s), it takes at most msa steps to go to a
state ŝ ′ ∈ S1, such that

∑
s ′ ∈ S2

p(ŝ ′, b, s ′) = 1, where all the states between s and ŝ ′ are in
S1, and 0 < msa < ∞. Then the optimal stationary policy for the modified decision process
by only considering states in S2 is also optimal for the original decision process.

Proof: The optimal policy for the original problem is

πα
0 (s) = arg max

a∈A(s)

{
c(s, a) +

∑
s ′∈S

[
p(s, a, s ′)

∫ ∞

0
e−αξ dFss ′(ξ | a)

]
J α

0 (s ′)

}
(A.1)

for all s ∈ S. Since there is only one feasible action in A(s) for s ∈ S1, the optimal policy,
πα , for the modified decision process is,

πα(s) = πα
0 (s), ∀s ∈ S1 (A.2)

For each s ∈ S2, n in (18) can be at most msa by assumption.

πα(s) = arg max
a∈A(s)

{
c(s, a) +

∑
s ′∈S2

[
p(s, a, s ′)

∫ ∞

0
e−αξ dFss ′(ξ | a, N = 1)

+ p(2)(s, a, s ′)
∫ ∞

0
e−αξ dFss ′(ξ | a, N = 2) + · · ·

+ p(msa+1)(s, a, s ′)
∫ ∞

0
e−αξ dFss ′(ξ | a, N = msa + 1)

]
J α(s ′)

}
(A.3)

where s ′ is the first state after s that is in S2, and N is the random variable defined in (19).
Define

D(n)(s, a, s ′) �=
∫ ∞

0
e−αξ dFss ′(ξ | a, N = n)

Since msa is finite, without loss of generality, assume msa = 2 (for other values of msa , the
proof goes through in an identical manner). The summation term in (A.3) becomes∑

s ′∈S2

[
p(s, a, s ′)D(s, a, s ′) + p(2)(s, a, s ′)D(2)(s, a, s ′)

+ p(3)(s, a, s ′)D(3)(s, a, s ′)
]
J α(s ′)

=
∑
s ′∈S2

[
p(s, a, s ′)D(s, a, s ′) +

∑
ŝ∈S1

p(s, a, ŝ)D(s, a, ŝ){p(ŝ, b, s ′)D(ŝ, b, s ′)
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+
∑
ŝ ′∈S1

p(ŝ, b, ŝ ′)D(ŝ, b, ŝ ′)p(ŝ ′, b, s ′)D(ŝ ′, b, s ′)}
]

J α(s ′)

=
∑
s ′∈S2

p(s, a, s ′)D(s, a, s ′)J α(s ′) +
∑
ŝ∈S1

p(s, a, ŝ)D(s, a, ŝ)

·
∑
s ′∈S2

[p(ŝ, b, s ′)D(ŝ, b, s ′)

+
∑
ŝ ′∈S1

p(ŝ, b, ŝ ′)D(ŝ, b, ŝ ′)p(ŝ ′, b, s ′)D(ŝ ′, b, s ′)]J α(s ′) (A.4)

The second summation in the second term of the above formula is

X (ŝ) =
∑
s ′∈S2

p(ŝ, b, s ′)D(ŝ, b, s ′)J α(s ′)

+
∑
ŝ ′∈S1

p(ŝ, b, ŝ ′)D(ŝ, b, ŝ ′) ·
∑
s ′∈S

p(ŝ ′, b, s ′)D(ŝ ′, b, s ′)J α(s ′) (A.5)

due to the condition that p(ŝ ′, b, s ′) = 0 for all s ′ ∈ S1. Because A(ŝ ′) = {b}, and c(ŝ ′, b) = 0,

Jα(ŝ ′) = max
b∈A(ŝ ′)

{
c(ŝ ′, b) +

∑
s ′∈S

p(ŝ ′, b, s ′)D(ŝ ′, b, s ′)J α(s ′)

}

=
∑
s ′∈S

p(ŝ ′, b, s ′)D(ŝ ′, b, s ′)J α(s ′) (A.6)

Combining (A.5), (A.6), A(ŝ) = {b}, and c(ŝ, b) = 0:

J α(ŝ) = max
b∈A(ŝ)

{
c(ŝ, b) +

∑
s ′∈S

p(ŝ, b, s ′)D(ŝ, b, s ′)J α(s ′)

}

=
∑
s ′∈S

p(ŝ, b, s ′)D(ŝ, b, s ′)J α(s ′)

= X (ŝ) (A.7)

From (A.3), (A.4), and (A.7), we have for all s ∈ S2

πα(s) = arg max
a∈A(s)

{
c(s, a) +

∑
s ′∈S

[
p(s, a, s ′)

∫ ∞

0
e−αξ dFss ′(ξ | a)

]
J α(s ′)

}
(A.8)

(A.7) together with (A.8) and by the uniqueness of the optimal value function, it is easy
to verify that Jα(s) = J α

0 (s), ∀s ∈ S. Therefore, by (A.1), (A.2), and (A.8)

πα(s) = πα
0 (s), ∀s ∈ S (A.9)

In the above proof, e.g. (A.4), we used the memoryless property of the transition
processes. ✷
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In CAC, states such as s0 = (x = ei , −ei ) can serve as ŝ ′. Since from s0, it is not possible
to have any more call departures. And due to the capacity constraint, from any state s, under
any action a, it will take at most finite number of consecutive call departures to reach a state
like s0. Theorem 2 can be generalized in the following way.

Corollary 1. If msa is a random number, such that

P{0 < msa < ∞} =
∞∑

msa=1

p(msa) = 1, (A.10)

then Theorem 2 still holds.

Proof: If msa is random, then (A.3) can be re-written as

πα(s) = arg max
a∈A(s)

{
c(s, a) +

∑
s ′∈S2

∞∑
msa=1

p(msa)

·
[

p(s, a, s ′)
∫ ∞

0
e−αξ dFss ′(ξ | a, N = 1)

+ p(2)(s, a, s ′)
∫ ∞

0
e−αξ dFss ′(ξ | a, N = 2) + · · ·

+ p(msa+1)(s, a, s ′)
∫ ∞

0
e−αξ dFss ′(ξ | a, N = msa + 1)

]
J α(s ′)

}

Using similar steps as in the proof of Theorem 2 for each finite msa , we obtain the desired
result. ✷
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