
International Journal of Parallel Programming, Vol. 28, No. 5, 2000

Introduction

This is the second of two issues devoted to the Dagstuhl-Seminar on
Instruction-Level Parallelism and Parallelizing Compilation, held at Schloss
Dagstuhl on April 18�23, 1999. See the Introduction of the first issue for
a short description of the seminar. This issue contains work on parallelizing
compilation, specifically on the following topics.

Dependence Analysis

A central issue of parallelizing compilation is the dependence analysis
of programs and their optimization for parallel or ILP processors. The
paper by Amme, Braun, Zehendner, and Thomasset of the University of
Jena applies techniques of symbolic evaluation for memory reference dis-
ambiguation on assembly language code with the aim of increasing ILP.

Loop Parallelization

Programs consisting of many nested loops are ideal for parallelizing
compilers. To model the task of executing a nest of n loops in parallel, the
compiler views the set of loop iterations as a set of points in an n-dimen-
sional integer grid. The geometric and algebraic structure of this point set
can be analyzed and exploited to create an efficient execution strategy.
Quillere� and Rajopadhye from IRISA, Rennes, consider a loop nest whose
iteration domain is a union of polytopes. The problem is to scan the points
of this union efficiently. Instead of testing at runtime whether an iteration
point falls in the domain or lies outside��which can be quite expen-
sive��they split the domain into pure polyhedra and scan these without
any runtime tests.

Software Pipelining

Darte and Huard of the ENS Lyon propose an improvement to the
shift and compact method for software pipelining. In this technique, the

429

0885-7458�00�1000-0429�18.00�0 � 2000 Plenum Publishing Corporation



loop body is compacted by a list scheduler after first shifting operations
between iterations; the length of the compacted schedule becomes the
initiation interval of the software pipeline. They find a fast algorithm for
shifting operations that minimizes both the critical path and the number of
dependence edges that are not loop-carried, and give the results of an
experiment that shows this to be an efficient and effective shifting strategy.

CONCLUSIONS

The seminar brought to light several of the exciting developments
taking place in parallel computer architecture. It also made clear the heavy
burdens that are being placed on compilers by current parallel machines.
The efficient use of performance-enhancing hardware such as cache
hierarchies, pipelined functional units, and predicated execution calls for
highly sophisticated analysis and code generation techniques. It remains to
be seen how the portability of parallel software can be maintained in this
scenario. Portability is essential. After all, a parallel computer whose main
purpose is high performance inevitably becomes obsolete after about five
years. Sadly, in the past, the sinking computer has often taken its software
down with it.

D. K. Arvind (Edinburgh)
K. Ebcioglu (Yorktown Heights)
C. Lengauer (Passau)
R. Schreiber (Palo Alto)
Guest Editors

430 Introduction


