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For many numerical problems involving smooth multivariate functions ond-cubes, the so-
called Smolyak algorithm (or Boolean method, sparse grid method, etc.) has proved to be
very useful. The final form of the algorithm (see equation (12) below) requires functional
evaluation as well as the computation of coefficients. The latter can be done in different ways
that may have considerable influence on the total cost of the algorithm. In this paper, we try
to diminish this influence as far as possible. For example, we present an algorithm for the
integration problem that reduces the time for the calculation and exposition of the coefficients
in such a way that for increasing dimension, this time is small compared todn, wheren is the
number of involved function values.

1. Introduction

Suppose, we have basic sequences
(
Q
(i)
Lk

)
i∈N of approximation formulae (respec-

tively functionals) for continuous linear functionalsLk on C(Sk), Sk ⊂ R. Important
functionals are, e.g., given by

Lk[f ] = 8x0[f ] = f (x0) or Lk[f ] = I [f ] =
∫ 1

0
f (x)dx. (1)

Then, the Smolyak algorithm [13] defines an approximation formula (cf. [15])

QL(q, d) =
∑

q−d+16|i|6q
(−1)q−|i|

(
d − 1

q − |i|
)
Q
(i1)
L1
⊗· · ·⊗Q(id)

Ld
, where|i| =

d∑
ν=1

iν , (2)

for the tensor product

L = L1⊗ · · · ⊗ Ld :C(S1× · · · × Sd)→ R, whereLk :C(Sk)→ R. (3)

This tensor product is the unique continuous linear functional satisfying

(L1⊗ · · · ⊗ Ld)[f1 · · · · · fd ] = L1[f1] · · · · · Ld[fd] for all fk ∈ C(Sk). (4)
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Important corresponding examples are now

(8x1 ⊗ · · · ⊗8xd )[f ] = f (x1, . . . , xd) (5)

or

I d[f ] =
∫
[0,1]d

f (x)dx. (6)

SettingQ(i)
L := 0 for i 6 0 and1(i)

L := Q(i)
L −Q(i−1)

L for all i, we have the alternative
representation

QL(q, d) =
∑
|i|6q

1
(i1)
L1
⊗ · · · ⊗1(id )

Ld
(7)

(cf. [15]). Continuous linear approximation functionals are of the form

Q
(i)
Lk
[f ] =

ni,k∑
µ=1

a
(i)
µ,kl

(i)
µ,k[f ], (8)

where thel(i)µ,k are continuous linear functionals onC(Sk). In principle, we could omit

a
(i)
µ,k and normalizel(i)µ,k accordingly. On the other hand, thinking of quadrature formulae,

for example,

Q(i)[f ] =
ni∑
µ=1

a(i)µ f
(
x(i)µ

)
, (9)

which implies (
l
(i1)
µ1,1
⊗ · · · ⊗ l(id )µd ,d

)[f ] = f (x(i1)µ1,1
, . . . , x

(id )
µd ,d

)
, (10)

notation (8) makes sense and is crucial for the following. Beside that, thel
(i)
µ,k often

appear in several basic formulaeQ(i) but with different factors. Let us, furthermore,
write

1(i)[f ] =
mi,k∑
ν=1

d
(i)
µ,k l̃

(i)
µ,k[f ]. (11)

The l̃µ,k run through the union of functionals used byQ(i) and Q(i−1). We have
mi,k = ni,k and l̃(i)µ,k = l

(i)
µ,k if the sequence of basic functionals is nested, i.e., if the

functionals used byQ(i−1) are also used byQ(i). Nestedness usually reduces the costs
considerably because we can reuse already calculated funcionals. We will, therefore,
always assume that the basic sequence is nested (otherwise we could formally introduce
zero coefficients inQ(i) for those functionals used byQ(i−1) but not byQ(i)).

The Smolyak formulae may now be written as

QL(q, d)[f ] =
n∑
ν=1

aν ·
(
l
(iν,1)

µ1(ν),1
⊗ · · · ⊗ l(iν,d )µd (ν),d

)
[f ], (12)
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whereaν is composed from all tensor products in (2), respectively (7), involving the
functional l

(iν,1)

µ1(ν),1
⊗ · · · ⊗ l(iν,d )µd (ν),d

. Here and in the following, letiν be the minimal
multi-index such that the corresponding tensor product formula contributes toaν , i.e., let

l
(iν,1)

µ1(ν),1
⊗ · · · ⊗ l(iν,d )µd (ν),d

only appear in tensor productsQ(ĩ1)
L1
⊗ · · · ⊗Q(ĩd )

Ld
with ĩk > ik for

all k. Forjν,k > iν,k, let, furthermore, denote bỹµk(ν) the index inQ(jν,k) (respectively
in 1(jν,k)) that corresponds tol

(iν,k)

µk(ν),k
. Then, the corresponding coefficient is given by

aν =
∑

jν,k>iν,k
q−d+16|j |6q

(−1)q−|j |
(
d − 1

q − |j |
)
a
(jν,1)

µ̃1(ν),1
· · · a(jν,d )

µ̃d (ν),d
(13a)

=
∑

jν,k>iν,k
|j |6q

d
(jν,1)

µ̃1(ν),1
· · · d(jν,d )

µ̃d (ν),d
. (13b)

Of course, there is no way to avoid the evaluation of the functionalsl
(iν,1)

µ1(ν),1
⊗· · ·⊗l(iν,d )µd (ν),d

.
However, there are different ways to provide the coefficientsaν . The first one is to store
a1, . . . , an but in many (in particular higher dimensional) applications,n is very large,
such that storing and reading is costly. Furthermore,q andd may vary from application
to application, which almost forbids storing. The second possibility is to calculateaν via
equations (13a,b). This takes a considerable time (see the numerical examples below)
and existing bounds for realistic basic sequences(Q

(i)
L )i∈N allow the costs to be notably

larger thandn (see [7]), which is the total number of univariate functional evaluations
(where each factor of a tensor product functional counts, since usually, alld variables
are involved in the computation of a product functional if the function itself depends on
all variables). We therefore rewrite equations (13a,b) in section 2 and give cost bounds
for the resulting algorithm. In section 3, we describe simplifications in the case that
the Lj as well as theQ(i)

Lj
are equal for allj . This yields a further reduction of the

costs. Section 4 gives some numerical examples that compare the costs of the different
algorithms.

2. Divide and conquer

A method that, if applicable, often reduces the computational cost is “divide and
conquer” (or “divide et impera”), see, e.g., [4, p. 45]. We have two representations of
the coefficients ofQ(q, d). For rewriting the first one (equation (13a)), we introduce the
notation

a=ν
(
r, s, α, (iν,r , . . . , iν,s)

) = ∑
jν,k>iν,k , k=r,...,s
|(jν,r ,...,jν,s )|=α

a
(jν,r )

µ̃r (ν),r
· · · a(jν,s )

µ̃s (ν),s
(14)
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and

a6ν
(
r, s, α, (iν,r , . . . , iν,s)

)= ∑
jν,k>iν,k , k=r,...,s

α−d+16|(jν,r ,...,jν,s )|6α

(−1)α−|(jν,r ,...,jν,s )|

×
(

d − 1

α − |(jν,r , . . . , jν,s)|
)
a
(jν,r )

µ̃r (ν),r
· · · a(jν,s)

µ̃s (ν),s
. (15)

Then,

aν = a6ν (1, d, q, i). (16)

Analogously, to rewrite (13b), define

d=ν
(
r, s, α, (iν,r , . . . , iν,s)

) = ∑
jν,k>iν,k , k=r,...,s
|(jν,r ,...,jν,s )|=α

d
(jν,r )

µ̃r (ν),r
· · · d(jν,s )

µ̃s (ν),s
(17)

and

d6ν
(
r, s, α, (iν,r , . . . , iν,s)

) = ∑
jν,k>iν,k , k=r,...,s
|(jν,r ,...,jν,s )|6α

d
(jν,r )

µ̃r (ν),r
· · · d(jν,s)

µ̃s (ν),s
. (18)

Then,

aν = d6ν (1, d, q, i). (19)

For s 6 t 6 r − 1, we obviously have the recursion formulae (here written for represen-
tation (19) – they look identically for representation (16))

d6ν
(
r, s, α, (iν,r , . . . , iν,s)

)
=

α−|(iν,r ,...,iν,s )|∑
µ=0

d=ν
(
r, t,

∣∣(iν,r , . . . , iν,t )∣∣+ µ, (iν,r , . . . , iν,t ))
× d6ν

(
t + 1, s, α − ∣∣(iν,r , . . . , iν,t )∣∣− µ, (iν,t+1, . . . , iν,s)

)
(20)

as well as

d=ν
(
r, s, α, (iν,r , . . . , iν,s)

)
=

α−|(iν,r ,...,iν,s )|∑
µ=0

d=ν
(
r, t,

∣∣(iν,r , . . . , iν,t )∣∣+ µ, (iν,r , . . . , iν,t ))
× d=ν

(
t + 1, s, α − ∣∣(iν,r , . . . , iν,t )∣∣− µ, (iν,t+1, . . . , iν,s)

)
. (21)

We apply them witht = d(r + s)/2e until we have sums with one summation index
respectively.
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There is almost no difference in applying (16) or (19) together with the recursion.
However, we prefer the slightly simpler representation (13b), i.e., (19). All theoretical
results are also valid for the other one.

Lemma 1. Let cost(q, d, i) denote the number of floating point operations (multiplica-
tions and additions) that are necessary to compute the coefficientaν of(

l
(iν,1)

µ1(ν),1
⊗ · · · ⊗ l(iν,d )µd (ν),d

)
[f ] (22)

in representation (12). Let, furthermore,p ∈ N be so chosen that

2p−1 < d 6 2p (23)

and suppose that all sums

d6(s, s, jν,s , iν,s) =
jν,s∑
τ=iν,s

d
(jτ,s )

µ̃s (τ ),s
= a(jν,s )

µ̃s (ν),s
− a(iν,s )µs (ν),s

(24)

(the last equality holds sinced(iν,s )µs (ν),s
= a(iν,s )µs (ν),s

) for jν,s > iν,s are precomputed. Then,
defining2 := q − |i|, recursions (20) and (21) applied to representation (19) yield

cost(q, d, i)=


22+ 1 for d = 2,

2(2+ 1)2 for d = 3,

222+ 62+ 3 for d = 4 and

cost(q, d, i)6 2p

p!
(
2+ p + 1

2

)p
− 2 for d = 2p−1 + 1, . . . ,2p, wherep > 3.

(25)

For fixed2 and increasingd, we have

cost(q, d, i) 6 2p
[(
p

2

)
+O

(
p2−1

)]
. (26)

Proof. Since the cost is monotonically increasing with increasing dimension, we have
to prove the Lemma only ford = 2p andd = 3. Furthermore, the cost depends only on
d and2. Let, therefore,

cp(2) = cost(q, d, i), whered = 2p and2 = q − |i|. (27)

By formulas (13b), and (19)–(21), we see that

c1(2) = 22+ 1 (28)

and

cp+1(2) = 22+ 1+
2∑
ν=0

(
cp(ν)+ cp(2− ν)

) = 22+ 1+ 2
2∑
ν=0

cp(ν), (29)
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which immediately gives the casep = 2, i.e.,d = 4 in the lemma. The explicit calcula-
tion of cost(q,3, i) is similar. Furthermore, equation (29) yields

c3(2) = 23

3! (2+ 2)3 − 2− 42+ 5

3
. (30)

The induction overp > 3 is done as follows,

cp+1(2)6 22+ 1− 2(2+ 1)+ 2 · 2
p

p!
2∑
ν=0

(
ν + p + 1

2

)p
6−1+ 2p+1

p!
∫ 2+1/2

−1/2

(
x + p + 1

2

)p
dx

6−1+ 2p+1

(p + 1)!
(
2+ p + 2

2

)p+1

− 2p+1

(p + 1)!
(p

2

)p+1

︸ ︷︷ ︸
>1

. (31)

In order to prove the estimates for fixed2, we consider the generating function

f2(x) =
∞∑
p=0

cp(2)x
p. (32)

Usingc0(2) = 0, equation (29) gives

1

x
f2(x) =

∞∑
p=0

cp+1(2)x
p = 2

∞∑
p=0

2∑
ν=0

cp(ν)x
p + (22+ 1)

∞∑
p=0

xp

= 2
2∑
ν=0

fν(x)+ 22+ 1

1− x , (33)

i.e.,

f2(x) =
2−1∑
ν=0

2xfν(x)

1− 2x
+ (22+ 1)x

(1− 2x)(1− x) . (34)

We needd − 1 multiplications in the case2 = 0, i.e.,cp(0) = 2p − 1 and therefore

f0(x) = 1

1− 2x
− 1

1− x . (35)

Hence, equation (34) gives by induction the representation

f2(x) = (2x)2

(1− 2x)2+1
+ P2(x)

(1− 2x)2(1− x), (36)

whereP2 is a polynomial. The coefficient ofxp, p > 2, of the first summand is 2p
(
p

2

)
,

while the respective coefficient of the second summand is of order O(2pp2−1). �
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To determine the cost cost(q, d) of calculating alln = n(q, d) coefficientsaν , we
have to count the number of coefficients corresponding to a certain2. This is obviously
n(q −2, d)− n(q −2− 1, d).

For giveni, let now the numbersni,k be the sameni for each dimensionk, i.e.,
ith elements of the basic sequences in the different dimensions are based on the same
number of functionals. This usually holds, if all dimensions are of the same importance.
Then, we consider two different cases, larged and moderateq − d and vice versa. Set
r = q − d.

First, we fixr and considerd →∞. We have proved in [11] that, ifn2 > n1, i.e.,
if Q(2) uses additional information compared withQ(1),

n(d + r, d) = nd1
r∑
j=0

cj,r

(
d

j

)
(37)

with certain positive constantscj,r being independent ofd. Therefore,

n(d + r, d)− n(d + r − 1, d) ∼ nd1 · dr, (38)

(the notationan ∼ bn means that there exist constantsc, C > 0 such thatcbn 6 an 6
Cbn) and thus, using the notation of the proof of lemma 1 (andn(d − 1, d) := 0),

cost(d + r, d)6
r∑
ν=0

cp(r − ν)
[
n(d + ν, d)− n(d + ν − 1, d)

]
6 cp(0)n(d + r, d)+O

(
r−1∑
ν=0

cp(r − ν)dν
)

= (d − 1)n(d + r, d)+O

(
r−1∑
ν=0

2ppr−νdν
)
. (39)

Since

p = ⌈log2 d
⌉
6 log 2d + 1, (40)

we can sumarize:

Corollary 1. For ni,k = ni, k = 1, . . . , d, andn2 > n1 as well as for fixedr and
increasingd, we have

cost(d + r, d) 6 d · n(d + r, d) · (1+O(ln d/d)
)
. (41)

If each variable contributes to the calculation of each product functional in equa-
tion (12) even with only one elementary operation, the corollary means that the calcula-
tion of coefficients is asymptotically not more expensive than the remaining cost of the
algorithm. The relative expenses for the calculation of coefficients of course decrease,
if the function becomes more complicated, i.e., if the influence of the variables on the
calculation time for a functional evaluation increases.
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Let nowd be fixed andr increasing. In numerical cubature, it seems that we have
typically

n(d + r, d) ∼ αr(r + 1)d+β, (42)

whereα > 1 andβ are constants (see [5,7]). Lemma 1 gives the cost bound

cost(d + r, d, i) = O
(
(2+ 1)p

)
(43)

(see equation (25)) and therefore

cost(d + r, d)= αrrd+βO

(
1+

r∑
ν=1

(ν + 1)p

αν

(
1− ν

r + 1

)d)

= n(d + r, d) ·O
(

1+
∫ r

0

(x + 1)p

αx

(
1− x

r + 1

)d
dx

)
= n(d + r, d) ·O

(
1+

∫ r

0

1+ xp
αx

dx

)
. (44)

Corollary 2. Forni,k = ni, k = 1, . . . , d, fixedd and increasingr, we have

cost(d + r, d) 6 n(d + r, d) ·
{

O(1) if α > 1
O
(
r1+p) if α = 1, wherep = ⌈log2 d

⌉
. (45)

We can say that there are situations, where the total cost is proportional to the num-
ber of one-dimensional functional evaluations (the application of a tensor product ofd

one-dimensional functionals countsd evaluations). This happens for fixedr, increasing
dimensiond and arbitrary basic sequences or for fixedd, increasingr if the number of
functionals in the basic sequence increases exponentially (e.g., the Clenshaw–Curtis–
Smolyak method described and analyzed in [6] or the Kronrod–Patterson–Smolyak
method described and analyzed in [2,3,10]). On the other hand, we cannot prove propor-
tionality for fixedd and increasingr, if the number of functionals in the basic sequence
increase only polynomially (e.g., the Smolyak method in [7, section 6] or the delayed
Smolyak method in [11]).

3. Power functionals – the coefficient tree

If the problem is a power of one functional onC(S), e.g.,

L = I d, i.e., L[f ] =
∫
[0,1]d

f (x)dx, (46)

then, we often use the same basic sequence in each dimension. This implies that many
of the coefficientsaν in (12) are the same. To see this, let{l0, . . . , ls} be the set of
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all univariate functionals that occur on the right-hand side of (12) for anyi and that
contribute toQ(q, d). Then, the coefficientsaν in (12) corresponding to a product of
functionals that involve

k0× l0, k1× l1, . . . , ks × ls (47)

with fixed k0, . . . , ks are equal. We have
∑

ki
= d. For example, ifli[g] = g(xi),

then the coefficient off (x0, x0, x0, x1, x1, x2) is, by symmetry of the dimensions, the
same as that off (x1, x0, x2, x0, x0, x1) (in this example,k0 = 3, k1 = 2, k2 = 1,
k3 = k4 = · · · = 0).

Remark 1.If we have to approximate a power of a symmetric functional, i.e., if there is
a numberc such that

Lj [f ] = Lj [g] (48)

wheneverf (x) = g(c − x) (respectively wheneverf (x) = −g(c − x)), then, also the
elements of the basic sequence of one-dimensional approximation formulae are often
symmetric in the same sense. This implies that there is an ordering and normalization of
the functionals of the sum (12) such that

l
(i)
µ,k[f ] = l(i)ni+1−µ,k[g] and a

(i)
µ,k = a(i)ni+1−µ,k (respectivelya(i)µ,k = −a(i)ni+1−µ,k).

(49)
Examples are symmetric quadrature formulae (such as, e.g., midpoint, trapezoidal,
Simpson, Clenshaw–Curtis, Gauss, Gauss–Kronrod, or Kronrod–Patterson formulae for
symmetric weight functions). Then, by an appropriate ordering, we have to consider
only the coefficients of functionals involving{l0, . . . , lbs/2c}. This leads to a further re-
duction. It seems that only this reduction and not that described above has already been
used in former algorithms (see, e.g., [2,3,6]).

Now, the necessary coefficients can be stored in a tree. To avoid superfluous loops,
this tree is not calculated at the beginning but generated dynamically during the calcula-
tion of the Smolyak formula. When a coefficient is needed, we try to find it in the tree. If
the search path exists, then the coefficient had been calculated before. If not, the search
path is built and the coefficient is calculated and stored at the correct position. We still
have to describe the structure of the tree. We recommend two different ways to organize
the tree depending on whethers is SMALL or LARGE. (E.g., forQ(d+10, d), we have
s = 1025 for Smolyak cubature if based on Clenshaw–Curtis formulae ands = 15 if
based on the delay Smolyak formulae; see below.)

SMALL. In order to find a coefficient that corresponds to a tuple(k0, . . . , ks) as de-
scribed in (46), we have to go the following way through the binary tree,

• k0 steps to the left and one step to the right,
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• thenk1 steps to the left and one step to the right,
...

• We can stop afterd steps to the left. The current node contains the coefficient.

The ‘left’-directions are organized using arrays of pointers. Theki th entry in the
array corresponds toki steps to the left. Then, we can doki steps at once. This procedure
is relatively simple and also the use of it is easy. For each request for a coefficient, we
have to calculate theki and then search in the tree. Each search costs at mostd + s steps
through the tree as well asd operations for determining(k0, . . . , ks). The costs + 2d is
exactly the problem for larges.

LARGE. For each search, we have to know the subset{lν1, . . . lνm} of {l0, . . . , ls}, or-
dered byνi < νi+1, whose elements are involved in the current summand. The corre-
sponding coefficient can be found along the following path:

• ν1 steps to the left andkν1 steps to the right,

• ν2− ν1 steps to the left andkν2 steps to the right,
...

• νm − νm−1 steps to the left andkνm steps to the right.

Now the steps in both directions are organized via arrays of pointers. After the
first i items, the length of the allocated array for the left direction must have (at most)
s − (ν1 + · · · + νi) entries and the allocated array for the right directiond − (kν1 + · · ·+ kνm) entries. Then, we have to perform 2m 6 2 min(r, d, s) steps in the tree to find a
coefficient ofQ(d + r, d).

Remark 2.In particular, for high dimension it is important to haven1 = 1. Otherwise,
the cost of the Smolyak algorithm grows exponentially withd. Let the functional used
by Q(1) be ls. Then, it is obvious thatks = d − (k0 + · · · + ks−1) and we do not have
to perform the last item in LARGE ifνm = s but we can store the coefficient at the
current node in the tree before the last step. If we have to calculateQ(d + r, d) with
d � r, we have always a largeks > d− r. In this situation, we want to build the ordered
set{lν1, . . . , lνm} for the search of a coefficient during the selection of the corresponding
node. We have to count each occurrence of a functional different fromls . These are at
mostr operations. The calculation ofks also needs at mostr operations. Finally, we have
to order them + 1 6 r + 1 occurring functionals, which requires O(r ln r) operations.
Calculation of coefficients is done for all combinations ofk0, . . . , ks−1. Since the sum
of these numbers is at mostr, we have the same number of different coefficients for all
d > r, i.e., for alld > r, we have the same number of required coefficient calculations
for Q(d + r, d) as forQ(2r, r). Now, let costf be the cost of all functional evaluations
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Table 1
Numbers of function respectively coefficient calculations.

r nCC(2r, r) nCC
s (2r, r) nCC

t (2r, r) ndel(2r, r) ndel
s (2r, r) ndel

t (2r, r)

2 13 6 4 9 4 3
3 69 23 8 39 14 6
4 401 98 17 193 48 9
5 2433 437 36 903 142 12
6 15121 1995 79 4161 460 22
7 95441 9242 172 19855 1626 32
8 609025 43258 379 97153 5568 42
9 3918273 204053 832 477327 18770 64

10 25370753 968441 1831 2347809 64804 86

and coste the extra cost (coefficient calculation, memory allocation, summation in (12),
etc.). We have for fixedr, increasingd and the algorithm LARGE

coste(d + r, d)6O
(
coste(2r, r) + (r ln r) · n(d + r, d))

= o
(
d · n(d + r, d)) = o

(
costf (d + r, d)

)
. (50)

This relation means that the relative overhead by coefficient calculations tends to zero
for increasing dimension.

According to remark 2 we want to illustrate in table 1 for an example from numer-
ical cubature, how many coefficients have to be calculated in the formulaQ(2r, r). We
introduce the notation

• ns(q, d): number of coefficient calculations if we use only the symmetries mentioned
in remark 1;

• nt(q, d): (upper bound for the) number of different coefficients, i.e., number of coef-
ficients that are calculated in the tree versions.

As one-dimensional basic sequences, we choose (as in the numerical examples be-
low) the Clenshaw–Curtis sequence with exponentially increasing numbers of nodes (see
[1,6]; we denote the corresponding numbers by the upper index CC) and the Kronrod–
Patterson sequence [9], delayed and thereore with linearly increasing numbers of nodes
(see [11]; denoted by the upper index del).

4. Numerical tests

In our tests, we compare the total computation time with the time that has been
used without calculation of the coefficients. The different methods are USUAL (equa-
tions (13a,b)), DAC (Divide And Conquer, see equations (20) and (21)) and TREE (Co-
efficient Tree, see section 3). The test examples for the calculation of the integral over
thed-dimensional unit cube are ford = 6,12,18,24 and 360.
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As at the end of the previous section, we use one basic sequence with exponential
increase of the numbers of nodes, namely the Clenshaw–Curtis sequence for dimensions
6, 12 and 18, and one with linear increase, the delayed Kronrod–Patterson sequence for
dimensions 6, 12 and 24, where the corresponding Smolyak formulae are denoted by
QCC andQdel, respectively.

In dimensionsd 6 24, we take the sample function

f (t) = exp

(
−

d∑
i=1

c2
i (ti − wi)2

)
(51)

with certain (randomly chosen) constantsci andwi. This function has been taken several
times for test purposes (see [2,3,6,10–12] and the references therein).

In the following graphs, we illustrate for the different methods the ratio

tc(d + r, d)
pc(d + r, d) , (52)

where tc denotes the total computation time, while pc denotes the partial computation
time without calculation of the coefficients. For comparison, we additionally draw a line
at ratio 1, respectively. Therefore, the computational overhead of the respective method
is represented by the grey area above this line (compared with the white area under the
line).

We see that divide and conquer does not help for low dimnesiond = 6 if the
numbers of nodes of the basic sequence increase slow (cf. figures 1(d) and (e)) in all
other examples, we see that TREE is faster than DAC, which is again itself faster than
USUAL. The extreme case can be seen in figures 3(a) and (c), where for the computation
of QCC(25,18), TREE is more than 35 times faster than USUAL.

Example from finance,d = 360

The high dimensional example is from finance and is described, for example,
in [14]. The Smolyak type method is defined in [11] and is similar to method pro-
posed by Novak et al. [8]. Characteristic for the applied methodQ̃del is that, due to the
structure of the integrand, we use differently fast increasing sequences from the same set
of quadrature formulae in different dimensions. As a basic sequence, we choose again
the delayed Kronrod–Patterson sequence.

For r = 7, the program using TREE is more than 10 times faster then the USUAL
program. On a 400 Mhz Pentium processor, TREE requires 2 min CPU time, while
USUAL requires about 20 min. Comparing only the calculation of the coefficients in
this case, TREE is more than 335 times faster than USUAL.

We see that the calculation of coefficients can be almost of no influence on the
total computation time if it is done in an efficient way, but with the commonly used
technique USUAL, the computer can spend almost all the time for the calculation of
coefficients.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. (a)QCC(6+r,6), USUAL; (b)QCC(6+r,6), DAC; (c)QCC(6+r,6), TREE; (d)Qdel(6+r,6),
USUAL; (e)Qdel(6+ r,6), DAC; (f) Qdel(6+ r,6), TREE.

The programs are available via internet on the sitehttp://www-public.tu-
bs.de:8080/˜petras/software.html
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(a) (b)

(c) (d)

(e) (f)

Figure 2. (a)QCC(12 + r, 12), USUAL; (b) QCC(12 + r,12), DAC; (c) QCC(12 + r,12), TREE;
(d)Qdel(12+ r,12), USUAL; (e)Qdel(12+ r,12), DAC; (f) Qdel(12+ r,12), TREE.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. (a)QCC(18 + r, 18), USUAL; (b) QCC(18 + r,18), DAC; (c) QCC(18 + r,18), TREE;
(d)Qdel(24+ r,24), USUAL; (e)Qdel(24+ r,24), DAC; (f) Qdel(24+ r,24), TREE.
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(a) (b)

(c)

Figure 4. (a)Q̃del(360+ r,360), USUAL; (b) Q̃del(360+ r,360), DAC; (c) Q̃del(360+ r,360), TREE.

References

[1] H. Brass,Quadraturverfahren(Vandenhoeck & Ruprecht, Göttingen, 1977).
[2] R. Cools and B. Maerten, Experiments with Smolyak’s algorithm for integration over a hypercube,

Internal report, Department of Computer Science, Katholieke Universiteit Leuven (1997).
[3] T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numer. Algorithms 18 (1998)

209–232.
[4] G. Hämmerlin and K.-H. Hoffmann,Numerische Mathematik(Springer, Berlin, 1989).
[5] Th. Müller-Gronbach, Hyperbolic cross designs for approximatin of random fields, J. Statist. Plann.

Inference 49 (1997) 371–385.
[6] E. Novak and K. Ritter, High-dimensional integration of smooth functions over cubes, Numer. Math.

75 (1996) 79–97.
[7] E. Novak and K. Ritter, Simple cubature formulas with high polynomial exactness, Constr. Approx.

15 (1999) 499–522.
[8] E. Novak, K. Ritter and A. Steinbauer, A multiscale method for the evaluation of Wiener integrals,

in: Approximation Theory IX, Vol. 2, eds. C.K. Chui and L.L. Schumaker (Vanderbilt Univ. Press,
Nashville, TN, 1998) pp. 251–258.

[9] T.N.L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 22 (1968)
847–856.

[10] K. Petras, On the Smolyak cubature error for analytic functions, Adv. Comput. Math. 12 (2000) 71–
93.

[11] K. Petras, Asymptotically minimal Smolyak cubature, preprint, available onhttp://www-
public.tu-bs.de:8080/˜petras/software.html .

[12] I.H. Sloan and S. Joe,Lattice Methods for Multiple Integration(Clarendon Press, Oxford, 1994).



K. Petras / Fast calculation of coefficients in the Smolyak algorithm 109

[13] S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of func-
tions, Soviet Math. Dokl. 4 (1963) 240–243.

[14] S. Tezuka, Financial applications of Monte Carlo and quasi-Monte Carlo methods. Random and quasi-
random point sets, in:Lecture Notes in Statistics, Vol. 138 (Springer, New York) pp. 303–332.

[15] G.W. Wasilkowski and H. Wo´zniakowski, Explicit cost bounds of algorithms for multivariate tensor
product problems, J. Complexity 11 (1995) 1–56.


