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1. Introduction

Sparse grids and related methods already have a long tradition in numerical quadra-
ture and approximation theory (see, e.g., [2,3,12,16,18]). The reason why they became
popular is the following: When applied tod dimensions,d > 2, all numerical methods
using regular rectangular grids have one problem in common:the curse of dimension. If
one refines the grid – for instance, by halving the mesh sizen times – the number of grid
points grows exponentially with the dimension, i.e., likeNd , whereN = O(2n) denotes
the number of points per direction. One way out is to usesparse grids, where the number
of points only grows likeN(logN)d−1. Under certain conditions on the mixed deriva-
tives of the function, the approximation accuracy degrades only by a logarithmic factor
compared with the accuracy achieved on the regular grid with the sameN , cf. [7,9,19].
During the last decade, since the introduction of sparse grid methods for elliptic bound-
ary problems by Zenger [19], several authors (e.g., [1,4,7,8,14]) have contributed to this
field. Most of these papers were concerned with finite element methods.

Recently, also finite difference methods for sparse grids have been developed
[5,15]. For general variable coefficient equations on sparse grids, FD operators allow
a more efficient operator evaluation than finite element operators. However, the struc-
ture of the FD operators is more complex. The corresponding matrix of the system of
linear equations is ill-conditioned. So, it takes (even in the preconditioned version [15])
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many iterations of an iterative solver to obtain a solution. The finite difference opera-
tor on a sparse grid described in [5,10,15] is operating on the space of piecewise linear
functions on the sparse grid. If one considers these spaces for sparse grids of different
levels one observes [8,17] that they form a (interpolatory) multiresolution analysis. On
the other hand, the sparse grid space is a sum of full grid spaces (see section 2). For
the finite element approach, these properties have been used to develop multiplicative
subspace correction algorithms (see [6]). Of course, the question comes up how one can
use one or both of these subspace properties to develop multilevel-type algorithms also
for the finite difference approach.

We will describe two possible types of multilevel-type algorithms for finite differ-
ence discretizations on sparse grids. The first one is similar to multiplicative subspace
correction algorithms for the finite element case using the full grids contained in the
sparse grids. We present several versions of this algorithm and discuss the problems that
rise. The second algorithm is a V-cycle of the sparse grid spaces of several levels, when
the full grids of one level can be treated in parallel as in [13].

2. Notation

We want to solve elliptic PDEs with a finite difference approach using sparse grids.
For our tests, we restrict ourselves to the model problem of Poisson’s equation with
homogeneous Dirichlet boundary conditions,

1u = f in �,
u|δ�= 0

(1)

on the cube� = (0,1)3 in 3D and a regular sparse grid.
We will use the usual multi-index notationm = (m1,m2,m3) ∈ N3

0 with |m| =
m1+m2+m3. We choose dyadic mesh-widthshk = (hk1, hk2, hk3) ∈ R3+ with hki = 2−ki
to form dyadic (full) grids

�+k =
{
xk,j = jh k = (j1hk1, j2hk2, j3hk3)

}
and the sparse grid

�+` =
⋃
|k|=`

�+k .

From the univariate hat functionϕ(x) = max(0,1 − |x|), we build the trilinear
basis functionsϕk,j (x) = ∏3

i=1 ϕ(xi/hki − ji). The corresponding spaces of piecewise
trilinear functions are

Vk = span
{
ϕk,j : supp(ϕk,j ) ⊂ �

}
for the full grid�+k and

V` =
∑
|k|=`

Vk
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for the sparse grid�+` . Approximation results for these sparse and full grid spaces can
be found, e.g., in [9].

A given continuous functionu ∈ C0(�) can be approximated by a function
uk ∈ Vk by trilinear interpolation on the full grid�+k

uk =
∑

j

u(xk,j ) ϕk,j . (2)

We do this for all full grids belonging to the sparse grid�+` and call the collection of (2)
with |k| 6 ` thenodalor E-representationof the approximation. The coefficientsu(xk,j )

have to coincide if the evaluation pointsxk,j coincide on the different grids. So, a certain
consistency is required and the E-representation is redundant. The approximations on
all the full grids�+k do not necessarily satisfy this consistency condition. In order to
get a consistent representation one can use then hierarchical smoothing (cf. [13] or see
section 4).

Another form to represent a given function on a sparse grid is thehierarchical or
H-representationin terms of the hierarchical basis

u` =
∑

|k|6`, j odd

ak,j ϕk,j . (3)

Here,j odd has the meaning that eitherji is odd orki = 0 (i.e.,ji lives on the coarsest
grid in xi-direction).

Of course, one obtains full grid parts (2) as partial sums

um =
∑
k6m

(∑
j odd

ak,j ϕk,j

)
=
∑
k6m

wk, (4)

wherewk denotes the hierarchical surplus on grid�+k . For further purpose, we denote
byHk,m the projector of hierarchical surplus, realizingHk,mum = wk.

For trilinear functions, one can use fast pyramid algorithms to convert an
E-representation into an H-representation, and vice versa (e.g., [5]). This can be done in
O(N) operations whereN denotes the total number of degrees of freedom.

We discretize the Laplace operator by finite differences. On full grids�+k , this
discretized operatorAk applied to an E-representation is the usual 7-point stencil. On
the sparse grid�+` , things are more complicated. The discretized operatorA` has to
be built from a combination of transformations between H- and E-representations and
one-dimensional difference operators in each direction (cf. [5,15]). As an additional
difficulty it turns out that the resulting matrix is not symmetric. An explicit formula for
A` applied to the H-representation can be found in [10].
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Example 2.1. We will apply the algorithms proposed in sections 3 and 4 to the following
3D-problem. Solve (1) with the right-hand side

f (x) = −3π2

(
3∏
i=1

sinπxi + 64
3∏
i=1

sin 8πxi

)

starting from the zero functionu(0)` ≡ 0. We denote byf` = R`f ∈ V` the piecewise
trilinear interpolant of the right-hand side on the sparse grid and byu` ∈ V` the current
approximation of the solution in the sparse grid space.

3. An algorithm with sequential treatment of the full grids

This section is devoted to algorithms similar to the multiplicative subspace correc-
tion methods for finite elements on sparse grids as described in [6]. That means, the
discretized LaplacianA` on the sparse grid�+` will be approximated by the discretized
LaplaciansAk on the full grids�+k . On the different full grids, subproblems with defect-
corrected right-hand sides are solved visiting the full grids sequentially in order to obtain
a solution of the discretized problem on the whole sparse grid. We propose three ver-
sions of such algorithms and present numerical results for one of them (the convergence
rates are not so different).

Here and in the sequel, we denoteN` = #{k ; |k| = `}, and j = 1, . . . , N`
belongs to a certaink with |k| = `. BecauseVk ⊂ V` for |k| 6 `, we can use the natural
imbeddingP`,k :Vk → V` as a prolongation. The restrictionR`,k :V` → Vk to a full
grid spaceVk is realized by trilinear interpolation on the grid�+k . Both operations can
be carried out easiest in H-representation.

With this, the multiplicative subspace correction algorithm would read as

v
(0)
` = u(i)` ,

v
(j+1)
` = v(j)` − ω

(
P`,kA

−1
k Rk,`

(
A`v

(j)

` − f`
))
, j = 0, . . . , N` − 1, (5)

u
(i+1)
` = v(N)` .

Here and in the following algorithms, we built in damping parametersω and (later)ω0.
Later we will discuss why this is useful and necessary.

In algorithm (5), the defect correction step is carried out within the loop. But the
evaluation of the sparse grid finite difference operator is by far the most expensive step
here. So, we may think of doing the defect correction of the right-hand side always with
the same residual which is computed before the loop

v
(0)
` = u(i)` ,

v
(j+1)
` = v(j)` − ω

(
P`,kA

−1
k Rk,`

(
A`u

(i)
` − f`

))
, j = 0, . . . , N` − 1, (6)

u
(i+1)
` = u(i)` + ω0

(
v
(N)

` − u(i)`
)
.
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One can simplify this further by carrying out the complete defect correction step
before the loop what gives the more complicated looking algorithm

v
(0)
` = u(i)` ,

v
(j+1)
` = v(j)` + P`,kRk,`

(
u
(i)
` − v(j)`

)− ω(P`,kA−1
k Rk,`

(
A`u

(i)
` − f`

))
, (7)

j = 0, . . . , N` − 1,

u
(i+1)
` = u(i)` + ω0

(
v
(N)
` − u(i)`

)
.

In more algorithmic form, it becomes more clear that the defect correction step is outside
the loop:

r` := f` − A`u`
uk := Rk,`u`
gk := Akuk + Rk,`r`
v` := u`
for ∀k, |k| = `
do vold

k := Rk,`v`
solveAkv

new
k = gk

v` := v` + ω(P`,k(vnew
k − vold

k ))

enddo
u` := u` + ω0(v` − u`).
In the following examples, we have setω = 1 (no damping within the loop) to see what
is a proper damping parameterω0. The results are given forω0 (chosen experimentally)
as big as possible such that the algorithm converges. We did not try to really optimize
for the best possible damping parameter. The linear systems for the full grids are solved
using BiCGStab.

Example 3.1. We apply algorithm (7) to example 2.1.

Level` Dampingω0

4 1.000
5 0.667
6 0.385
7 0.215
8 0.110
9 0.056
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Example 3.2. We apply algorithm (7) to example 2.1, taking the loop over all levels
|k| 6 ` instead of over|k| = `.

Level` Dampingω0

4 1.000
5 0.500
6 0.250
7 0.125
8 0.062
9 0.031

We see that already for our well-behaved example, the convergence rate and the
necessary damping depend very much on the level` of the sparse grid. The damping
parameters become fairly small with growing level. The reason is the following: The
finite difference operators for the Laplacian on full grids depend on the grid but not on
the point of evaluation. On sparse grids, this is quite different, here the step sizes for
finite differences in different directions depend on the evaluation point (cf. [10]). For
this reason, the full grid matrices can not be written as Galerkin approximations of the
sparse grid matrix. In this sense, the finite difference operators on the full grids are no
good approximations of the finite difference operators on the sparse grid. If we have a
closer look [10] on the difference operators for the second derivative inxν-direction (full
grid: Aνk, sparse grid:Aν`) at the pointxj ,m being hierarchical on grid�+j , then we see
the reason for the damping: Beside restriction and prolongation, we have to scale the
row responsible forxj ,m by the factor 2kν−jν−`+|j | to obtainAνk from Aν` . The damping
parameters have to meet the needs of all points and all directions, so they have to be
small and decrease with growing level` of the sparse grid. In example 3.2, we used
the same damping parameterω0 for all grids on the different levels, i.e., for an M-cycle
with highest level̀ , ω0 depends only oǹ . So we had to use even smaller damping
parameters (here we chose:ω0 = 24−`) than in example 3.1 and we also got a slower
convergence.

We do not have such a phenomenon in the Galerkin approach using the hierachi-
cal basis or the generating system of the nodal bases for the sparse and the full grids.
There, the stiffness matrices for the full grids are submatrices of the stiffness matrix for
the sparse grid by construction. In this case [6], the multiplicative subspace correction
methods can be interpreted as block iteration methods for the sparse grid stiffness matrix.
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4. A V-cycle with parallel treatment of the full grids on a level

In this section, we use the multilevel structure of the sparse grid spaces
V0, V1, V2, . . . to establish some kind of V-cycle for finite differences on sparse grids.
This means, that we use approximations from coarser grids to improve the approxima-
tion of the solution on the finest grid. If we would work with a V-cycle in the closer
sense of the word we would do iterations with the sparse grid operatorA` and try to
improve it with solutions fromA ˜̀, ˜̀ < `. This approach is discussed elsewhere [10,11].

What we present here is in the spirit of [13, section 5.4] . On each level, we do not
iterate with the operatorsA ˜̀ on sparse grids but on each of its grids (of this level) sepa-
rately. Of course, for this approach we need different restriction and prolongation strate-
gies because starting with an E-representation, we obtain a non-consistent representation
by correcting on the grids. We make the following choice. For the restriction, we take
mean values from the 3 possible finer grids (one per direction, either full weighting or
function values). The prolongation is even more delicate. Here, we use the hierarchical
smoothing procedure described, e.g., in [13]. This means, thatu` := P`,`({uk, |k| = `})
stands for hierarchical smoothing of the given solutionsuk on level `, following the
algorithm

for all levelsm = `− 1(−1)0
do uk := (1/3)∑3

s=1Rk,k+es uk+es (∀k, |k| = m)
wk := Hk,k uk (∀k, |k| = m+ 1) (8)

enddo
u` := u0+∑0<|k|6` wk,

where the projectionHk,k is described in section 2. The hierarchical smoothing routine
delivers a consistent approximationu` for the sparse grid�+` . If we use the notation
P`+1,`({uk, |k| = `}) we mean hierarchical smoothing on level` and then interpolation
to grid�+`+1, i.e., in the last line of algorithm (8), the left-hand side has to be replaced
by u`+1. With this, we obtain a consistent approximationu`max after each cycle.

Note, that on each level, we apply the iterative solver on all full grids separately
(this means that on each level the iterations can be done inparallel). Because of the rel-
ative inconsistency, it is not necessary to accurately solve the systems on each full grid, a
few iterations (pre- or postrelaxations) are sufficient. This is quite different from the al-
gorithms presented in the previous section. There, the full grids are treated sequentially
and is was necessary to reallysolvethe systems on the full grids sufficiently accurate to
obtain convergence.

Below we describe the full algorithm, given a lowest level`min and a highest level
`max of sparse grids, the numberν1 of prerelaxations andν2 of postrelaxations, and a
damping parameterω0. We start with a current approximationuold

`max
∈ V`max. Then, one

cycle is given by
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r`max := f`max− A`maxu
old
`max

uk := Rk,`maxu`max (∀k, |k| = `max)
gk := Akuk + Rk,`maxr`max (∀k, |k| = `max)
for all levels` = `max(−1)`min+ 1
do ν1 steps of a smoother forAkuk = gk (∀k, |k| = `)

for ∀k, |k| = `− 1
do uk := (1/3)∑3

s=1Rk,k+es uk+es
gk := Akuk + Rk,`maxr`max (9)
uold

k := uk

enddo
enddo
Solveon level`min: Akuk = gk (∀k, |k| = `min)
for all levels` = `min(+1)`max− 1
do uk := uk + Rk,`P`+1,`({(un − uold

n ), |n| = `}) (∀k, |k| = `+ 1)
ν2 steps of a smoother forAkuk = gk (∀k, |k| = `+ 1)

enddo
u`max := P`max,`max({uk, |k| = `max})
u`max := uold

`max
+ ω0(u`max− uold

`max
)

In the following examples, we used Gauß–Seidel iteration as a smoother and
BiCGStab as a solver on the coarsest grids. The same damping parameterω0 has been
used after each cycle. Again we need this damping parameter which has to go down
with the level for exactly the same reason as discussed in the previous section.

Example 4.1. We start with a two-level algorithm using only two levels`max and`max−1
in algorithm (9). We use it withν1 = 1 prerelaxation andν2 = 1 postrelaxation obtaining
the following damping parameters and convergence behaviour.

Level`max Dampingω0

4 1.000
5 0.350
6 0.085
7 0.080
8 0.070
9 0.040
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Example 4.2. In the following example, we apply a V-cycle using all levels from`max

down to`min = 0 in algorithm (9). We use it with no (ν1 = 0) prerelaxation andν2 = 1
postrelaxation. Then we obtain the following damping parameters and convergence be-
haviour.

Level`max Dampingω0

4 0.900
5 0.750
6 0.600
7 0.450
8 0.300
9 0.150

Example 4.3. For better comparison, we now use the same damping parameter for all
levels (the one for the highest level` = 9) and repeat the two-level algorithm from ex-
ample 4.1 withω0 = 0.040 (left) and the V-cycles from example 4.2 withω0 = 0.150
(right).

The convergence behaviour depends much on the choice of a good damping para-
meter which has to go down with growing level. Again, we see that the speed of con-
vergence slows down with growing level (as it seems mainly because of the necessary
damping).

At last we give a comparison for the algorithms under consideration and the mul-
tiplicative cycle with the adapted full grid operators from [10]. These adapted full grid
operators are Galerkin approximations of the sparse grid operator. We compare the
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number of cycles and the computing times (relative to the fastest algorithm) necessary
for level `max = 9 to reach a residual which is (inL2-norm) less than 5· 10−3 (i.e.,
approximately the discretization error for level 9). We did not exploit parallelization for
the V-cycle in example 4.2.

Algorithms Cycles Time units

Example 3.1 (one-level multiplicative algorithm) 123 3.25
Example 3.2 (multilevel multiplicative algorithm) 223 8.44
Example 4.2 (V-cycle,ν1 = 0, ν2 = 1) 60 1.00
One-level multiplicative algorithm (26) from [10] 28 23.87
Multilevel multiplicative algorithm (27) from [10] 17 23.22

We see, that the use of adapted full grid operators results in less iteration cycles,
compared to the multiplicative algorithms with damped finite difference operators on the
full grids. But the algorithms presented here in section 3 are less expensive per cycle so
that they are more efficient. The V-cycle from example 4.2 is the best of our algorithms.
We need the least number of cycles (compared only with the algorithms treated in this
paper) and the best time (compared with the algorithms from this paper and from [10]).
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