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The interest in the concept Oéffective order” has been revived by its rediscovery in
applications to symplectic problems. In this paper we revert to the original application, the
construction of explicit Runge—Kutta methods. Changing stepsize is a characteristic difficulty
with effective order methods and we propose a way of overcoming this difficulty. We also
consider the possible cancellation of local truncation errors of two methods over two succes-
sive steps. Using the algebraic approach for deriving these results gives us further insight into
these methods and compositions of methods. A particular sixth stage Runge—Kutta pair is
derived in the paper and is shown to be competitive.

Keywords: effective order, the Picard integral, tieand D simplifying assumptions, com-
position methods, principal local truncation error

1. Introduction

The main goal of this paper is to introduce variable stepsize selection scheme for
effective order methods, and to obtain enhanced order composition methods. In each
case, the analysis is facilitated by use of the algebraic approach of [4].

In 1969, Butcher [2] proposed the effective order concept. Using this idea, the
Butcher barrier for explicit Runge—Kutta methods (for orger 5, at leasip + 1 stages
are necessary) was broken. Six stage methods with effective order six were derived
in [13]. Little further progress has been made on effective order methods, mainly be-
cause of the difficulty in changing stepsize. More recently, Lopez-Marcos et al. have
applied the idea of effective order to symplectic methods [16]. This rediscovery let to
a renewed interest in effective order and this has now been extended to Singly-Implicit
Runge—Kutta methods (SIRK) [1]. The effective order generalization permits a free
choice of the distinct abscissae in both SIRK and in extended singly implicit Runge—
Kutta methods (DESI) [5]. Variable stepsize schemes for these methods were developed
in [7-9]. For these methods, with high stage order, this presented no special difficulty.
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For explicit methods, however, the difficulties remain. In this paper, we point out a
scheme for changing stepsize for effective order methods, especially for explicit Runge—
Kutta methods.

In section 2, we discuss the concept of effective order methods, and a chang-
ing stepsize scheme for these methods. We give an example to show how to de-
rive an effective order five method and an associated variable stepsize effective order
method. In section 3, we discuss a way of cancelling out the principal local trun-
cation error. Enhanced order composition methods can be derived by two different
methods within two continuous steps. A competitive composition metHd@8h, is
derived. In section 4, we carry out the experiments of a changing stepsize scheme
for an effective order method. Moreover, comparisons are made between the new en-
hanced order methods and the DOPRI(5,4) method, which has the same number of
stages.

A Runge—Kutta method with stages is denoted A, b, ¢),. The algebraic form
of the Taylor series expansion of a methodt y, over stepsizé is defined by

o) o
a(@)yo + XTJ 0 F(t)(yo)h™™,

whereq is the elementary weight functioa(r) is the symmetry functiont (z) (yo) is the
elementary differential corresponding to the tre@ndr (¢) is order of the tree (see [3]).
We use Butcher’'s normalized elementary weight function so that the composition rule is

(ap)(t) = B (r) + B(1) + Zﬁ(u)a(l\u), VieT,
u<t

whereu is a subtree of sharing the same root with the treandr\u is the remaining
part of: after deleting the subtree

Let y (¢) be the density function. We defie: T — R, by E(¢t) = 1/y(¢), Vi,
the “exact method”. This can be represented in terms of the Picard integral equation,
interpreted as a limiting Runge—Kutta methed b, ¢); ass — oo (see [11]).

Since results computed by a Runge—Kutta method can be represented as members
of G, the set of mappings from trees afid} to real numbers. LeG; = {@ € G |
a(@) =1}andH, = {e € G1 | a(t) = 0, Vr(¢t) < p}. In Butcher [3],H, is found to
be a normal subgroup @, thereforeG1/H, = {«H, | « € G1} forms a factor group.
The cosetEH, € G1/H, contains all the methods of order greater than or equal to
The following notations are made in [3]. For amye G, «”’ means the method is over
stepsizeph, that isa” (1) = p. Bute” = « ---a, Wherea occursn times using the
same stepsize. Note that the Picard integras of infinite order and it can be proved
that £ = E”.

2. Achanging stepsize scheme for effective order methods

Our aim is to avoid the inconvenience of separately removing the perturbation for
the previous step and then introducing a new perturbation with the new stepsize. In
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order to retain the perturbation introduced pybut adapted to the new stepsize, we
need to modify the coefficients of the first step taken with the new stepsize. Ideally, we
would like the effective order method used for the stepsize changing remains the same
as the original effective order method except for the weights. However, this is difficult
to achieve for lower stage order effective order methods. We use an explicit effective
order method, which is of lower stage order, as an example to show how to implement
variable stepsize schemes.

2.1. Effective order methods

In this subsection, we explain the idea of effective order and give formulas for
deriving the order conditions for effective order methods on tall and bushy trees with
starting methog satisfies3(r) = 0. These formulas simplify the derivation of effective
order conditions. An example is given to show the detail derivation of a variable stepsize
scheme.

Definition 1 (Butcher [2] 1969). A method € G is of effective orderp if there exists
B € G1 such thaiBa g~ is of orderp.

The effect of this definition is that we seek a method represented, lwhich
preserves accuracy, not in the exact trajectory, but in a trajectory perturbed by the method
represented bg. Therefore, the starting methgdoffers some freedom in the effective
order conditions ofr. To use the method, the perturbatigris applied at the start of
the integration; this is compensated for by applying the meftiotdat the end of the
integration.

It seems natural to require the starting method to serve as a first step and to integrate
the solution forward a distandeas well as applying the perturbation.Aftr) = 0, this
could mean defining a starting step frggg = EB. Similarly, the finishing procedure
could be defined frong, = 8~1E, so thatg,(r) = 1. This would mean that a further
step is taken while the perturbation is being removed. Therefore, this integration for
effective order methods oversteps is

Bo B B! 5

Under the assumption thgig ! EH, with B(r) = 0, the order conditions for the
effective order method for tall and bushy trees are:



134 J.C. Butcher, T.M.H. Chan / Variable stepsize schemes

1
s+

a([fm])=m+1+f<’7),s([fm—f]), forallm=t...p-1 @

1
i=1

a([s‘r]s) foralls =0,...,p—1, ()

These two conditions, (1) and (2), were derived by expanding the compoasition rule of
(Ba)(t) = (EB)(r) for a tall tree and a bushy tree respectively with the assumption
that 8(r) = 0. Therefore, we can derive the effective order metthagking the above
formulas, and then find a starting methgl = EB and finishing methog, = g~1E
(see [4]).

Without changing the effective order methedthe stepsize-changing scheme for
effective order method is represented by the diagram

o
/
al?)
A ~1
2 5—(%) b b
E?» E
h
P

This means that the cancellation of the perturbed and reperturbed actions is destroyed.
Because of this, it has always seemed to be difficult to use effective order with variable
stepsize.

In order that the cancellations for perturbed and reperturbed actions still hold for
changing stepsize scheme for effective order methods, we propose a variable stepsize
scheme in figure 1. An effective order metheglusing for changing stepsize in figure 1
is derived in example 1. An error estimation for this effective order method in stepsize-
changing scheme is also obtained based on an embedded method.

cancel out
a(%),
P1 \

" 1
-5 B
B ﬁﬁw
_______ By E g
%h h

Figure 1. Variable stepsize for effective order methods.
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2.2. The variable stepsize scheme

There are several key points for changing stepsize for effective order methods in
figure 1.

1. It seems natural that the first methgdfor changing stepsize satisfiggr) = 0
in order to make sure that the perturbed initial values are at the same points of the
original initial value and also a preparation for the design of (3) in which the perturbed
and anti-perturbed action under a variable stepsize scheme could be cancelled.

2. We should find a methad, such that
BYPa,p7t € EH,, thisisequivalentto pY7a, = EB, Vr@t) < p, (3)

wherep € R denotes the stepsize ratio. In particularly, we chaoge) = 1.
Note that in figure 1, we have

(a) If p =1, thena, = a. Therefore, the first two steps taken for experimentgyie
followed by«.

(b) «, is the method for stepsize changing. If the current step is accepted with out-
put valuey; and stepsize ratipo, thena,, is the method for carry out the next
integration with initial valuey; and stepsize@gh.

3. The error estimate should be based on the changing stepsize effective order solution
flows rather than the original solution flows.

Example 1. In this example, we show a way of analysing methods of effective order
five with five stages together with a starting methgydand a finishing methog,. The
main part is to show how to find a relative effective order changing stepsize meghod
and its error estimation for stepsize-changing scheme.

Let 8 (with B(z) = 0), By, B, and the effective order explicit Runge—Kutta
method (A, b, ¢), satisfy C(2) and D(1). In order to satisfyC(2) up to order 5 for
explicit method(A, b, ¢), (associated with th® (1) conditions), we assume

5
b, =0 and Zb,-(l — ¢;)aip = 0.
i=1

Using the above formulas for tall trees and bushy trees, the order conditions for effective
order methods up to order five are
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Tall tree Bushy tree
a()=1

R

=

=
Il

1
a(V)= 3t 26(1)

1
a(\V)= 2 T3 +3B(V)

Q
VN
N——"
Il
N DI NI
N

1 1
a(l) =D (V) =2 H4B() +65(V) +4B(V)

Because of’(2), we havea(}) = %a(\/). Therefore8(1) = 0.
The equation

(Bo) (V) = (EB)(V)
together with the conditiong(z) = (1) = 0 andC(2), D(1), we have
1 5
Applying the D(1) conditions on the tall tree of order five, we haﬁe}) = 0. By
applyingbT(1 — ¢)Ac(c — c3) to the order condition (V) = &, we havers = Z,

15’
The linear combinatiomc(c — c3)(c — c4)(c — 1) and the order conditions of

on bushy trees give
1 cst+ca+1 c3tcstczca c3ca
O=—=+4+4w — — ,
5t 4 3 2
Therefore, we have

wherew = g(\).

. 1- Cq
240 -
For starting and finishing methods, we have to evalygfie) and g,(¢) for all
r(t) < 4. Since all these methods satigfy2) andD(1), B, = EB, B, = B 1E, and
B(t) =0, forr(r) < 3, we have 1 1
Bo() = B1() =1, Bo(l) = B1(1) = 5» ,30(\/) = ,31(\/) = ;_%
Since ! is the inverse of3, by the formulags~—! = 1, we haveg=1(r) = 0 for all
r(t) < 3, and

0= HV) =)+ (V) =w+p (V) = B (V)=-w.

Therefore, we obtain
1
B =E(V) +p(V) = 7 +w.
1

Pr(V)= (BE)(V) = (V) + E(V) = —w + 7.
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The order conditions for an effective order 5 methodatisfyingC(2) and D(1)
up to order 5 with a starting methgt) and finishing methog@, up to order 4 are

VARV
1 1 1 1 1
« 133 72 ms5™W
1 1 1
Po 1 5 3 2TV
1 1 1
fr 153 27"

wherew = B(\/).
Solving the quadrature formulas up to order 4dorB, andg,, we have

-1
111 B C3 C% C§

(b3a b4’b5) = 57 éaz-‘l_w C4 C4 C4 .
1 1 1

where fora, w = 0; for 8y, w = w, and forf,, w = —w. Andby = 1 — bz — by — bs.
By the C(2) conditions up to order 5 for these methods, we have

2
a & a c a a —b3(1 —c3)
32 = 31 = (€3 —as2 42 = —
2c;’ ’ ba(l—ca)’
2
_ Cq— e _
as3 = T, aq1 = C4 — A4 — A43.
3

The valuecs = % follows from the order condition(\V) = ;11 and the order condition
of & on bushy tree of order five gives = (1 — c4)/240.

By choosing the abscissae gf, « and 8,, we derive an effective order method
with starting and finishing methods as follows.

A first method(4, b, ©)s (B4, With Bo(7) = 1)

of 0o 0 0 o0 O

11 1

- - 0 0 O

5 5

gOEOOO

5 5

3| 75 9 117

2 2 == 0 o0

4| 64 4 64
7 7

L R
36 3 4 9
1

AECRE
144 48 9 8
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the effective order metho@4, b, ¢)s («)

0|0 O
111
i B
5|5
g 0 g 0 0 O
5 5
1] 3 5
5|16 0 16 0O O
1 } 0 —§ 2 0
4 4
1 2 1
1= O 0 = =
6 3 6
and a finishing methodA, 5, &)s (B, with B1(t) = 1)
0| O 0 0 0
1] 1
| = 0 0 0
5| 5
g 0 g 0 0 0
5 5
3| 161 19 287 0
4| 192 12 192
1 27 19 291 36 0
28 7 196 49
7 475 2 7
1| L o 222 L
48 1008 7 72

The three tableaus were derived in [4].

We use the following three steps to show a way of deriving an effective order
method for stepsize-changing scheme.

Step 1.Find the starting methofl with 8(r) = 0. Since the effective order method
(A, b, ¢)s5 is of order 4, we have

O =p0)=p(1) =p(V) =0,

and by the composition rule fdt 8 and the fact thag, = Eg, the order conditions for
B on trees of order 4 and 5 are

— 1 15 1 1
V) =FoV) =5 =" 4~ 480
— 1
BV) =Bo(V) — £ —4B(V) =B'c" — £ —4p(V) = .
. 1_—T_—_2_i__1
PIV)=holY) — 35 = AT — g = 555
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Step 2. Find the effective order metho@A(p), b(p), c(p))s («,) for changing
stepsize, the order conditions are

(BYPa,)(t) = (EB)(t), foralls: r() <. (4)

Therefore, by expanding the composition rule of (4), the order conditions fop to
order 5, which satisfies thé(2) simplifying assumption up to order 5, are

5
b(p)2=0, Y b(p)i(L—c(p)i)a(p)ia =0,
i=1

and
1
05,0(')=1v a,o(l) = 5,
1 1 1
w()=5 o=+ (1= )80,
1 1
ap(V)= g + (1 - F),a(w L a8().
1

a0, (V) =14 (1_ p—15>/3(\>/).

By solving for the above order conditions and th&1l) and C(2) conditions (up to
order 5), we find the effective order metheg for changing stepsize to be

ol

wa
as(p) = 5 az1(p) = c3(p) — aza(p),
Spw;
. (-1+ p)w%w3w1w4 . ng)3UJ5
as2(p) = 4073 , as3(p) = 6w’
(1— p)wiwowy
as1(p) = c4(p) — asz(p) — asz(p), asy(p) = — Qow;
wiwswe A(—wg)wiwig
asz(p) = YIS asg(p) = ———,
W1WeW7 WaW3WeW7
25(—1 + p)wi(—wa)
as(p) = 1 — asa(p) — asa(p) — asa(p),  ba(p) = e
48pw;1(—wg)we
ba(p) = L bs(p) = o wr
AP = 3pw2w3w10w6’ S = 24/02(—11)8)“)10’
b1(p) =1 — b3(p) — ba(p) — bs(p),
where

w1 =—4+ 5p + 39p°,
wy =1+ 394,
w3 =7—12p + 21p°,



140 J.C. Butcher, T.M.H. Chan / Variable stepsize schemes

wa=—1—p — p?+ 11p> — 147p"* — 147p° — 1470% — 147",
ws =1+ 12803 — 82p* + 27308,
we =67 — 100p + 40960° — 5014p* — 1607p° + 220358 — 68406)° + 745293,
w7 =—1— 6722+ 184Q° — 11160* + 656(°® + 89287 — 6806)°
+ 105456 + 9718% ' + 9582316,
wg =—8+5p — 117p°,
wg = —3+ 60p + 13512° — 36628* + 39303° + 524289°
— 9735847 + 2063982 + 1235628° + 2820169 ! + 225582(12
+ 12023490 + 57575 — 1518753617 + 46953222,
wio=—7 + 16p + 23%* + 1190° + 2730°,
1 2(14+39%) 12— 187p* — 513098
clp)= <O’ 5 1+19%7% ' —4+ 304%* + 2531558 )

Step 3. Find an error estimate on the solution flow of the effective order
method (A(p), b(p), c(p))s. Let (A, b, c)s (B) be an embedded method fOA(p),
b(p), c(p))s (). Thatis,

1 ~ ~ ~ ~ ~ ~
c= (Oa g’ C3(p)7 C4(p)7 17 l)v bT = (bl(p)’ 07 b3(p)7 b4(/0)a b5(p)7 bG(P)),

and the order conditions for the embedded method are

- ~ 1
s1=b"e —1, so=b"¢ — =,

o 1 7T~3 2 1 1 J ©)
53=b —é, S4=b _(Z_i_(l_ﬁ)ﬁ( ))

Note that the conditions in (5) are derived by expanding the composition rule of
(BYPa,)(t) — (EB)(t) on the relative trees. Solving system (5) equal zero, there is
a free parametdsg left. For effective order methods, it is quite difficult to have a ran-
dom choice obg such that the choice @ involves the stepsize ratipand also control
the stepsize properly.

We choose the condition

s5=b"(p)A3(p)c(p) — bT A% =0

in order that this error estimation has better performance for a two-step zero approxima-
tion (see [6]). Solvaes = O for bg, and we have

~ (—4 4 5p +390%)u
bg = —

8p3v
wherey = —1—672p2+1840Q0% — 11160* +-656Q0° + 8928’ — 680608 + 10545611+
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97188 + 958236, v = 456 — 1773 + 860p? — 49152° + 61104 — 491305 —
423875 — 7845048 + 1688553° — 15738210 — 5365231% + 115194314 +
31621591,

The error estimate 8" — A[6] = (0, 0, 0, 0, —bg, bg), WhereA[6] is the sixth row
of A. See [11] for details.

The method A(p), b(p), c(p))s for stepsize-changing scheme for effective order
involves the stepsize ratjo. For solving a simple system, this stepsize-changing scheme
seems not to be very efficient because of the extra work for caring out the meftusd
ing for the next step. However, for solving large problems, this extra work does not affect
the result too much. See the result on integrating the DETEST proBkisee [15]) in
the experiments.

In order not to carry out, every step, we use the effective order methods corre-
sponding to the stepsize ratio

p =05, 0.6, 0.65 0.7, 0.75, 0.85 1, 1.3, 1.5, 1.65 1.7, 1.75 1.8, 1.9, 2.

The above coefficients gf are chosen according to our stepsize control. In the exper-
iment, if the stepsize ratip for the next step is chosen between any of above interval,
then the stepsize ratio is chosen to be the left-hand-side end point.

3. Enhanced order composition methods

In this section, we propose a way of getting one order higher composition method
by analysing the principal local truncation error over two successive methods. By can-
celling the principal term of two methods integrating one followed by another, we derive
a formula of one order higher composition methods. Especially, we give techniques in
solving the order conditions for a sixth order composition methods where the original
order of each method is five.

In figure 2, the principal local truncation errors for these two methods are

b= ) i(rx(t)—‘glpH)F(r)( Yhrt
a0 o) O
b= ) i(oz(t)—‘%pH)F(r)( et
IO o) Y

If we let principal local truncation errowd( + d») over two steps equal zero, then we
have

9P+1 9p+1 9]7+1+9p+1
0= ! _ Y% _ _% *%
T TP T e T PO TG

By letting 6, = 6, = 1, we derive the following theorem.
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The (n + 1)th solution flow ynr1(x) Yn+2

y A \

= X

Tn Tp + 010 Ty + 010+ 030

h, 81 and 02 are small enough
Figure 2. The principal local truncation error of a composite method.

Theorem 1. Let « and 8 be of orderp over stepsizé:, thena g is of orderp + 1 over
stepsize & if and only if

a(t) + @) = i foranys: r(t) = p + 1.
y (1)

Example 2. We discuss a derivation of a sixth order composite pair. A pair of methods,
(A, b, c)gand(A, b, )¢ satisfyingD (1) are

0| O 0O O O 0O O 0/ 0 0 0 0 0 0
c2l 2 O 0O O O ©oO c2lc2 O 0 0 0O O
c3lazr az; 0 O O O calas; az 0 O O O
ca|asy azp agzs O O O and Caldas da2 asgs 0O 0 O
C5| ds1 Aas2 ds3  dsg 0 0 Cs| dsy dsp ds3 dsa 0 0
1 de1 de2 a3 dpqa des 0 1 a61 a62 a63 a64 a65 0

bl 0 0 b4 b5 b6 El 0 53 54 55 EB.

In order that the order conditions for these methods could be us€d2asip to order
six (associated with th® (1) conditions), we need the conditions.

0=b, = by, (6)
6 6
O=Zbi(1—ci)ai2 = ZE,-(l—E,»)E,»z, (7)
i=1 i=1
6 6 _
0= Z b,(l — C,')Cl,'j(ljz = Z b,’ (1 — E,’)aijﬁjz, (8)
i,j=1 i,j=1

6 6
0= Z bi(1 —c¢;)(¢ci — cs)aiz = Zgi (1—-75)(ci —Ts)as. 9)
i=1 i—1
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However, even though we could reduce the calculation work using equations (6)—(9), it
seems not very economic using two extra conditions to eliminate just one order condition
for the composite method. Therefore, we use only (6) and (7) because each of them
could reduce more than two order conditions. Without using (8) and (9), two extra order

conditions on trees) andJ for the composite method should be also taken into account
in addition to the order conditions on

VARV RSN NGO SRV AN §

For the quadrature formulas for these two method up to order éAfpb, ¢)g, we
have

A
I AN IR

(b47 b5’ bﬁ) = Ea éa Z Cs C5 C5 )
1 1

with by = 1 — by — bs — bs. Note that we choosk; = 0 so that the calculation work
could be reduced. And for the quadrature formulas up to order &4fab, ©)g, we have

— 5 _3 —a4 -1
C3 cg cg cg

1111) G4y Th T3 T

FaBBi) = (3555

Cs C; C5 Cg

1 1 1 1

Withzl = 1—53—54—55—56.
Let as, = u, anda,, = v. In order that the simplifying effects @ (2) conditions
holds for these methods, we have to let

e _ 5
asy= -, as1=c3 — azp, az= —,

26'2 262
_ _ ci — 2ucy _ Ei — 2vCo
a31=7C3 — dzp, agz=——F—, ap=——F7—""",

2c3 2c3

(41 =C4— a43— U, A41=0C4 — a4s3— V,
as1 = Cs5 — dsp — as3 — ds4, Gs51=Cs5 — a5y — 453 — ds4,

-2 - - 2
_  Cg— ZasyCo — Zds4Cy c5 — 2a52c2 — 2a54C4
as3= — , as3 = .

2c3 2c3

We solve the following order conditions by linear combinations of order conditions. This
involve the Picard integrak in terms of integral (see [4,11]).
For the order condition on the tre&, we can solve the order conditions
= N T—— _ 1 Eg
b (1-0)Ac(c—¢3) = — — —
(1—c)Acle~2) = 55~ 2

1
b'(1—c)Ac(c —c3) = 50 %,
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for as, andass. Therefore, we have

1/60 — c3/24 - 1/60 — 7s/24
as4 = ) as54 = = —— _ — -
bs(1 — cs)ca(cs — c3) bs(1 — c5)ca(cs — C3)

The conditions
b3(1 — c3)azz + ba(l — ca)u

4= bs(1— cs) ’
_ b3(1 —c3)azy+ ba(l —ca)v
asp=— = —

bs(1 — cs)

enable these methods to be used in plac€@ up to order 5.
For D(1), we have
bT(1— c) — byA[4] — bsA[5]
bg ’
b (1—7) — bsA[3] — baA[4] — bsA[5]

(@61, de2, A63, dea, des, 0) = > ,
6

whereA[i] andA[i] are theith row of matrixA and A, respectively.
For the treeO/, the order condition

(as1, as2, ae3, aes, aes, 0) =

c c— Co

1
wy = (1—5 - Z—é - % + %) — (ba(1 — ca)(ca — c5))aaz(ca(cz — ¢2))

i o 5ot ) - (Bal — ) e~ e)ana(ealea — 2)) -

=0.
The order conditio™c2A%c + b c?Ac = L is equivalent to

0 = wy =ba(1 — ca)(ca — c5)aazazacs + ba(1 — Ca) (Ca — Cs)dazazacy

1 X2 X1
— / (1 —x2)(x2 —c5) f / & d& dxy dx,
0 o Jo
1 X2 X1
- / (1 — x2)(x2 — Ts) / / & d§ dx; dxp,
0 o Jo
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= ba(1 — c4)(ca — c5)aazasacs + ba(1 — Ts) (Ca — Cs)aasdaaco
2 Cs 65

180 5! 5!
We can solvau; = 0, w, = Oforu, v. For the order conditiohTcAc+5'¢A ¢ = -,
we have

1 (2—5c3)ca(—c2 +2cu) (2 — 5C3)c3(—c3 4 2¢2v)
w3 = ——= —
360

48&‘4(—C3 + C4)

48Qc4(—c3 + Ca)
Solvingws = 0, we can find,.

The order conditiob™c® + ' ¢ = % can be reduced to

w l+c3+cs+cs  c3+ca+ o5+ c3cs+ cacs + cacs
4= —
S 4

€3C4 + €aC5 + c3cs + c3cac5 c3cacs 1+ C3+cs+Cs
+ I
3 2 5
€3+ C4 + C5 + €3C4 + C4Cs + C3C5
4

4 C3C4 + C4Cs5 + C3Cs + C3C4C5
3

c3cscs 1

2 3

For the order conditionTcAc® + b ¢AC® = 4, the equation
1 1 ©o¢3+c C3C. 1
_t _Gte o 1 Gta a1
20 60 24 20 60 24 12
is a simplified equation.

Ws

The order condition for the bushy tree of order 5 dr, b, ¢)¢ could be simplified
to

1 1+ ¢4+ cs C4 + C5 + CaC5 C4Cx
Weg = — — —

5 4 3 2
We can obtaires, ¢4, ¢s5 by solvingws = ws = wg = 0.
For the treey , we have

w7 = bs(1 — cs)asaasscs(cs — c2) + es(1 — Ts)asaaascs(Cs — T2)

1 X2 X1
—/ (1—x2)/ / (& — c2) d& dxp dxz
0 0 0

~ /01(1 ) /oxz /On 5(5 _ Ez) d¢ dxq dxs
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= bs(1 — cs)asaasscs(cs — c2) + bs(1 — Ts)@satascs(cs — T2)

1 C2 Ez
180 120 120/
Solving forw; = 0, we can gets = 1, org—é. The cases = 1is not possible. Therefore,

a sixth order composite method, sdy, m, n)1», is derived.
The following error estimation is a zero approximation of meth@dm, n)q

based on embedded technique [6]. ket (1,...,1)" e R¥and
8T = (51,0, 83, 84, 85. 86, 87, 0, 8, 810, 811, 12, 613)

be the weights of the error estimation for the composition mettiadn, n),,. The
conditions up to 4 and some trees of order 5 are

A A

q=3d"e, q2=3"¢, gs=387¢%  qu=48T¢°
gs=8T A, ge=08TA%,  qz=8T¢"  qs=48TA%,
qo = 8T A%, qro=0TAcs.
Solvingg: = g2 = - - - = q10 = 0, we obtairdy, 83, 84, 8s, 8, 87, 89, 810, 11, S12.

We choose the following equation so that this error estimation performs better us-
ing multi-step zero approximation.

; Q Q 75641011
SOlVIng qi11 = 0O for 813, haV6813 = 5866090115

Therefore, thek66 methods are

o] o 0 0 0 0 0
29 29
2 2 0 0 0 0 0
1 43 15
il PR, 0 0 0 0
27 59589 1863 189 O o o
80 464000 92800 1000
21| 145502 5796 55491 6520 0 0
26 318565 63713 21970 2197
l _ 16535641 368 46994 _ 6012320 1164410 o
4686255 551 1995 277263 585333
359 0 0 1024000 57122 19,
3402 2099277 154035 530’
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and
0 0 0 0 0 0 0
1 1
-3 -3 0 0 0 0 0
1 9 5
3 3 —35 0 0 0 0
29 80011 10643 928
40 4000 800 125 0 0 0
141 | 10067339323 _ 23857153 _ 399281873 131286745 0 0
286 | 848020030 2924207 116968280 678416024
1 | 1380889809  _ 394252  _ 62235743 540628165 718272965410
44168015 19443 81855030 1496449938 510521636607
379 0 8864 1204000 0199555222 6481
24534 26523 3809817 34265840445 66990
with the weights of error estimatiofl = (81, 0, 0, 84, . .., 613), where
5, — _ 9606408397 5, — -30014353164800 5. — _ 3157482722173
1= 7 1392919795890 4 = 1203343411669371 5 = 7 53068312980575
5. _ 5748716836 5, — _ 114671772676 5.=0
6 = T 750513880475 7 = T 35158327440705 8=
5, — 83810240188 §,0— _ 1480895987900
9 = 551373635105 10 = 7 311979395533113
5., — ~420924520242786131 8., — _ 490229392291 51— 15641011
11 = 98208986581581701175 12 = 7" 27428482400550 13 = 2866090115

Note. The error estimatiod” is of order four and is derived by the embedded method
of the composition methork66.

4. Experiments

In this section, we present some numerical results for the new methods. In order to
investigate how well the scheme in section 2 controls stepsize, we choose the C5 problem
in the DETEST set. We compare this effective order changing stepsize sefi@naa,
effsfix with theEngland, rkf45, andMerson methods in table 1. Note that, in this table,
eff5ran denotes the effective order methegl, wherep is the stepsize ratio for stepsize
changing.eff5fix denotes a set of effective order methods calculated in advance for some
special stepsize ratios shown in example 1. The tolerances are chosen Tieso fitat
the global error produced by each method are almost the same. Furthermore, the global
errors (GE) are found at the end point, and “step” means the number of steps taken,
“rejstep” means the number of rejections, the total work is measured in the “flops” row.
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Table 1
Results of eff5ran, eff5fix, England, rkf45, and Merson on C5.
effbran eff5fix England rkf45 Merson
C5 Step 54 57 156 59 107
Rejstep 0 0 0 0 0
GE  93232x 108 7.2285x 1078 7.2905x 108 6.7794x 1078 6.3027x 1078
Flops 476095 454466 1497520 583223 864221
x 10°The problem with eccentricity 0.3 x 10°The problem with eccentricity 0.5
5
25 4
2
3
(%2} w
15 g
- T2
1
0.5 1
] ]
107"° 107° 10° 10° 107"° 107° 10° 10°
global error global error
x 10°The problem with eccentricity 0.7 x 10°The problem with eccentricity 0.9
10
5 8
4
8. & ®
S S
- T o4
2
1 2
] ]
107"° 10°° 10° 10° 107"° 107° 10° 10°
global error global error

Figure 3. The Kepler orbit problems for eccentricities 0.3, 0.5, 0.7 and 0.9. effs505: * Megson:
Tolerances: 10"/2, n = 6-18.

The following experiments are based on solving the Kepler orbit problem

y1=1)3, y1(0)=1—e,
V5 = Y4, v2(0) =0,
)’é=—+232, v3(0) =0,
(1 +»3) / ,
1/
, Vo 1+e
== _77 (O) = < ) b
T T2 123 Y 1-e

with eccentricity 03, 0.5, 0.7, 0.9. The integration interval is € [0, 20]. The global
errors are found at the final point.
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x 10°The problem with eccentricity 0.3 x 10°The problem with eccentricity 0.5
3.5
25 3
> 2.5
@ » 2
£is g
= =15
! 1
0.5 0.5
0 -10 -5 o 0 —10 -5 o
10 10 10 10 10 10
global error global error
x 10°The problem with eccentricity 0.7 x 10°The problem with eccentricity 0.9
4 6

10

global error global error

Figure 4. The results of the Kepler orbit problems with eccentricities 0.3, 0.5, 0.7 and 0.9, rké6:
o DOPRI(5,4):$. Tolerances: 10"/2, n = 8-20.

In figure 4, we have found that thik66 pair performs better than the DOPRI(5,4)
pair.

5. Conclusion

Several applications of the idea oéffective order have shown the potential of
this type of methods. We believe that the changing stepsize scheme for effective order
methods is encouraging and justifies further research of these methods.

The composition of methods with the same order is worth exploring for enhancing
order, minimize the error constant, deriving better error estimation, or other purposes.
There are still several ways to design composition methods. For instance, triple composi-
tion methods, experiments on a pair of composition methods without using one followed
by the another. The enhanced order composition met@glis found to be competitive
amongst explicit Runge—Kutta methods.
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