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The interest in the concept of“effective order” has been revived by its rediscovery in
applications to symplectic problems. In this paper we revert to the original application, the
construction of explicit Runge–Kutta methods. Changing stepsize is a characteristic difficulty
with effective order methods and we propose a way of overcoming this difficulty. We also
consider the possible cancellation of local truncation errors of two methods over two succes-
sive steps. Using the algebraic approach for deriving these results gives us further insight into
these methods and compositions of methods. A particular sixth stage Runge–Kutta pair is
derived in the paper and is shown to be competitive.

Keywords: effective order, the Picard integral, theC andD simplifying assumptions, com-
position methods, principal local truncation error

1. Introduction

The main goal of this paper is to introduce variable stepsize selection scheme for
effective order methods, and to obtain enhanced order composition methods. In each
case, the analysis is facilitated by use of the algebraic approach of [4].

In 1969, Butcher [2] proposed the effective order concept. Using this idea, the
Butcher barrier for explicit Runge–Kutta methods (for orderp > 5, at leastp+1 stages
are necessary) was broken. Six stage methods with effective order six were derived
in [13]. Little further progress has been made on effective order methods, mainly be-
cause of the difficulty in changing stepsize. More recently, López-Marcos et al. have
applied the idea of effective order to symplectic methods [16]. This rediscovery let to
a renewed interest in effective order and this has now been extended to Singly-Implicit
Runge–Kutta methods (SIRK) [1]. The effective order generalization permits a free
choice of the distinct abscissae in both SIRK and in extended singly implicit Runge–
Kutta methods (DESI) [5]. Variable stepsize schemes for these methods were developed
in [7–9]. For these methods, with high stage order, this presented no special difficulty.
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For explicit methods, however, the difficulties remain. In this paper, we point out a
scheme for changing stepsize for effective order methods, especially for explicit Runge–
Kutta methods.

In section 2, we discuss the concept of effective order methods, and a chang-
ing stepsize scheme for these methods. We give an example to show how to de-
rive an effective order five method and an associated variable stepsize effective order
method. In section 3, we discuss a way of cancelling out the principal local trun-
cation error. Enhanced order composition methods can be derived by two different
methods within two continuous steps. A competitive composition method,rk66, is
derived. In section 4, we carry out the experiments of a changing stepsize scheme
for an effective order method. Moreover, comparisons are made between the new en-
hanced order methods and the DOPRI(5,4) method, which has the same number of
stages.

A Runge–Kutta method withs stages is denoted by(A, b, c)s . The algebraic form
of the Taylor series expansion of a methodα aty0 over stepsizeh is defined by

α(∅)y0+
∑
t∈T

α(t)

σ (t)
F (t)(y0)h

r(t),

whereα is the elementary weight function,σ (t) is the symmetry function,F(t)(y0) is the
elementary differential corresponding to the treet , andr(t) is order of the treet (see [3]).
We use Butcher’s normalized elementary weight function so that the composition rule is

(αβ)(t) = β(∅)α(t)+ β(t)+
∑
u<t

β(u)α(t\u), ∀t ∈ T ,

whereu is a subtree oft sharing the same root with the treet andt\u is the remaining
part of t after deleting the subtreeu.

Let γ (t) be the density function. We defineE : T → R, by E(t) = 1/γ (t), ∀t ,
the “exact method”. This can be represented in terms of the Picard integral equation,
interpreted as a limiting Runge–Kutta method(A, b, c)s ass →∞ (see [11]).

Since results computed by a Runge–Kutta method can be represented as members
of G, the set of mappings from trees and{∅} to real numbers. LetG1 = {α ∈ G |
α(∅) = 1} andHp = {α ∈ G1 | α(t) = 0, ∀r(t) 6 p}. In Butcher [3],Hp is found to
be a normal subgroup ofG1, therefore,G1/Hp = {αHp | α ∈ G1} forms a factor group.
The cosetEHp ∈ G1/Hp contains all the methods of order greater than or equal top.
The following notations are made in [3]. For anyα ∈ G, α(ρ) means the method is over
stepsizeρh, that isα(ρ)(τ ) = ρ. But αn = α · · · α, whereα occursn times using the
same stepsize. Note that the Picard integralE is of infinite order and it can be proved
thatE(ρ) = Eρ .

2. A changing stepsize scheme for effective order methods

Our aim is to avoid the inconvenience of separately removing the perturbation for
the previous step and then introducing a new perturbation with the new stepsize. In
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order to retain the perturbation introduced byβ, but adapted to the new stepsize, we
need to modify the coefficients of the first step taken with the new stepsize. Ideally, we
would like the effective order method used for the stepsize changing remains the same
as the original effective order method except for the weights. However, this is difficult
to achieve for lower stage order effective order methods. We use an explicit effective
order method, which is of lower stage order, as an example to show how to implement
variable stepsize schemes.

2.1. Effective order methods

In this subsection, we explain the idea of effective order and give formulas for
deriving the order conditions for effective order methods on tall and bushy trees with
starting methodβ satisfiesβ(τ) = 0. These formulas simplify the derivation of effective
order conditions. An example is given to show the detail derivation of a variable stepsize
scheme.

Definition 1 (Butcher [2] 1969). A methodα ∈ G1 is of effective orderp if there exists
β ∈ G1 such thatβαβ−1 is of orderp.

The effect of this definition is that we seek a method represented byα, which
preserves accuracy, not in the exact trajectory, but in a trajectory perturbed by the method
represented byβ. Therefore, the starting methodβ offers some freedom in the effective
order conditions ofα. To use the method, the perturbationβ is applied at the start of
the integration; this is compensated for by applying the methodβ−1 at the end of the
integration.

It seems natural to require the starting method to serve as a first step and to integrate
the solution forward a distanceh as well as applying the perturbation. Ifβ(τ) = 0, this
could mean defining a starting step fromβ0 = Eβ. Similarly, the finishing procedure
could be defined fromβ1 = β−1E, so thatβ1(τ ) = 1. This would mean that a further
step is taken while the perturbation is being removed. Therefore, this integration for
effective order methods overn steps is

Under the assumption thatβαβ−1 ∈ EHp with β(τ) = 0, the order conditions for the
effective order method for tall and bushy trees are:
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α
([sτ ]s)= 1

(s + 1)! , for all s = 0, . . . , p − 1, (1)

α
([
τm
])= 1

m+ 1
+

m∑
i=1

(
m

i

)
β
([
τm−i

])
, for all m = 1, . . . , p − 1. (2)

These two conditions, (1) and (2), were derived by expanding the composition rule of
(βα)(t) = (Eβ)(t) for a tall tree and a bushy tree respectively with the assumption
thatβ(τ) = 0. Therefore, we can derive the effective order methodα using the above
formulas, and then find a starting methodβ0 = Eβ and finishing methodβ1 = β−1E

(see [4]).
Without changing the effective order methodα, the stepsize-changing scheme for

effective order method is represented by the diagram

This means that the cancellation of the perturbed and reperturbed actions is destroyed.
Because of this, it has always seemed to be difficult to use effective order with variable
stepsize.

In order that the cancellations for perturbed and reperturbed actions still hold for
changing stepsize scheme for effective order methods, we propose a variable stepsize
scheme in figure 1. An effective order methodαρ using for changing stepsize in figure 1
is derived in example 1. An error estimation for this effective order method in stepsize-
changing scheme is also obtained based on an embedded method.

Figure 1. Variable stepsize for effective order methods.
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2.2. The variable stepsize scheme

There are several key points for changing stepsize for effective order methods in
figure 1.

1. It seems natural that the first methodβ for changing stepsize satisfiesβ(τ) = 0
in order to make sure that the perturbed initial values are at the same points of the
original initial value and also a preparation for the design of (3) in which the perturbed
and anti-perturbed action under a variable stepsize scheme could be cancelled.

2. We should find a methodαρ such that

β(1/ρ)αρβ
−1 ∈ EHp, this is equivalent to β(1/ρ)αρ = Eβ, ∀ r(t) 6 p, (3)

whereρ ∈ R denotes the stepsize ratio. In particularly, we chooseαρ(τ) = 1.
Note that in figure 1, we have

(a) If ρ = 1, thenαρ = α. Therefore, the first two steps taken for experiment areβ0,
followed byα.

(b) αρ is the method for stepsize changing. If the current step is accepted with out-
put valuey1 and stepsize ratioρ0, thenαρ0 is the method for carry out the next
integration with initial valuey1 and stepsizeρ0h.

3. The error estimate should be based on the changing stepsize effective order solution
flows rather than the original solution flows.

Example 1. In this example, we show a way of analysing methods of effective order
five with five stages together with a starting methodβ0 and a finishing methodβ1. The
main part is to show how to find a relative effective order changing stepsize methodαρ
and its error estimation for stepsize-changing scheme.

Let β (with β(τ) = 0), β0, β1 and the effective order explicit Runge–Kutta
method(A, b, c)s satisfyC(2) andD(1). In order to satisfyC(2) up to order 5 for
explicit method(A, b, c)s (associated with theD(1) conditions), we assume

b2 = 0 and
5∑
i=1

bi(1− ci)ai2 = 0.

Using the above formulas for tall trees and bushy trees, the order conditions for effective
order methods up to order five are
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Tall tree Bushy tree
α(·)=1

α( )= 1

2

α
( )
= 1

6
α( )= 1

3
+ 2β( )

α
( )
= 1

24
α( )= 1

4
+ 3β( )+ 3β( )

α
( )
= 1

120
α( )= 1

5
+ 4β( )+ 6β( )+ 4β( )

Because ofC(2), we haveα( ) = 1
2α( ). Therefore,β( ) = 0.

The equation

(βα)
( ) = (Eβ)( )

together with the conditionsβ(τ) = β( ) = 0 andC(2), D(1), we have

α
( ) = 1

15
+ 5

2
β
( )

.

Applying theD(1) conditions on the tall tree of order five, we haveβ( ) = 0. By
applyingbT(1− c)Ac(c − c3) to the order conditionα( ) = 1

15, we havec3 = 2
5.

The linear combinationbTc(c − c3)(c − c4)(c − 1) and the order conditions ofα
on bushy trees give

0= 1

5
+ 4w − c3+ c4 + 1

4
+ c3 + c4+ c3c4

3
− c3c4

2
, wherew = β( )

.

Therefore, we have

w = 1− c4

240
.

For starting and finishing methods, we have to evaluateβ0(t) andβ1(t) for all
r(t) 6 4. Since all these methods satisfyC(2) andD(1), β0 = Eβ, β1 = β−1E, and
β(t) = 0, for r(t) 6 3, we have

β0(·) = β1(·) = 1, β0( ) = β1( ) =
1

2
, β0

( ) = β1

( ) = 1

3
.

Sinceβ−1 is the inverse ofβ, by the formulaββ−1 = 1, we haveβ−1(t) = 0 for all
r(t) 6 3, and

0= (ββ−1)( ) = β( )+ β−1( ) = w + β−1( ) ⇒ β−1( ) = −w.
Therefore, we obtain

β0

(
)=E( )+ β( ) = 1

4
+ w,

β1

( )= (β−1E
)( ) = β−1

( )+ E( ) = −w + 1

4
.
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The order conditions for an effective order 5 methodα satisfyingC(2) andD(1)
up to order 5 with a starting methodβ0 and finishing methodβ1 up to order 4 are

·
α 1

1

2

1

3

1

4

1

15

1

5
+ 4w

β0 1
1

2

1

3

1

4
+ w

β1 1
1

2

1

3

1

4
− w

wherew = β( ).
Solving the quadrature formulas up to order 4 forα, β0 andβ1, we have

(b3, b4, b5) =
(

1

2
,

1

3
,

1

4
+ w̃

)c3 c2
3 c3

3

c4 c2
4 c3

4

1 1 1


−1

,

where forα, w̃ = 0; for β0, w̃ = w, and forβ1, w̃ = −w. And b1 = 1− b3− b4− b5.
By theC(2) conditions up to order 5 for these methods, we have

a32 = c2
3

2c2
, a31 = c3− a32, a42 = −b3(1− c3)

b4(1− c4)
,

a43 = c2
4 − 2a42c2

2c3
, a41 = c4− a42− a43.

The valuec3 = 2
5 follows from the order conditionα( ) = 1

4 and the order condition
of α on bushy tree of order five givesw = (1− c4)/240.

By choosing the abscissae ofβ0, α andβ1, we derive an effective order method
with starting and finishing methods as follows.

A first method(A, b, c)5 (β0, with β0(τ ) = 1)

0 0 0 0 0 0
1

5

1

5
0 0 0 0

2

5
0

2

5
0 0 0

3

4

75

64
−9

4

117

64
0 0

1 −37

36

7

3
−3

4

4

9
0

1
19

144
0

25

48

2

9

1

8
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the effective order method(A, b, c)5 (α)

0 0 0 0 0 0
1

5

1

5
0 0 0 0

2

5
0

2

5
0 0 0

1

2

3

16
0

5

16
0 0

1
1

4
0 −5

4
2 0

1
1

6
0 0

2

3

1

6

and a finishing method(Â, b̂, ĉ)5 (β1, with β1(τ ) = 1)

0 0 0 0 0 0
1

5

1

5
0 0 0 0

2

5
0

2

5
0 0 0

3

4

161

192
−19

12

287

192
0 0

1 −27

28

19

7
−291

196

36

49
0

1
7

48
0

475

1008

2

7

7

72

The three tableaus were derived in [4].
We use the following three steps to show a way of deriving an effective order

method for stepsize-changing scheme.
Step 1.Find the starting methodβ with β(τ) = 0. Since the effective order method

(A, b, c)5 is of order 4, we have

β(·) = β( ) = β
( )
= β( ) = 0,

and by the composition rule forEβ and the fact thatβ0 = Eβ, the order conditions for
β on trees of order 4 and 5 are

β
( )= β0

( )− 1

4
= bT

c3− 1

4
= 1

480
,

β
( )= β0

( )− 1

5
− 4β

( ) = bT
c4− 1

5
− 4β

( ) = 1

3200
,

β
( )= β0

( )− 1

15
= bT

cAc2− 1

15
= − 1

600
.
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Step 2. Find the effective order method(A(ρ), b(ρ), c(ρ))5 (αρ) for changing
stepsize, the order conditions are(

β(1/ρ)αρ
)
(t) = (Eβ)(t), for all t : r(t) 6 5. (4)

Therefore, by expanding the composition rule of (4), the order conditions forαρ up to
order 5, which satisfies theC(2) simplifying assumption up to order 5, are

b(ρ)2 = 0,
5∑
i=1

b(ρ)i
(
1− c(ρ)i

)
a(ρ)i2 = 0,

and

αρ(·)= 1, αρ( ) = 1

2
,

αρ
( )= 1

3
, αρ

( ) = 1

4
+
(

1− 1

ρ4

)
β
( )

,

αρ
( )= 1

5
+
(

1− 1

ρ5

)
β
( )+ 4β

( )
,

αρ
( )= 1

5
+
(

1− 1

ρ5

)
β
( )

.

By solving for the above order conditions and theD(1) andC(2) conditions (up to
order 5), we find the effective order methodαρ for changing stepsize to be

a32(ρ)= 2w2
1

5ρw2
2

, a31(ρ)= c3(ρ)− a32(ρ),

a42(ρ)= (−1+ ρ)w2
2w3w1w4

4ρ2w3
5

, a43(ρ)= w3
2w3w6

64ρw1w
3
5

,

a41(ρ)= c4(ρ)− a42(ρ)− a43(ρ), a52(ρ)= (1− ρ)w1w2w4

ρw7
,

a53(ρ)= w2
2w8w9

4w1w6w7
, a54(ρ)= 4(−w8)w

3
5w10

w2w3w6w7
,

a51(ρ)= 1− a52(ρ)− a53(ρ)− a54(ρ), b3(ρ)= 25(−1+ ρ)w4
2(−w4)

48ρw1(−w8)w6
,

b4(ρ)= 2w5

3ρw2w3w10w6
, b5(ρ)= w7

24ρ2(−w8)w10
,

b1(ρ)= 1− b3(ρ)− b4(ρ)− b5(ρ),

where

w1=−4+ 5ρ + 39ρ5,

w2= 1+ 39ρ4,

w3= 7− 12ρ + 21ρ5,
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w4=−1− ρ − ρ2+ 11ρ3 − 147ρ4 − 147ρ5 − 147ρ6 − 147ρ7,

w5= 1+ 128ρ3 − 82ρ4 + 273ρ8,

w6= 67− 100ρ + 4096ρ3 − 5014ρ4 − 1607ρ5 + 22035ρ8 − 68406ρ9 + 74529ρ13,

w7=−1− 672ρ2 + 1840ρ3 − 1116ρ4 + 6560ρ6 + 8928ρ7 − 6806ρ8

+ 105456ρ11+ 97188ρ12+ 95823ρ16,

w8=−8+ 5ρ − 117ρ5,

w9=−3+ 60ρ + 13512ρ3 − 36628ρ4 + 39303ρ5 + 524288ρ6

− 973584ρ7 + 206398ρ8 + 1235628ρ9 + 2820168ρ11+ 2255820ρ12

+ 12023490ρ13+ 575757ρ16− 15187536ρ17+ 4695327ρ21,

w10=−7+ 16ρ + 239ρ4 + 119ρ5 + 273ρ9,

c(ρ)=
(

0,
1

5
,

2(1+ 39ρ4)
1+ 199ρ4

,
12− 187ρ4 − 51305ρ8

−4+ 3049ρ4 + 253155ρ8
, 1

)
.

Step 3. Find an error estimate on the solution flow of the effective order
method(A(ρ), b(ρ), c(ρ))5. Let (Ã, b̃, c̃)6 (β̃) be an embedded method for(A(ρ),
b(ρ), c(ρ))5 (αρ). That is,

c̃ =
(

0,
1

5
, c3(ρ), c4(ρ),1,1

)
, b̃T = (b̃1(ρ),0, b̃3(ρ), b̃4(ρ), b̃5(ρ), b̃6(ρ)

)
,

and the order conditions for the embedded method are

s1= b̃Te − 1, s2= b̃Tc̃ − 1

2
,

s3= b̃Tc̃2− 1

3
, s4= b̃Tc̃3−

(
1

4
+
(

1− 1

ρ4

)
β
( ))

.
(5)

Note that the conditions in (5) are derived by expanding the composition rule of
(β(1/ρ)αρ)(t) − (Eβ)(t) on the relative trees. Solving system (5) equal zero, there is
a free parameter̃b6 left. For effective order methods, it is quite difficult to have a ran-
dom choice of̃b6 such that the choice of̃b6 involves the stepsize ratioρ and also control
the stepsize properly.

We choose the condition

s5 = bT(ρ)A3(ρ)c(ρ)− b̃TÃ2c̃ = 0

in order that this error estimation has better performance for a two-step zero approxima-
tion (see [6]). Solves5 = 0 for b̃6, and we have

b̃6 = −(−4+ 5ρ + 39ρ5)u

8ρ3v
,

whereu = −1−672ρ2+1840ρ3−1116ρ4+6560ρ6+8928ρ7−6806ρ8+105456ρ11+
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97188ρ12+ 95823ρ16, v = 456− 1773ρ + 860ρ2 − 49152ρ3 + 61104ρ4 − 4913ρ5 −
42387ρ6 − 784504ρ8 + 1688553ρ9 − 1573823ρ10 − 536523ρ13 + 1151943ρ14 +
3162159ρ18.

The error estimate is̃bT− Ã[6] = (0,0,0,0,−b̃6, b̃6), whereÃ[6] is the sixth row
of Ã. See [11] for details.

The method(A(ρ), b(ρ), c(ρ))5 for stepsize-changing scheme for effective order
involves the stepsize ratioρ. For solving a simple system, this stepsize-changing scheme
seems not to be very efficient because of the extra work for caring out the methodαρ us-
ing for the next step. However, for solving large problems, this extra work does not affect
the result too much. See the result on integrating the DETEST problemC5 (see [15]) in
the experiments.

In order not to carry outαρ every step, we use the effective order methods corre-
sponding to the stepsize ratio

ρ = 0.5, 0.6, 0.65, 0.7, 0.75, 0.85, 1, 1.3, 1.5, 1.65, 1.7, 1.75, 1.8, 1.9, 2.

The above coefficients ofρ are chosen according to our stepsize control. In the exper-
iment, if the stepsize ratioρ for the next step is chosen between any of above interval,
then the stepsize ratio is chosen to be the left-hand-side end point.

3. Enhanced order composition methods

In this section, we propose a way of getting one order higher composition method
by analysing the principal local truncation error over two successive methods. By can-
celling the principal term of two methods integrating one followed by another, we derive
a formula of one order higher composition methods. Especially, we give techniques in
solving the order conditions for a sixth order composition methods where the original
order of each method is five.

In figure 2, the principal local truncation errors for these two methods are

d1=
∑

r(t)=p+1

1

γ (t)

(
α(t)− θ

p+1
1

σ (t)

)
F(t)(y0)h

p+1,

d2=
∑

r(t)=p+1

1

γ (t)

(
α(t)− θ

p+1
2

σ (t)

)
F(t)(y1)h

p+1.

If we let principal local truncation error (d1 + d2) over two steps equal zero, then we
have

0= α(t)− θ
p+1
1

β1(t)
+ β(t)− θ

p+1
2

β1(t)
= α(t)+ β(t)− θ

p+1
1 + θp+1

2

γ (t)
.

By letting θ1 = θ2 = 1, we derive the following theorem.
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Figure 2. The principal local truncation error of a composite method.

Theorem 1. Let α andβ be of orderp over stepsizeh, thenαβ is of orderp + 1 over
stepsize 2h if and only if

α(t)+ β(t) = 2

γ (t)
, for anyt : r(t) = p + 1.

Example 2. We discuss a derivation of a sixth order composite pair. A pair of methods,
(A, b, c)6 and(A, b, c)6 satisfyingD(1) are

0 0 0 0 0 0 0
c2 c2 0 0 0 0 0
c3 a31 a32 0 0 0 0
c4 a41 a42 a43 0 0 0
c5 a51 a52 a53 a54 0 0
1 a61 a62 a63 a64 a65 0

b1 0 0 b4 b5 b6

and

0 0 0 0 0 0 0
c2 c2 0 0 0 0 0
c3 a31 a32 0 0 0 0
c4 a41 a42 a43 0 0 0
c5 a51 a52 a53 a54 0 0
1 a61 a62 a63 a64 a65 0

b1 0 b3 b4 b5 b6.

In order that the order conditions for these methods could be used asC(2) up to order
six (associated with theD(1) conditions), we need the conditions.

0= b2 = b2, (6)

0=
6∑
i=1

bi(1− ci)ai2 =
6∑
i=1

bi
(
1− ci

)
ai2, (7)

0=
6∑

i,j=1

bi(1− ci)aij aj2 =
6∑

i,j=1

bi
(
1− ci

)
aij aj2, (8)

0=
6∑
i=1

bi(1− ci)(ci − c5)ai2 =
6∑
i=1

bi
(
1− ci

)(
ci − c5

)
ai2. (9)
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However, even though we could reduce the calculation work using equations (6)–(9), it
seems not very economic using two extra conditions to eliminate just one order condition
for the composite method. Therefore, we use only (6) and (7) because each of them
could reduce more than two order conditions. Without using (8) and (9), two extra order

conditions on trees and for the composite method should be also taken into account
in addition to the order conditions on

·, , , , , , , , , , .

For the quadrature formulas for these two method up to order 4 for(A, b, c)6, we
have

(b4, b5, b6) =
(

1

2
,

1

3
,

1

4

)c4 c2
4 c3

4

c5 c2
5 c3

5

1 1 1


−1

,

with b1 = 1− b4 − b5 − b6. Note that we chooseb3 = 0 so that the calculation work
could be reduced. And for the quadrature formulas up to order 5 for(A, b, c)6, we have

(
b3, b4, b5, b6

) = (1

2
,

1

3
,

1

4
,

1

5

)
c3 c2

3 c3
3 c4

3

c4 c2
4 c3

4 c4
4

c5 c2
5 c3

5 c4
5

1 1 1 1


−1

,

with b1 = 1− b3− b4− b5− b6.
Let a42 = u, anda42 = v. In order that the simplifying effects ofC(2) conditions

holds for these methods, we have to let

a32= c2
3

2c2
, a31= c3− a32, a32= c2

3

2c2
,

a31= c3− a32, a43= c
2
4 − 2uc2

2c3
, a43= c

2
4− 2vc2

2c3
,

a41= c4 − a43− u, a41= c4− a43− v,
a51= c5 − a52− a53− a54, a51= c5− a52− a53− a54,

a53= c
2
5− 2a52c2− 2a54c4

2c3
, a53= c

2
5 − 2a52c2 − 2a54c4

2c3
.

We solve the following order conditions by linear combinations of order conditions. This
involve the Picard integralE in terms of integral (see [4,11]).

For the order condition on the tree, we can solve the order conditions

bT(1− c)Ac(c − c3) = 1

60
− c3

24
, b

T(
1− c)Ac(c − c3

) = 1

60
− c3

24
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for a54 anda54. Therefore, we have

a54 = 1/60− c3/24

b5(1− c5)c4(c4 − c3)
, a54 = 1/60− c3/24

b5(1− c5)c4(c4− c3)
.

The conditions

a52=−b3(1− c3)a32+ b4(1− c4)u

b5(1− c5)
,

a52=−b3(1− c3)a32+ b4(1− c4)v

b5(1− c5)

enable these methods to be used in place ofC(2) up to order 5.
ForD(1), we have

(a61, a62, a63, a64, a65,0)= b
T(1− c)− b4A[4] − b5A[5]

b6
,

(a61, a62, a63, a64, a65,0)= b
T
(1− c)− b3A[3] − b4A[4] − b5A[5]

b6
,

whereA[i] andA[i] are theith row of matrixA andA, respectively.
For the tree , the order condition

leads to an equivalent order condition.

w1=
(

1

15
− c2

40
− c5

60
+ c2c5

24

)
− (b4(1− c4)(c4− c5)

)
a43
(
c3(c3 − c2)

)
+
(

1

15
− c2

40
− c5

60
+ c2c5

24

)
− (b4

(
1− c4

)(
c4− c5

))
a43
(
c3
(
c3− c2

))− 1

9

= 0.

The order conditionbTc2A2c + bT
c2A

2
c = 1

18 is equivalent to

0= w2= b4(1− c4)(c4− c5)a43a32c2 + b4
(
1− c4

)(
c4− c5

)
a43a32c2

−
∫ 1

0
(1− x2)(x2− c5)

∫ x2

0

∫ x1

0
ξ dξ dx1 dx2

−
∫ 1

0
(1− x2)

(
x2− c5

) ∫ x2

0

∫ x1

0
ξ dξ dx1 dx2,
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= b4(1− c4)(c4− c5)a43a32c2 + b4
(
1− c4

)(
c4− c5

)
a43a32c2

−
(

2

180
− c5

5! −
c5

5!
)
.

We can solvew1 = 0, w2 = 0 foru, v. For the order conditionbTcA3c+bT
cA

3
c = 2

144,
we have

w3 = 1

360
+ (2− 5c3)c3(−c2

4 + 2c2u)

480c4(−c3+ c4)
+ (2− 5c3)c3(−c2

4+ 2c2v)

480c4(−c3+ c4)
= 0.

Solvingw3 = 0, we can findc2.

The order conditionbTc5+ bT
c5 = 1

3 can be reduced to

w4= 1+ c3+ c4 + c5

5
− c3+ c4 + c5+ c3c4+ c4c5+ c3c5

4

+ c3c4+ c4c5+ c3c5 + c3c4c5

3
− c3c4c5

2
+ 1+ c3+ c4+ c5

5

− c3+ c4+ c5+ c3c4+ c4c5+ c3c5

4
+ c3c4+ c4c5+ c3c5+ c3c4c5

3

− c3c4c5

2
− 1

3
.

For the order conditionbTcAc3+ bT
cAc3 = 1

12, the equation

w5 = 1

20
− c3+ c4

60
+ c3c4

24
+ 1

20
− c3+ c4

60
+ c3c4

24
− 1

12
= 0

is a simplified equation.
The order condition for the bushy tree of order 5 for(A, b, c)6 could be simplified

to

w6 = 1

5
− 1+ c4+ c5

4
+ c4+ c5+ c4c5

3
− c4c5

2
.

We can obtainc4, c4, c5 by solvingw4 = w5 = w6 = 0.

For the tree , we have

w7= b5(1− c5)a54a43c3(c3− c2)+ e5
(
1− c5

)
a54a43c3

(
c3− c2

)
−
∫ 1

0
(1− x2)

∫ x2

0

∫ x1

0
ξ(ξ − c2)dξ dx1 dx2

−
∫ 1

0
(1− x2)

∫ x2

0

∫ x1

0
ξ
(
ξ − c2

)
dξ dx1 dx2
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= b5(1− c5)a54a43c3(c3− c2)+ b5
(
1− c5

)
a54a43c3

(
c3− c2

)
−
(

1

180
− c2

120
− c2

120

)
.

Solving forw7 = 0, we can getc5 = 1, or 21
26. The casec5 = 1 is not possible. Therefore,

a sixth order composite method, say(L,m, n)12, is derived.
The following error estimation is a zero approximation of method(L,m, n)12

based on embedded technique [6]. Lete = (1, . . . ,1)T ∈ R13 and

δ̂T = (δ̂1,0, δ̂3, δ̂4, δ̂5, δ̂6, δ̂7,0, δ̂9, δ̂10, δ̂11, δ̂12, δ̂13
)

be the weights of the error estimation for the composition method(L,m, n)12. The
conditions up to 4 and some trees of order 5 are

q1= δ̂Te, q2= δ̂Tc̃, q3= δ̂Tc̃2, q4= δ̂Tc̃3,

q5= δ̂TÃc̃2, q6= δ̂TÃ2c̃, q7= δ̂Tc̃4, q8= δ̂TÃ3c̃,

q9= δ̂TÃ2c̃2, q10= δ̂TÃc̃3.

Solvingq1 = q2 = · · · = q10 = 0, we obtainδ̂1, δ̂3, δ̂4, δ̂5, δ̂6, δ̂7, δ̂9, δ̂10, δ̂11, δ̂12.
We choose the following equation so that this error estimation performs better us-

ing multi-step zero approximation.

q11 = δ̂Tc̃5−
(
mTn6− 27

7

)
.

Solvingq11 = 0 for δ̂13, haveδ̂13 = 75641011
2866090115.

Therefore, therk66 methods are

0 0 0 0 0 0 0
29
60

29
60 0 0 0 0 0

1
4

43
232

15
232 0 0 0 0

27
80

59589
464000

1863
92800

189
1000 0 0 0

21
26

145502
318565 − 5796

63713 −55491
21970

6520
2197 0 0

1 −16535641
4686255

368
551

46994
1995 −6012320

277263
1164410
585333 0

359
3402 0 0 1024000

2099277
57122
154035

19
530;
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and

0 0 0 0 0 0 0
− 1

20 − 1
20 0 0 0 0 0

1
8

9
32 − 5

32 0 0 0 0

29
40 −80011

4000
10643
800

928
125 0 0 0

141
286

10067339323
848020030 −23857153

2924207 −399281873
116968280

131286745
678416024 0 0

1 1380889809
44168015 −394252

19443 −62235743
81855030

540628165
1496449938

718272965410
510521636607 0

− 379
24534 0 8864

26523
1204000
3809817

9199555222
34265840445

6481
66990

with the weights of error estimation̂δT = (δ̂1,0,0, δ̂4, . . . , δ̂13), where

δ̂1=− 9606408397
1392919795890, δ̂4= 30014353164800

1203343411669371, δ̂5=− 3157482722173
63068312980575,

δ̂6=− 5748716836
759513880475, δ̂7=− 114671772676

35158327440705, δ̂8= 0,

δ̂9= 83810240188
551373635105, δ̂10=− 7480895987900

311979395533113,

δ̂11= 420924520242786131
98208986581581701175, δ̂12=− 490229392291

27428482400550, δ̂13= 75641011
2866090115.

Note. The error estimation̂δT is of order four and is derived by the embedded method
of the composition methodrk66.

4. Experiments

In this section, we present some numerical results for the new methods. In order to
investigate how well the scheme in section 2 controls stepsize, we choose the C5 problem
in the DETEST set. We compare this effective order changing stepsize schemeeff5ran,
eff5fix with theEngland, rkf45, andMerson methods in table 1. Note that, in this table,
eff5ran denotes the effective order methodαρ , whereρ is the stepsize ratio for stepsize
changing.eff5fix denotes a set of effective order methods calculated in advance for some
special stepsize ratios shown in example 1. The tolerances are chosen near 10−6 so that
the global error produced by each method are almost the same. Furthermore, the global
errors (GE) are found at the end point, and “step” means the number of steps taken,
“rejstep” means the number of rejections, the total work is measured in the “flops” row.
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Table 1
Results of eff5ran, eff5fix, England, rkf45, and Merson on C5.

eff5ran eff5fix England rkf45 Merson

C5 Step 54 57 156 59 107
Rejstep 0 0 0 0 0

GE 9.3232× 10−8 7.2285× 10−8 7.2905× 10−8 6.7794× 10−8 6.3027× 10−8

Flops 476095 454466 1497520 583223 864221

Figure 3. The Kepler orbit problems for eccentricities 0.3, 0.5, 0.7 and 0.9. effs5o5: *, Merson:♦.
Tolerances: 10−n/2, n = 6–18.

The following experiments are based on solving the Kepler orbit problem

y′1= y3, y1(0)= 1− e,
y′2= y4, y2(0)= 0,

y′3=−
y1

(y2
1 + y2

2)
3/2
, y3(0)= 0,

y′4=−
y2

(y2
1 + y2

2)
3/2
, y4(0)=

(
1+ e
1− e

)1/2

,

with eccentricity 0.3, 0.5, 0.7, 0.9. The integration interval isx ∈ [0,20]. The global
errors are found at the final point.
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Figure 4. The results of the Kepler orbit problems with eccentricities 0.3, 0.5, 0.7 and 0.9, rk66:
◦ DOPRI(5,4):♦. Tolerances: 10−n/2, n = 8–20.

In figure 4, we have found that therk66 pair performs better than the DOPRI(5,4)
pair.

5. Conclusion

Several applications of the idea of “effective order” have shown the potential of
this type of methods. We believe that the changing stepsize scheme for effective order
methods is encouraging and justifies further research of these methods.

The composition of methods with the same order is worth exploring for enhancing
order, minimize the error constant, deriving better error estimation, or other purposes.
There are still several ways to design composition methods. For instance, triple composi-
tion methods, experiments on a pair of composition methods without using one followed
by the another. The enhanced order composition methodrk66 is found to be competitive
amongst explicit Runge–Kutta methods.
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