
Annals of Software Engineering 13, 97–110, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Object-Oriented Design Structures in Web Application
Models

GUSTAVO ROSSI gustavo@sol.info.unlp.edu.ar
LIFIA Facultad de Informática, UNLP, La Plata, Argentina

DANIEL SCHWABE schwabe@inf.puc-rio.br
Departamento de Informática, PUC-Rio, Brazil

Abstract. In this paper, we discuss different object-oriented design structures that should be used in the
process of building Web applications. We base our discussion on the OOHDM approach for defining a Web
application model, in particular, the separation of the navigational model from the conceptual model. We
focus on the systematic application of different design patterns (such as Observer and Decorator) for de-
coupling different aspects of a Web model. We briefly discuss some specific patterns that may appear in
this kind of applications and we introduce additional concepts such as Web frameworks as a conceptual
approach to maximize design reuse in Web applications.

1. Introduction

Engineering Web applications is a complex enterprise. The ubiquity of the Web has
pushed forward a number of new requirements such as building interfaces for mobile de-
vices, integrating Web applications with legacy database and systems, providing friendly
navigable metaphors, etc.

To make matter worse, Internet businesses tend to be different from “conventional”
ones; applications must be built quickly and with zero defects. Evolution happens in
shorter time frames than before. Consequently, while most software engineering precepts
still stand up, we must improve our development practices in order to make them efficient
for this new environment.

It is interesting to notice that while implementation tools and architectures have
evolved quickly during the last four years, software engineering strategies for the Web
are still being developed. Moreover, if we look at Web architectures and we compare
them with what we had some years ago, it is easy to notice that evolution continues at a
good speed. Compare, for example, an implementation using HTML and JavaScript in
the client side with CGI and a database in the server side, with more modern approaches
using XML, J2EE and Servlets. Unbelievably, we already have legacy applications in
the Web.

Considering this last comment, we strongly think that it is important to focus on
using good design practices, primitives and notations in order to cope with changing
implementation settings. Key activities for a Web application software engineer are to



98 ROSSI AND SCHWABE

understand the design decisions that must be made while building these applications and
finding ways to describe and reuse high-level abstractions.

We have been exploring object-oriented design structures techniques in Web ap-
plications using the Object Oriented Hypermedia Design Method (OOHDM) for some
years [Schwabe and Rossi 1998]. OOHDM considers Web applications as navigational
views over an object model [Rossi et al. 1999] and provides some basic constructs for
designing the navigational model (contexts, indexes, etc.) and the user interface model.

In this context we have done research on different aspects of abstraction, reuse
mechanisms and strategies in the development process such as patterns and frameworks
[Rossi et al. 2000a,b; Schwabe et al. 2001a,b]. Our purpose in this paper is didactic, as
we aim to present different object-oriented structures that should be used while building
Web application models, which we present mostly as modeling notation rather than as
implementation constructs.

Some of these structures can be implemented in a straightforward way in most Web
implementation settings, and as a whole, they are useful for obtaining sound, reusable
design models. As a side effect, the discussion in this paper is also interesting as a way
to reason on the development process of a Web software artifact.

The structure of the paper is as follows: we first introduce our view on the de-
velopment process of Web applications, and our approach for building Web models as
views of conceptual models. We next analyze the use of the Observer design pattern
[Gamma et al. 1995] in the navigation model and how composition is handled in this
model. Then we show how to use the Decorator design pattern [Gamma et al. 1995]
both for achieving flexibility in the definition of views for different user profiles and for
defining navigational contexts. We briefly discuss some design structures that appear
while building personalized Web applications, and finally we discuss Web design pat-
terns and frameworks. Concluding remarks are discussed in the end. Though we use
OOHDM as the reference design method, the ideas in this paper can be easily applied
to other modeling approaches. Since the intent of this paper is to reflect on some design
structures rather than introducing a design notation (see [Schwabe and Rossi 1998]), we
will only refer to the OOHDM notation if necessary.

2. Our view on the Web applications development process

Web applications allow users to interact with an implementation of a business model and
eventually modify its state using a Web browser. However, Web applications are differ-
ent from “conventional” applications not only because the interface platform is different
but also because they introduce the concept of navigation, as it is used in hypermedia
[Nielsen 1995], which is an inherent characteristic of the Web itself.

According to this view, Web application models comprise a conceptual, a naviga-
tional model, and an interface model [Rossi et al. 1999]. The conceptual model aims at
capturing the application semantics and functionality using object-oriented primitives.
The idea behind the conceptual model is that it helps to identify core abstractions and
behaviors in the application domain. These may be later implemented using an object-



O-O DESIGN STRUCTURES IN WEB APPLICATION MODELS 99

oriented language and become the basis for the specification of perceivable artifacts,
nodes and links, in the Web application. The conceptual model being object-oriented,
it is obvious that many key design structures in the whole application will be defined as
part of this OO model. In this paper we will stress those structures that are specific to
Web applications and that are not usually found in other kinds of applications.

In a Web application, users interact with nodes and links – more precisely, with
their interfaces. Nodes are information containers; links implement meaningful relation-
ships among nodes. In the OOHDM approach, nodes are defined as views on conceptual
objects, while links represent views on relationships. For each particular user profile, we
build a navigational model as an observation of the conceptual model, as explained in
section 3. The navigational model comprises a navigation schema that shows the nodes
and links structure, and the navigational context schema that contains different sets of
objects intended to be navigated in some order – called contexts in OOHDM, and the
access structures (indexes) that provide navigation paths to reach these objects.

Finally, for each navigational model we build an interface model using the Abstract
Data Views – ADV design approach [Rossi et al. 1995]. Notice that for a particular
user profile we may build different interfaces, as well as for different interface devices,
e.g., a Web browser, a palm computer or a cellular phone, and in this process reusing
the specification may be paramount. ADVs also represent Observers with respect to
navigation objects; for the sake of conciseness we will not further explain the interface
model in this paper.

3. Viewing Nodes as Observers on conceptual objects

3.1. Our approach

Creating specialized applications as views of shared model is not new [Fowler 1993]. In
the OOHDM approach, we conceive a Web application as an opportunistic observation
on a particular domain. In the field of Conference Review Web Applications, for exam-
ple, we may have different user profiles such as “PC Chair”, “PC member”, “Reviewer”;
each of which will have a subjective view on the domain. For example, the PC Chair
will be able to read all reviews, whereas each PC member will access only those reviews
that are authorized by the PC Chair. Different behaviors will be allocated to each one
of these views. Notice that all users will navigate through information contained in the
same conceptual objects, but organized in different ways according to each one’s tasks.

We realize these views by specifying nodes and links according to the specific user
profile and task. Following well-known object-oriented design techniques, we aim at
decoupling the view from the viewed object. We use a variant of the Observer design
pattern to specify corresponding navigational classes, as shown in figure 1.

Each node class in the navigational model is built using a particular conceptual
class as its subject (in the terminology of [Gamma et al. 1995]). However, in our spec-
ification language we allow views (nodes) to reflect attributes “pasted” from different
conceptual classes. For example, for each paper we may have the names of (and links



100 ROSSI AND SCHWABE

Figure 1. Observers in the relationship between conceptual and navigational model.

Figure 2. A paper node with attributes from different objects.

Figure 3. Defining links opportunistically.

to) reviewers that evaluated this paper. This strategy allows us to reduce navigation over-
head by putting attributes of different conceptual objects together in the same node, as
shown in figure 2. Node classes (as in the example in figure 2) may be implemented in
an object-oriented setting as type-objects [Johnson and Woolf 1988], thus eliminating
the need to create multiple classes for each type of observers.

In figure 2, the attribute “Papers” indicates an anchor for a link from a paper to
other papers. Each link class provides the basis for navigating among nodes in an appli-
cation. Again, links may be defined opportunistically, for instance allowing more than
one “conceptual jump” with only one navigational operation. For example, on can pro-
vide links going from one paper to papers evaluated by the same reviewer, as shown in
figure 3 (using a simplified notation). Notice that in the conceptual model there may not
be a relationship with this semantic. The From clause indicates the variable representing
the observed object and it is used to express the definition of variables in a declarative
way. The notation “S.p” indicates the Subject of a Node (in terms of the relationship
Observer–Subject in the Observer Pattern).

A set of node and link classes defines a navigation class schema, and in some
domains we may have many different such schemas for the same conceptual model, as



O-O DESIGN STRUCTURES IN WEB APPLICATION MODELS 101

shown in figure 1. Notice that this situation poses interesting requirements with respect
to reuse and evolution. For example, what happens when many views can share some
definition of nodes and link attributes? We will discuss these aspects in sections 5 and 6.

Nodes also contain anchors for links whose source is the node itself. Anchors are
intermediate objects mediating among nodes and links, and are usually implemented
in the interface as active objects, i.e., those that react to certain interface events. The
behavior of nodes thus allows them to route some messages to their contained anchors,
which in turn activate links. Nodes may also contain additional behaviors that will be
triggered from other active objects, such as submitting a review for a paper. In this case,
the observer plays an interesting role with respect to the observed objects by forwarding
a message to the conceptual object.

3.2. Comparison with similar approaches

A similar use of Observers for building application views can be found in the model-
view-controller architecture. The Model-View-Controller (MVC) metaphor for building
interactive applications has been widely used for building conventional software [Kras-
ner and Pope 1988] and has been recently adapted to the Web domain [Kassem 2000].
We next describe the most important features of the MVC components when used in
Web Applications and compare it with the OOHDM approach.

The MVC provides a clean separation among application, interface and interaction
issues in the design, located respectively in the model, view and controller components.

While the MVC provides a set of structuring principia for building modular inter-
active (in particular Web) applications, it does not completely fulfill the requirements
of Web applications for providing rich hypermedia structures. This happens because it
is based on a purely transactional view of software and it does not take into particular
consideration the navigation aspects that we have argued should be appropriately sup-
ported. Moreover, the MVC has been applied so far as an implementation architecture
more than as a design structuring mechanism.

OOHDM meanwhile uses two layers of observers (the navigational and the inter-
face models). An MVC-based implementation of an OOHDM model could be used for
example when mapping OOHDM designs to the J2EE environment [Kassem 2000]. In
this case, conceptual objects are mapped into the Model component, nodes and inter-
face behaviors are implemented in the Controller module, and interface appearances are
dealt with in the View module. For a more detailed comparison, the reader is referred to
[Jacyntho et al. 2002].

4. The meaning of aggregation in Navigation models

Object-oriented modeling notation contains many different semantics for the concept of
aggregation. UML, for instance, differentiates aggregation from composition in that a
part of a composite object may not be part of another, while aggregated objects may
share parts. In Web applications, it is usual, meanwhile, that nodes are formed out of



102 ROSSI AND SCHWABE

Figure 4. An example of aggregation: nesting of nodes in a home page.

nested parts (that themselves may appear in other nodes), as shown in figure 4. The
Amazon home page, for example, is built out of different modules (New for you, New
Releases, Search modules, Recommendations, etc.).

Notice that the semantics of this kind of nesting is similar to UML aggregation. In
OOHDM, we have incorporated the idea of aggregated nodes to model those nodes that
will act as “glue” for different parts. Figure 5 shows the specification that models the
home page in figure 4.

Each part of an aggregated node may be itself a view on a conceptual object, thus
allowing us to combine the concept of Observers with aggregated nodes. An interesting
example of composition of user-selected parts can be found in www.my.yahoo.com
(and in others my.xx.com sites), as we discuss in section 6.

5. Using Decorators in the navigational model

There are situations in which many users profiles may share all or part of the features of a
particular design construct. For example, in the Conference Paper Reviewing application
we have two specific kinds of users: PC Chair and PC Member; each will access different
nodes (views) of the same object, the paper. In figure 6, we show the definition of Node



O-O DESIGN STRUCTURES IN WEB APPLICATION MODELS 103

Figure 5. Using aggregation in node definition.

Figure 6. Node Paper for PC Chair and PC Member.

Figure 7. Decorators in different user profiles.

paper for both profiles. Notice that part of the attributes (we do not include behaviors) is
shared.

The best solution to this problem from an object-oriented point of view is to use the
idea of Decorators in the definition of both nodes. We define a base Paper class and two
decorators (we call them Extensions) as shown in figure 7. This solution is clearly better
than using inheritance to specialize the paper class, as it does not preclude the definition
of other sub-classes of paper in a broader context, such as Conference Paper and Journal
Paper. This specialization would be impossible without polluting the hierarchy with the
two classes corresponding to users’ profiles.



104 ROSSI AND SCHWABE

Even in simple Web applications, the same node may appear in different contexts
(defined in OOHDM as navigational contexts). For example, a paper may be browsed
while navigating through the papers reviewed by a particular PC Member or while look-
ing at papers on a particular subject. In both cases, the node (paper) will exhibit similar
information: name, author, abstract and provide some anchors to navigate to the full
version.

On the other hand, in each context the node will provide context-specific informa-
tion and anchors; for example, in the PC members context we will find an anchor to
navigate to information about that PC Member, and anchors for the next and previous
paper by the same member. In the Subject Context, we may have anchors to the area’s
chair (if any), and again for next and previous papers in the context; some information
about the area may also be included, such as the topics in the area. Again, we face the
need for expressing some kind of variability that may appear in different occurrences
of the same instance. In OOHDM, we use InContext classes that act as decorators for
nodes, as shown in figure 8. When a node (for example, PC.Chair.Paper) is accessed in a
particular context, such as the set of “Accepted” papers in figure 8, it exhibits additional
information such as the schedule for presentation and anchors for accessing the next and
previous papers in the set. The variable T in the second InContext definition stands for
each member of a family of navigational contexts, one for each possible topic.

Notice that the anchors for traversing the set sequentially can be defined in an
Abstract class for all InContext classes.

6. Design structures for personalized applications

There is a current trend in the Web industry about building Web applications that fit the
needs of each individual to varying degrees. This kind of personalized software may
involve simple features such as those shown before, i.e., different nodes for different
user profiles, or may try to make finer grained personalization, e.g., a different node for
each individual.

We have characterized some design problems involved in the development of cus-
tomized Web applications [Rossi et al. 2001a,b], and identified which design structures
are necessary to model different personalization strategies.

In the context of our design model, it is necessary to include the concept of User
in both the navigational and conceptual models. The conceptual model should support
objects standing for each individual user and storing information about him that may
be useful during the personalization process. Meanwhile, the navigational model will
connect the appropriate user object with its counterpart in the specific navigational ob-

Figure 8. InContext classes acting as decorators in different contexts.



O-O DESIGN STRUCTURES IN WEB APPLICATION MODELS 105

Figure 9. Modeling users in the conceptual model.

Figure 10. Specifying a personalized list of papers to evaluate.

ject. In figures 9 and 10, we show the specification of part of the conceptual model
for the conference reviewing system and the definition of the link that connects the re-
viewer node to the papers he will evaluate. Paper assignment may be done manually by
the PC Chair or using some algorithm that matches the person’s interests with existing
papers.

Notice that in this case personalization behavior is not provided separately from
the domain model, i.e., there might not be specific personalization algorithms.

In figure 10, we bind the reviewer node to its counterpart in the conceptual model
using the S.r expression.

It is interesting to notice that although personalization has received a lot of attention
in the Web community, the need to use well-known object-oriented design structures for
building this kind of software is not yet recognized, even though the same problems have
already been faced in different circumstances.



106 ROSSI AND SCHWABE

Figure 11. Using Strategy to deal with different algorithms.

Figure 12. Using the Adapter design pattern for interfacing with third party software.

As an example, suppose that we want to use different algorithms to assign papers
to reviewers, and that we want to change those algorithms for different conferences. In
figure 11, we show how to use the Strategy design pattern [Gamma et al. 1995] to solve
this problem elegantly. This solution permits decoupling the assignment algorithm from
class Person thus allowing us to dynamically change the algorithm or even to assign
different algorithms to different Persons.

A different problem arises when Web application designers use third-party per-
sonalization services (as those provided, for example, by www.netperception.
com). Other design patterns such as the Adapter [Gamma et al. 1995] can be used
to make different interfaces compatible (see figure 12).

As a last example, suppose that the same person may have different roles in the
reviewing system (for example, PC member and Reviewer). Although the navigational
appearance of the information object will not change, there is a clear need to separate
the person from its role in the system, so that he doesn’t have to enter information about
him twice. He should also be able to switch roles in a reasonable way (from the point of
view of consistency and design). In figure 13, we show how to apply the Roles design
pattern [Baumer et al. 2000] to this situation.



O-O DESIGN STRUCTURES IN WEB APPLICATION MODELS 107

Figure 13. Decoupling roles from individuals.

7. One step further: From application models to frameworks

When many different Web applications must be constructed in the same domain, we can
think about building an application framework in that domain. Object-oriented applica-
tion frameworks are the state-of-the art solution for building high quality applications in
a particular domain, by systematically reusing an abstract design for that domain [Fayad
et al. 1999]. An object-oriented application framework is a reusable design built from
a set of abstract and concrete classes, and a model of object collaborations. A frame-
work provides a set of classes that, when instantiated, work together to accomplish cer-
tain tasks in the intended domain. An application framework is thus the skeleton of
a set of applications that can be customized by an application developer. Application
frameworks provide “templates” for supporting commonalties in the domain, and for ac-
commodating individual variations. These “templates” usually have the form of abstract
classes that must be sub-classified with concrete ones, or are filled with “hook” methods
that must be implemented by the application’s designer [Pree 1994].

It is evident that we can find many different examples in which frameworks may be
useful in the Web domain, such as frameworks for electronic stores. In this case, the con-
ceptual model may contain abstract classes for “Products” that will be classified accord-
ing to each application; it will contain different classes and hook methods for different
payment mechanisms, and so on. However, what makes Web applications different from
other applications is that we have another axis of variability related to the navigational
model. Variability in the navigational model can be achieved in different ways:

• By building completely new applications from the same conceptual model (e.g.,
defining a new user profile). In the conference review domain, we can define a new
profile: General Chair, which may have different access restrictions compared to the
PC chair.

• By defining a generic navigational schema (that allows adding new Node or Link
classes and refining the definition of attributes). Notice that usually the addition of a
new Node class is made each time we define a new class in the conceptual model.



108 ROSSI AND SCHWABE

• By defining generic contexts, i.e., defining abstract access structures and navigational
contexts. In our example, one could allow several alternative ways to group papers
into navigation contexts – by recommendation type, by review status, by referee pref-
erence, by author, etc. Each application (i.e., framework instantiation) will typically
offer only a few of these.

A Web design framework is thus the combination of a generic conceptual schema
and generic navigational and context schemas. It can be readily seen that with this com-
bination we get a high degree of genericity in which we can change the underlying appli-
cation model, add or refine profiles or tasks, and define different navigation topologies
for specific applications. A particular application is then obtained first by exercising the
hot spots in each schema, obtaining a concrete design, and then by mapping this design
into an implementation environment.

We have been designing and implementing Web frameworks and studying design
abstractions needed to support this type of generic designs. Most abstraction and reuse
mechanisms simply mimic those existing in object-oriented framework technology, such
as building abstract classes and template methods. However, we found a challenging
concept when generalizing the idea of navigational contexts. While navigational con-
texts are sets whose objects fulfill some property, such as papers about a specific topic,
or papers that have been accepted, generic navigation contexts add a level of variability
in the specification. For example, we may say that our framework supports navigating
through Papers by property and specify it leaving space for specific reviewing applica-
tions to implement the variability according to the specific need of the application. In
other words, the actual paper property(ies) is defined when instantiating the framework.
For example, in one application one may provide contexts for “Papers by rank”, “Papers
in alphabetical order” and “Papers by recommendation”. Another example is “Paper by
Relation to Reviewer”, where the defining property is left open, but restricted to being
based on a relation between Paper and Person. Examples of instantiations of this generic
context would be “Paper Authored-by Person” and “Papers in Conflict-with Person” (see
figure 9).

Although we have defined a notation for generic navigational contexts, it is clear
that their very nature goes beyond of basic object-oriented concepts, and they have to
be defined by combining several classes that interact to provide the expected function-
ality. For the sake of conciseness, we do not explain these issues further in the paper.
A more detailed explanation of genericity in Web application frameworks can be found
in [Schwabe et al. 2001a].

8. Concluding remarks

In this paper, we have discussed several object-oriented design constructs that are usu-
ally found in Web application models. We emphasized modeling instead of application
constructs, since we believe that current implementation architectures for the Web are



O-O DESIGN STRUCTURES IN WEB APPLICATION MODELS 109

still evolving and it is paramount to gain a complete understanding on the kind of ab-
stractions we need to specify and design complex Web artifacts.

We have based our discussion on the OOHDM design framework; in particular, we
have shown how to model and specify Web nodes and links as observers of conceptual
objects and relationships. We have also shown how to use decorators both to build nodes
extensions and to manage navigational contexts. We then addressed the construction of
personalized applications and showed which design structures and patterns can be ap-
plied to model these kinds of situations. We finally discussed another level of genericity
found while building application frameworks for a specific domain.

While object-oriented ideas are increasingly being used in the Web, they are gen-
erally relegated to the implementation phase of the development process. Modern ar-
chitectures supporting components and objects still have to mature in order to be used
effectively. Meanwhile, designers building complex applications face constant changes
in both platforms and tools. We think that the investment in understanding design and
modeling mechanisms is essential to cope with the changing nature of the Web environ-
ment.

References

Baumer, D., D. Riehle, W. Sibersky, and M. Wulf (2000), “Role Object,” In Pattern Languages of Program
Design 4, N. Harrison, B. Foote, and H. Rohnert, Eds., Addison-Wesley, Reading, MA, pp. 15–32.

Fayad, M., D. Schmidt, and R. Johnson, Eds. (1999), Building Application Frameworks, Wiley, New York.
Fowler, M. (1993), “Application Views: Another Technique in the Analysis and Design Armory,” Journal

of Object Oriented Programming 7, 1, 59–66.
Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995), Design Patterns. Elements of Reusable Object-

Oriented Software, Addison-Wesley, Reading, MA.
Jacyntho, M.D., D. Schwabe, and G. Rossi (2002), “A Software Architecture for Structuring Complex Web

Applications,” Technical Report, MCC-02/02, Department of Informatics, PUC-Rio, Rio de Janeiro,
Brazil.

Johnson, R. and B. Foote (1988), “Designing Reusable Classes,” Journal of Object Oriented Program-
ming 1, 2, 22–35.

Johnson, R. and B. Woolf (1988), “Type-Object,” In Pattern Languages of Program Design 3, R. Martin,
D. Riehle, and F. Buschmann, Eds., Addison-Wesley, Reading, MA, 1998.

Kassem, N. and the Enterprise Team (2000), “Design Enterprise Applications with the Java 2
Platform, Enterprise Edition,” available at http://java.sun.com/blueprints/ guide-
lines/designing_enterprise_applications/apmTOC.html.

Krasner, G. and S.A. Pope (1988), “Cookbook for Using Model-View-Controller Interface Paradigm in
Smalltalk 80,” Journal of Object Oriented Programming 1, 8, 26–49.

Nielsen, J. (1995), Multimedia and Hypertext. The Internet and Beyond, Academic Press, Boston.
Pree, W. (1994), Design Patterns for Object-Oriented Software, Addison-Wesley, Reading, MA.
Rational (1997), UML Document Set. Version 1.013 January 1997, Rational, available at http://

www.rational.com/uml/references/index.html.
Rossi, G., D. Schwabe, C.J.P. de Lucena, and D.D. Cowan (1995), “An Object-Oriented Model for Design-

ing the Human–Computer Interface of Hypermedia Applications,” In Proceedings of the International
Workshop on Hypermedia Design (IWHD’95), Springer Workshops in Computing Series, available at
ftp://ftp.inf.puc-rio.br/pub/docs/techreports/ 95_07_rossi.ps.gz.



110 ROSSI AND SCHWABE

Rossi, G., D. Schwabe, and F. Lyardet (1999), “Web Application Models are More than Conceptual Mod-
els,” In Proceedings of the 1st International Workshop on Conceptual Modeling and the WWW, Paris,
France, November 1999, Lecture Notes in Computer Science, Vol. 1727, Springer, Berlin, pp. 239–253.

Rossi, G., F. Lyardet, and D. Schwabe (2000a), “Patterns for Designing Navigable Spaces,” In Pattern Lan-
guages of Program Design 4, N. Harrison, B. Foote, and H. Rohnert, Eds., Addison-Wesley, Reading,
MA.

Rossi, G., D. Schwabe, and F. Lyardet (2000b), “Patterns for E-commerce Applications,” In Proceedings of
EuroPLoP 2000, available at http://www.coldewey.com/europlop2000.

Rossi, G., D. Schwabe, and R. Guimarães (2001a), “Designing Personalized Web Applications,” In Pro-
ceedings of the 10th International Conference on the WWW, ACM Press, New York, pp. 274–284.

Rossi, G., D. Schwabe, J. Danculovic, and L. Miaton (2001b), “Patterns for Personalized Web Appli-
cations,” In Proceedings of EuroPLoP 2001, available at http://hillside.net/patterns/
EuroPLoP2001/papers.html.

Schwabe, D. and G. Rossi (1998), “An Object-Oriented Approach to Web-Based Application Design,”
Theory and Practice of Object Systems (TAPOS) 4, 4, 207–225, Special Issue on the Internet.

Schwabe, D., G. Rossi, L. Esmeraldo, and F. Lyardet (2001a), “Web Design Frameworks: An Approach
to Improve Reuse in Web Applications,” In Proceedings of the 2nd International Workshop on Web
Engineering WWW9 Conference, S. Murugesan and Y. Deshpande, Eds., Lecture Notes in Computer
Science, Vol. 2016, Springer, pp. 335–352.

Schwabe, D., L. Esmeraldo, G. Rossi, and F. Lyardet (2001b), “Engineering Web Applications for Reuse,”
IEEE Multimedia 8, 1, 20–31.


