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Abstract. Communication with XML often involves pre-agreed document types. In this paper, we propose
an offline parser generation approach to enhance online processing performance for documents conforming
to a given DTD. Our examination of DTDs and the languages they define demonstrates the existence of
ambiguities. We present an algorithm that maps DTDs to deterministic context-free grammars defining the
same languages. We prove the grammars to be LL(1) and LALR(1), making them suitable for standard
parser generators. Our experiments show the superior performance of generated optimized parsers. Our
results generalize from DTDs to XML schema specifications with certain restrictions, most notably the
absence of namespaces, which exceed the scope of context-free grammars.

1. Introduction

The Extensible Markup Language (XML) [W3C 1998] provides for logical markup:
documents are tagged according to their content structure, not their visual appearance
in specific presentation media. Sets of documents can be specified with Document Type
Definitions (DTDs). A given document can be validated against a given DTD.

One area of application for XML is web serving. Content originating with diverse
sources such as static documents or database queries is represented in XML. These doc-
uments are mapped to presentation formats like HTML through Extensible Stylesheet
Language Transformation (XSLT) scripts or cascades thereof. Although certain gener-
alizations are possible, a given script usually works only with documents conforming to
a specific DTD. Parsing the document may account for half the processing time or more,
so performance matters when serving dynamic documents.

Over the past years, XML also became popular for general-purpose platform-
independent data exchange. When connecting software components, XML process-
ing layers compete with middleware architectures such as Corba [OMG 2002] and
(D)COM [Microsoft 2002]. In this arena, performance is crucial, and the DTDs are
always available at compile time.

Most available XML parsers are generic: they read arbitrary well-formed XML,
analyze the required DTD and validate the document against it. Along with many others,
the parsers provided by the Apache project [Apache 2002], James Clark [Clark 2000]
and IBM [IBM AlphaWorks 2001] fall into this category. As generic parsers cannot use
DTDs to optimize parsing, faster solutions are possible.

We take the approach of specific parsing, where a parser applies to documents
conforming to a given DTD only. DTDs may change rapidly in software evolution, so
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manual implementation of specific parsers is a non-option. Compiler construction prac-
tice shows deterministic parsers to be manifestly faster than their ambiguous equivalents.
Thus, we focus on the automatic generation of deterministic parsers.

At first glance, DTDs are ill-suited to this technique: while the XML specifica-
tion [W3C 1998] states deterministic ones as desirable in appendix E, the entire ap-
pendix is non-normative. Many real-world DTDs, including some published in W3C
documents, are, in fact, ambiguous.

For regular languages, the existence of deterministic grammars and correspond-
ing automata is a well-known result from formal language theory. Due to its matching
opening and closing tags, which correspond to nested parentheses in programming lan-
guages, XML is not regular. It belongs to the larger class of context-free languages. In
general, the question if there is an equivalent deterministic grammar for a given context
free grammar is not decidable.

This paper proves the existence of equivalent deterministic grammars for DTDs,
i.e., for a subset of the context-free languages including XML. The proof is construc-
tive and defines a mapping algorithm. The generated grammars are both LL(1) and
LALR(1). Thus, standard parser generators for LL(k) grammars or subsets thereof, such
as ell [Grosch 1989; Vielsack 1988] and javacc [WebGain 2002] can be employed to
generate efficient parsers, as well as tools for LALR(1) grammars like yacc [Johnson
1975], bison [Donelly and Stallmann 1988] and lalr [Grosch 1989; Vielsack 1988]. Our
experiments show them to outperform generic parsers by an order of magnitude.

The body of this paper is organized as follows: section 2 defines notions and cites
results basic to our approach. Section 3 demonstrates DTD ambiguities and shows the
transformation of a DTD into a context-free grammar. The generated grammars are
proven to be LL(1) and LALR(1). Section 4 generalizes these results to some extensions
of XML, that is, XML Schema specifications and namespaces. Section 5 compares the
performance of parsers generated with our techniques to generic ones. We examine
related work in section 6. Section 7 concludes the paper with directions for future work.
The appendix contains additional definitions and a larger example.

2. Basic definitions and results

The following definitions and theorems can be found in every compiler construction or
formal languages textbook. They are included here to introduce notational conventions.
For details, we refer to [Apache 2002; W3C 2001]. We assume the reader is familiar with
the notions of substitution and rewrite systems. Definitions of the notions of a formal
language, a grammar, deterministic and ambiguous grammar, regular expressions and
languages, and context-free grammars and languages can be found in the appendix A.

The next two theorems state that it is trivial to find a deterministic grammar for a
regular language, but hard for a context-free language.

Theorem 1 (Deterministic regular grammars). There is an algorithm to find a determin-
istic grammar for every regular language.
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Theorem 2 (Deterministic context-free grammars). It is not decidable whether a
context-free language can be defined by a deterministic grammar.

Unfortunately, XML is not regular. To establish our results, we need the SLL(1) and
SLR(1) grammar classes, which, in turn, require a basic understanding of deterministic
LL and LR parsing strategies.

Both variants operate on an input stream of terminal symbols and an analysis stack
containing terminal and non-terminal symbols. Deterministic LL parsers operate top-
down. They derive words from the starting symbol Z, which is initially on the analysis
stack. In each step, an LL parser distinguishes three cases:

(1) If the top of the analysis stack is a terminal symbol t and the current input symbol
is t , the top of the analysis stack is removed and the next input symbol is read.

(2) If the top of the analysis stack is a terminal symbol t and the current input symbol
is t ′ �= t , parsing stops with an error (non-deterministic parsers back-track in this
case).

(3) If the top of the analysis stack is a non-terminal symbol N , it is replaced by the
right-hand side of a production with left-hand side N .

Analysis terminates successfully iff both input stream and analysis stack are empty.
Deterministic LR parsers work bottom-up. They start with an empty analysis stack

and reduce the input word stepwise to the starting symbol Z. In each step, LR parsers
either

(I) shift terminal symbols onto the stack; or

(II) reduce the topmost symbols on the stack to a terminal N if there is a production
N → s whose right-hand side equals the topmost symbols reversed.

Analysis terminates successfully iff the input stream is empty and the analysis stack
contains only Z.

For both types of parser, choosing the correct action is critical. LL parsers must
load the correct right-hand side of a production in step (3) in the presence of multiple
alternatives. LR parsers must decide whether to shift or to reduce if reduction is possi-
ble (shift-reduce conflict) and whether to reduce to N or N ′ if multiple alternatives are
applicable (reduce-reduce conflict).

It is desirable to define a language with a grammar that allows the efficient resolu-
tion of these conflicts, to allow efficient parsing without backtracking. Two examples of
such grammar classes are SLL(k) and LR(0), whose original definitions can be found in
[Rosenkrantz and Stearns 1969] and [DeRemer 1971].

Definition 1 (SLL(k) grammar). Let G be a context-free grammar. G is SLL(k) iff the
next k input symbols are always sufficient for an LL parser to choose the correct right-
hand side to load in step (3).
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Definition 2 (LR(0) grammar). LetG be a context-free grammar. G is LR(0) iff regular
matches on the analysis stack state are always sufficient for an LR parser to correctly
resolve all shift-reduce and reduce-reduce conflicts.

To decide whether a grammar is SLL(k), we define the k-head of a word w, de-
noted by k : w, the set of all k-heads of terminals of a word FIRSTk(w) and the
set of all k-heads of terminals following a word FOLLOWk(w). Given a grammar
G = (T ,N, P,Z) with terminals T , non-terminals N , productions P and starting sym-
bol Z.

Definition 3 (The k-head and first and follow sets). Let # be a symbol, # �∈ T , which
marks the end of a word. Let w ∈ (T ∪ N)∗, let ⇒∗ denote a derivation of arbitrary
length. The k-head of a word w is defined as

k : w= a, iff w = ay ∧ |a| = k and

k : w=w#, iff |w| < k.
The first and follow sets, respectively, are defined by:

FIRSTk(w)=
{
r | ∃v ∈ T ∗ with w ⇒∗ v ∧ r = k : v

}
,

FOLLOWk(w)=
{
r | ∃v ∈ (T ∪N)∗ with Z ⇒∗ uwv ∧ r ∈ FIRSTk(v)

}
.

Remark. We omit the subscript k for k = 1.

Definition 4 (SLR(k) grammar). Let G be a context-free grammar. G is SLR(k) iff

• for all pairs of productions Nx → x and Ny → x causing a reduce-reduce conflict in
an LR(0) parser, FOLLOWk(Nx)∩FOLLOWk(Ny) = ∅, i.e., the next k input symbols
determine whether to reduce to Nx or to Ny .

• for all pairs of productions Nx → x and Ny → xy causing a shift-reduce conflict in
an LR(0) parser, FOLLOWk(Nx) ∩ FIRSTk(yFOLLOWk(Ny)) = ∅, i.e., the next k
input symbols determine whether to reduce to Nx or to shift the symbols belonging
to y.

Remark. SLR(k) grammars allow to resolve the remaining conflicts of an LR(0) parser
using the next k input symbols.

Using the first and follow sets, the question whether a given grammar is SLL(k)
can be decided with the following theorems.

Theorem 3 (SLL(k) property). A grammar is SLL(k) iff for all pairs of productions
N → x and N → y with x �= y:

FIRSTk
(
xFOLLOWk(N)

) ∩ FIRSTk
(
yFOLLOWk(N)

) = ∅.
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From a practical viewpoint, narrow definitions of language classes are less impor-
tant than the potential to apply existing tools. Although SLL(k) and SLR(1) are stricter
language classes, the applicability of LL(k) and LALR(1) parser generators is the dom-
inant concern. The exact definition of look-ahead-LR(1) – LALR(1) – grammars and
parser generation algorithms are not essential to this paper, but covered in [DeRemer
1971] or [Waite and Goos 1985]. The following theorems deliver the results of interest.

Theorem 4 (SLL(k) and LL(k) grammars).

SLL(k) ⊂ LL(k), SLL(1) = LL(1).

Theorem 5 (LR(k), SLR(k) and LALR(k) grammars).

LR(0) ⊂ SLR(k) ⊂ LALR(k) ⊂ LR(k).

3. DTDs and grammars

This section briefly examines well-formed XML and DTDs with their components. Ex-
amples for ambiguities in DTDs are given. Algorithms mapping individual DTD com-
ponents and entire DTDs to equivalent grammars are described.

3.1. XML and DTDs

XML documents consist of elements, attributes and text. Text is a character sequence
in the specified coding system, which must not contain the < character used in the rep-
resentation of elements. An attribute is a triple of attribute name, = symbol and quoted
attribute value (e.g., a="foo"), separated by arbitrary whitespace. We omit whitespace
in our presentation. Elements are defined recursively. They consist of the following
sequence:

(1) A start tag containing the element name (e.g., <x).

(2) A sequence of attributes, followed by the > symbol (e.g., a="foo" b="bar">).

(3) A sequence of elements or text.

(4) An end tag repeating the element name (e.g., </x>).

The sequences in (2) must not contain multiple occurrences of the same attribute
name. In general, (3) may also contain comments, entities, processing instructions and
unparsed data sections. We ignore them to simplify this presentation, as they are simple
regular tokens. For empty elements the sequence in (3) has no entries. They can be
represented using a short-cut that closes the element after the attribute definitions with
‘/>’ (e.g., <x a="foo" b="bar" />).

DTDs define the structure of sets of documents. In this paper, we assume that
all implicit and external components are inlined. Then, DTDs contain two kinds of
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definition components, element definitions and attribute definitions. Element definitions
have the form:

<!ELEMENT x (content_model_x)>

where x is the name of the element to be defined, and content_model_x is either
a regular expression over element names and #PCDATA or #EMPTY, which denotes a
regular expression accepting only the empty string. #PCDATA is a placeholder for pos-
sibly empty text. Regular expressions may employ the well-known operators iteration
(* and +), alternative choice (’|’), option (?) and sequence (,), as well as grouping
parentheses. Attribute definitions take the form:

<!ATTRIBUTE x a t o>

where x is the element name for which attribute a is defined as type t, with lower
and upper bounds l, u ∈ {0, 1} on its occurrence given in o. Types include character
data, enumerations and global identifiers and references, i.e., ID and IDREF. As global
references are non-context-free, our approach cannot accelerate their processing. Their
implementation with standard techniques is orthogonal to our approach. Without loss
of generality, we ignore that DTDs also allow multiple attributes of an element to be
specified in a single definition. In XML documents conforming to the DTD, an element’s
attributes may appear in any order.

3.2. Ambiguous DTDs

Although a DTD defines the structure of documents concisely, the derivation of an XML
document conforming to this DTD may be ambiguous. We give three examples of am-
biguities in content models.

Example 1 (An ambiguous content model). According to the definition,

<!ELEMENT a (#PCDATA | b)*>

an a may contain an arbitrary sequence of #PCDATA and b children. #PCDATA is, in
turn, a possibly empty string. Therefore, this XML fragment cannot be parsed determin-
istically:

<a></a>

It may be interpreted as an empty iteration of (#PCDATA | b)* or as an empty
#PCDATA element.

Example 2 (An ambiguous content model for complex types). This is an excerpt of a
DTD in an XML Schema recommendation [W3C 2001]. The ambiguity in the defini-
tion



FOUNDATIONS OF FAST COMMUNICATION VIA XML 363

<!ELEMENT %complexType; ((%annotation;)?,
((%facet;)*|

((%element;| %mgs; | %group; | %any;)*,
(%attribute;| %attributeGroup;)*,
(%anyAttribute;)?

)
)

)>

is due to possibly empty iterations composed by alternative and sequence operators.
A simplification plainly shows the problem:

<!ELEMENT a (x?, (y* | z*))>

The empty element

<a></a>

may be interpreted as the missing x and an empty iteration of y or, alternatively, missing
x and an empty iteration of z. This content model can be transformed into a determin-
istic definition:

<!ELEMENT a ((x,(y+|z+)?) | y+ | z+)?>

Actually, there are more compact regular expressions for the above language. We used
the one directly derived from the deterministic minimum acceptor constructed from the
ambiguous expression, cf. appendix B.

Apparently, deterministic definitions tend to become larger than ambiguous ones.
As ambiguous DTDs are permitted and the human reader has no problem to understand
the structures they define, ambiguous DTDs will occur in practice.

For practical document processing, a tree representation must offer highly selective
access operations. Informally, selectivity is the fraction of nodes returned by an oper-
ation that we are actually interested in. For low selectivity, the burden of eliminating
undesired results resides with the user. The more selective an interface is, the smaller is
this extra effort. Standard access operations are based on position and name providing a
quite low selectivity at content model level. This could be increased by giving explicit
access to the parse tree. Then, an ambiguous content model not only affects the parsing
speed but also its very result.

Example 3. The following DTD fragment is ambiguous:

<!ELEMENT a (x | y | (x, y))*>

Consider the document:

<a><x/><y/><x/><y/><x/><y/>...</a>

Each pair <x/><y/> can either be interpreted as an iteration over the first two alter-
natives or as the third alternative. A highly selective request like: “give me the first
occurrence of the third alternative” is impossible.
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In terms of efficiency, the situation looks bleaker still: even deterministic content
models cannot guarantee that documents can be parsed without look-ahead or back-
tracking:

Example 4. The following DTD fragment is deterministic:

<!ELEMENT a ((x|y)*, x, (x|y))>

Try parsing this document fragment:

<a><x/><x/><x/><x/><x/><x/>...</a>

Although the parse tree for this fragment (and all other legal ones) is unique, the deriva-
tion cannot be computed just by stepping through the content model and checking for
the right input. Without a look-ahead for the input </a>, it is not decidable whether
an <x/> reduces to the term (x|y)* or to term x in the content model. This content
model has no equivalent one without this negative property and all content models of the
form

<!ELEMENT a ((x|y)*, x, (x|y)(x|y)(x|y)(x|y)...)>

have the same problem.

The example shows: without leaving the world of regular expressions, we cannot
avoid a look-ahead or back-tracing and we cannot limit the look-ahead. Moreover, indi-
vidual deterministic content models do not imply a deterministic overall grammar. We
will show in the next subsections that for DTDs, they do.

3.3. Grammars for DTD components

Ambiguities in DTDs are not a property of the languages they define. There is a deter-
ministic context-free language for each DTD and start element defining the same lan-
guage, as the following two subsections will show. We start with

Lemma 1 (Content models and the SLL(1) property). For every content model, there is
an SLL(1) grammar defining the same language.

Proof. We define an algorithm mapping a content model to a context-free gram-
mar. We show the grammar to define the same language and prove membership in
SLL(1).

Let S be the set of all element names in a DTD and S ′ = S ∪ {string}, where
string must not contain <. Replace each occurrence of #PCDATA by string? in the
element definition expressions. Obviously, each of the modified expressions is a reg-
ular expression over S ′ per definition 8 in the appendix. We construct a minimal de-
terministic acceptor from the regular expression with standard formal language tech-
niques:
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(1) Construct an ambiguous acceptor from the regular expression.

(2) Make the ambiguous acceptor deterministic using the standard power set construc-
tion.

(3) Minimize the deterministic acceptor using the standard equivalence class construc-
tion.

Then, we generate the grammar directly from this acceptor:

(1) For each state t of the minimal deterministic acceptor, we generate a unique non-
terminal N(t).

(2) If t is an accepting state, we generate the production N(t) → ε.

(3) If there is a transition from t to t ′ accepting symbol s ∈ S ′, we generate the produc-
tion N(t) → sN(t ′).

All above transformations are standard, see [Waite and Goos 1985], and the con-
structed grammar is proven to define the same language as the original regular expres-
sion. It remains to show the resulting grammar to be SLL(1). We use theorem 3. Suppose
there are two productions N(t) → x and N(t) → y with x �= y. Let N(t) corresponds
to state t . According to our construction, we distinguish two cases:

(1) x = aN(t ′) and y = bN(t ′′), with a, b ∈ S ′ and non-terminals N(t ′) and N(t ′′). As
the acceptor is deterministic, it follows a �= b and

FIRST
(
xFOLLOW

(
N(t)

)) ∩ FIRST
(
yFOLLOW

(
N(t)

)) = {a} ∩ {b} = ∅;
(2) x = aN(t ′) and y = ε. By construction, the follow set of each non-terminal is the

virtual end-of-sentence marker ‘#’. Thus

FIRST
(
xFOLLOW

(
N(t)

)) ∩ FIRST
(
yFOLLOW

(
N(t)

)) = {a} ∩ {#} = ∅. �

Using this result, a corresponding lemma for attribute definitions can be estab-
lished.

Lemma 2 (Attribute definitions and the SLL(1) property). For every set of attribute de-
finitions of an element, there is an SLL(1) grammar defining the same language.

Proof. Let Re be the finite set of attribute definitions for element e in the DTD. In
conforming XML documents, instances of e may contain at most one instance of every
attribute in Re, so every legal attribute instance sequence is finite. As there are only a
finite number of permutations, the set of legal attribute instance sequences is also finite.
Individual attribute instances are regular as they consist of three regular parts: the regular
attribute name, the = character and the regular attribute value string.

Finite sets of finite sequences of regular components are regular, so we obtain
an SLL(1) grammar by applying the algorithm in lemma 1 to an appropriate regular
expression. �
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Note that not all regular grammars are SLL(1). The regular productions S → aA

and S → aB, e.g., have the same first set. The construction from the deterministic
regular acceptor guarantees that such ambiguities do not occur.

The generated grammars capture all aspects of attribute occurrences, but due to
their exponential size, they are mostly theoretical in nature. Practical implementations
are advised to use the Kleene closure of Re instead and limit occurrences through non-
grammatical means. However, these results pave the way for the synthesis of grammars
for DTD languages in the following section. According to the transformations defined
above, we obtain deterministic grammars for content models and attributes. Their pro-
ductions have the form N → ε and N ′ → sN ′′, respectively, where s ∈ S ′ are terminal
symbols and N , N ′ and N ′′ are non-terminal symbols.

Lemma 3 (Content models, attribute definitions and the SLR(1) property). Every con-
tent model as well as every set of attribute definitions of an element has a corresponding
SLR(1) grammar defining the same language.

Proof. Since the content model as well as the attribute definitions can be transformed
into a grammar of the above form, we can prove the lemma by showing that deterministic
grammars of this form are SLR(1) in general. We sketch an LR(0) parsing algorithm,
which is an even stronger restriction.

First, we shift the entire word into the analysis stack. Additionally, we perform the
state transitions of the deterministic acceptor the grammar is generated from (according
to the proof of lemma 1). If this does not lead to a final state, the sentence does not
belong to the language.

(1) Without loss of generality, let t be the final state of the acceptor. We reduce with
production N(t) → ε.

(2) Perform (3) until the start symbol is the only symbol of the analysis stack.

(3) Without loss of generality, let wsN(t), w ∈ T ∗, s ∈ T and N(t) ∈ N , be the
content of the analysis stack. Then, there must be a production N(t ′) → sN(t) ∈ P .
Furthermore, accepting the word w with the deterministic acceptor ends in the state
t ′. We reduce with this production.

As no look-ahead is performed, the parser is LR(0) and thus SLR(1). �

Remark. It is known that every regular language allows for LR(0) parsing. We included
a constructive proof to prepare our main results in the next section as a generalization of
this algorithm.

3.4. Grammars for entire DTDs

A DTDD and a root element Z together define a language LD,Z. This subsection defines
algorithms mapping a DTDD and a root element Z to a grammarG with L(G) = LD,Z.
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Furthermore, we prove that G is both, LL(1) and LALR(1). Due to theorem 4 and the-
orem 5, it is sufficient to show that G is SLL(1) and SLR(1), respectively. Proceeding
from the grammars for DTD components derived in the previous section, we are now
ready to generate useful grammars for a language LD,Z defined by a DTDD and a start-
ing element Z. In the following, we denote starting and closing tags of an element with
name “element” by element[ and element], respectively: element[ = “<element” and
element] = “</element>”.

Lemma 4 (Context-free grammars and DTDs). There is a context-free grammar for
every pair of DTDD and starting element Z defining the same language L(G) = LD,Z.

Proof. We give an algorithm to construct a such a context-free grammar G =
(T ,N, P, S) with L(G) = LD,Z .

Let T be a set of terminal symbols, including string, quotes, = , > , and /> .
Additionally, T contains pairs of symbols element[ and element], for every element name
“element” in the DTD, and a symbol for every attribute name “attribute” in the
DTD. They are assumed to originate with a standard longest-match regular scanner.

Let C = {Cx,Cy, . . .} be the set of grammar productions for the content models
of elements named “x”, “y”, . . . resulting from the construction from lemma 1. Let
A = {Ax,Ay, . . .} be the corresponding set of grammar productions for attributes of
elements named “x”, “y”, . . . from lemma 2. Without loss of generality, we assume all
non-terminals of productions in C and A to be disjoint; the sets NC and NA denote the
union of the element and the attribute grammars, respectively. Let NE = {Nx,Ny, . . .}
and BE = {Bx,By, . . .} be sets of non-terminal symbols, pairwise disjoint and disjoint
form those in NC and NA and corresponding to elements named “x”, “y”, . . . . We then
define N = NE ∪ BE ∪NC ∪NA.

Except for the symbol string, we replace all terminals x in productions of C by
non-terminals Nx and denote the set of transformed productions by K = {Kx,Ky, . . .}.
(Remember: the terminals from productions in C are element names.) We introduce
additional productions Ex for each element name x:

(1) Nx → x[AxBx

(2) Bx → >Kxx]

For all content model productions Cx with ε ∈ L(Cx), we additionally include this
production:

(3) Bx → />

Let E = {Ex,Ey, . . .} be the set of grammar productions as defined above for
elements named “x”, “y”, . . . . We set P = K ∪ A ∪ E. Finally, we set S = Nz for the
starting element Z, which completes the grammar construction.

By construction, L(G) = LD,Z. As the left sides of all productions p ∈ P consist
of but one non-terminal, G is context free. �
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In the appendix B, the above transformations are demonstrated on an example.
Now, we are ready to prove our main results as additional properties of the constructed
grammar.

Theorem 6 (SLL(1) grammars and DTDs). There is an SLL(1) grammar for every pair
of DTDD and starting element Z defining the same language LD,Z.

Proof. We prove that the theorem holds for the grammarsG generated by the algorithm
in lemma 4. We show the SLL(1)-property for all pairs of productions N → v and
N → w, v �= w.

By construction, the non-terminals from the productions in C (generating the con-
tent model) and in A (generating the attribute definitions) are pairwise disjoint, disjoint
from each other and from all other non-terminals. Hence, lemmas 1 and 2 continue
to hold in the context of the grammar G. There is only one more case: productions
Bx → >Kxx] and Bx → /> have the same left-hand sides. However, the right-hand
sides start with different terminals (> vs. /> ), so the SLL(1) property holds for all pro-
ductions. �

Theorem 6 shows how to generate deterministic SLL(1) grammars for XML docu-
ments conforming to a specific DTD. The same problem is not computable for context-
free languages in general. The class of recursive descent parsers corresponding to SLL(1)
grammars is one of the fastest known for context-free languages. As the requirement for
deterministic element definitions in the XML 1.0 Specification is non-normative, this
result is practically relevant – highly performant parsers may be generated even from
ambiguous DTDs.

Top down parsing is quite intuitive and allows direct implementations as well as
generation from an LL grammar using tools like javacc or ell. However, yacc, bison, lalr
and many other parser generators only accept the more powerful LR grammars, actually
LALR(1) grammars. We therefore establish

Theorem 7 (LALR(1) grammars and DTDs). There is an LALR(1) grammar for every
pair of DTDD and starting element Z defining the same language LD,Z.

Proof. We prove that the grammar generated by the construction algorithm given in the
proof of lemma 4 is LALR(1). Actually, we prove the stronger SLR(1) property for these
grammars. Let Fx be the deterministic acceptor for the content model of element x as
generated in the proof of lemma 1.

Central to parsing is the following procedure analyzing one complete element. This
procedure is initially called for the top element Z and, recursively, whenever an element
start tag appears in the input:

(1) Shift symbol x[. Set the current state to the initial state of Fx .

(2) Analyze attributes of element x using productions Ax according to the SLR(1) algo-
rithm given in lemma 3. Instead of shifting the whole input string, shift only until
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the next input symbol is either > or />. Reduce the attributes to Ax . Return with
error if reduction is not possible or neither > nor /> is detected in the input.

(3) Shift the next symbol.

(a) If it is />, reduce it to Bx if such a production exists (otherwise return with
error). The top of the stack is now x[AxBx . Reduce this to Nx . Return Nx .

(b) If it is >, proceed with (4).

(4) Test the next symbol.

(a) If it is an opening tag, recursively call the corresponding procedure. Then pro-
ceed with (5).

(b) If it is string, shift it and proceed with (5).

(c) If it is x], proceed with (6).

(d) Otherwise, return with error.

(5) Perform a transition in the deterministic acceptor Fx from the current state. Accord-
ing to step (4), the top of the analysis stack must be one of:

(a) Ny , then perform the transition for y (step (4a) parsed element y before).

(b) string, then perform the transition for string (step (4b) parsed a string before).

Proceed with (4), or return with error if no transition is applicable.

(6) If the current state of Fx is

(a) an accepting state, the top of the stack is a sequence of non-terminal symbols
NaNbNc . . . , where abc . . . is a word accepted by Fx . In other words, it is a
word of the content model language L(Cx) of element x. In analogy to step (3)
in the algorithm from lemma 3, reduce the analysis stack top to Kx .

(b) Otherwise, an error is detected.

(7) Finally, shift x] and reduce Kxx] to Bx . The top of the stack is now x[AxBx . Reduce
this to Nx and return Nx .

The procedure is an SLR(1) parsing schema as only the next input symbol decides
whether a shift or a reduce is executed, cf. in steps (2) and (4). Reduce-reduce conflicts
do not occur. �

Remark. The above algorithm schema differs from the algorithms of LR parser gener-
ated by standard tools. It is not chosen for its efficiency. Instead, we designed the schema
to simplify the proof of the SLR(1) property.
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4. Extensions to XML 1.0

A number of extensions to XML 1.0 have been proposed by the W3C. One of them,
XML Schema [W3C 2001], is a new language to specify document types. Another one,
XML Namespaces [W3C 1999], introduces a mechanism to prevent name collisions in-
dependent of a specification language. Both require changes to the grammars developed
in the previous sections.

4.1. XML Schema

In DTDs, attribute names are bound to types in an element context only, but element
names are bound to a single type for the entire document. XML Schema weakens the
latter link by introducing the notion of types, which are defined separately from ele-
ments.

There are two varieties of types, simple and complex ones. Simple types pertain
to attribute values and text fragments. They supersede the attribute types and #PCDATA
sections of DTDs. Still, attributes remain delimited by quotes and text sections by ele-
ments, so simple types do not threaten their regularity. As they do not pertain to parsing,
we ignore them in the remainder of this paper.

Complex types apply to elements. They consist of a list of applicable attributes
and a regular content model. Due to the latter, the ambiguities found in DTDs also
apply to schemas. Element names remain unique within a complex type context, but the
corresponding types are determined by pairs of name and context, as demonstrated in
example 5.

Example 5. An XML Schema fragment:

<element name="x" type="A"/>

<complexType name="A">
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="x" type="B"/>

</sequence>
</complexType>

<complexType name="B">
<choice>
<element name="x" type="A"/>
<element name="y" type="B"/>

</choice>
</complexType>

The above definitions show that the same element name x is bound to different
types depending on its context: a top-level element x is of type A, i.e., it consists of a
sequence of x elements of arbitrary length. Those child elements conform to a type B
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different from A. They, in turn, contain either an element x of type A, or an element y
of type B.

XML Schema also provides for element and attribute wildcards, type overrides
from instance documents and namespaces. Wildcards denote a choice from a given set,
or even an arbitrary choice. The first kind can be transformed into a choice statement
respectively a list of attribute statements, while the second truly extends the scope of
the definable languages. Type overrides allow instance documents to supersede within
certain bounds the type defined for an element in the Schema. The nature of the bounds
makes overrides tractable in practice, but their theoretical treatment remains compli-
cated. We chose not to discuss them in further detail. Namespaces are also a more
complex issue, which we discuss below.

4.2. Namespaces

Namespaces were introduced in XML to prevent name collisions and increase the inter-
operability of document types from different sources. They extend the XML 1.0 naming
mechanism, which provides for element and attribute names, to a pair-based mechanism:
in XML Namespaces, a qualified name consists of a namespace and a local name.

Namespaces are identified by globally unique strings. To ensure international in-
teroperability, URIs usually serve as namespace identifiers in practice. This is only a
convention – processors do not treat URIs any different from arbitrary character se-
quences. Usage of an URI as a namespace does not imply the corresponding schema is
in fact available under that address.

Because globally unique strings are unwieldy, XML Namespaces mandates the
use of an abbreviation mechanism to conserve space. Under that convention, an instance
document defines arbitrary identifiers called prefixes to represent a namespace. Prefixes
precede local names, using a colon for separator. Their definitions take the form of
virtual attributes with the reserved prefix xmlns.

The extent of prefix definitions resembles the extent of variable definitions in
block-structured languages: a prefix represents the closest like-named definition in an
ancestor element or the element itself. Thus, a prefix can be used before its definition,
but forward references are limited to the scope of an opening tag. These rules are illus-
trated by example 6.

Example 6 (Namespaces and prefixes). In the following fragment

1 <a xmlns:p="http://www.noga.de/namespaces/XYZ">
2 <p:b/>
3 <p:b xmlns:p="http://www.noga.de/namespaces/ABC"/>
4 <p:b/>
5 </a>

the prefix p represents two different namespaces. The definition in line 1 is in scope for
lines 1, 2, 4 and 5 and used in lines 2 and 4. The definition in line 3 is in scope in line 3
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and used there in the element prefix – an instance of a forward reference. Substituting a
different identifier for p, e.g., abracadabra, leaves the content invariant.

The concept of scope exceeds the modelling power of context-free grammars. In
block-structured languages, this problem is commonly resolved by describing a superset
of the language with a context-free grammar. Any additional constraints are realized in
a separate semantic analysis phase operating on the parse tree.

As XML Namespaces limit forward references, prefix resolution only requires a
single pass of a stack automaton. Using a suitable representation for qualified names, the
grammars derived from DTDs or XML Schemas may be retained for namespace-aware
processing. Single-pass treatment remains feasible if superset parsing, prefix resolution
and qualified name matching are suitably interleaved.

4.3. Generalization

For now, we define the subset of restricted XML Schema to be the set of all schemas
not employing or admitting wildcards, overrides and namespaces. In practice, the last
restriction is severe, but the first two restrictions are mild ones. As stated, most wildcards
can be transformed into equivalent constructs. Also, type overrides currently occur in
very few documents. Using this notion of restricted XML Schema, we generalize our
main result.

Theorem 8 (Restricted XML Schema and SLL(1) and LALR(1) grammars). There is an
algorithm to find an SLL(1) grammar G defining the same language for every pair of
restricted XML Schema and starting element. The same grammar G is also LALR(1).

Proof. We modify the algorithm in lemma 4 as follows: First, we generate grammar
fragments for complex types. Since their content models are regular expressions differ-
ing from those in DTDs only in notation, we can use the construction in lemma 1. In the
resulting grammar for the content of complex type t , we substitute all terminals s repre-
senting element names with new, unique non-terminals N(t ′,s), where t ′ is the type of s
in this context. The grammars for complex types’ attributes are generated as in lemma 2.

For every pair of complex type t and element name s in the schema, we then
generate productions per lemma 4, using N(t,s) as the top-level non-terminal and the
attribute and content model grammars of t .

The proof of theorem 6 applies by analogy, as element names remain unique in a
complex type. �

Example 7. Applying theorem 8 to the fragment in example 5 leads to the following
productions:
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P = {N(A,x) → x[A(A,x)B(A,x) N(B,x) → x[A(B,x)B(B,x) N(B,y) → y[A(B,y)B(B,y)
A(A,x) → ε A(B,x) → ε A(B,y) → ε

B(A,x)→ />
B(A,x)→ >CAx] B(B,x) →>CBx] B(B,x) →>CBy]
CA →N(B,x)CA CB →N(A,x)C

′
B

CA → ε CB →N(B,y)C
′
B

C ′
B → ε

}
Each of the above columns contains the productions of a pair (t, s), where t is the type
assigned to element name swithin a complex type: the first defines elements x of typeA,
the second elements x of type B and the last elements y of type B.

5. Performance

We implemented parser generators for Java and C. Due to just-in-time compilers (JITs)
and garbage collection overheads, the Java platform cannot be fairly compared to na-
tive code. Thus, we only compare the faster implementations in the C/C++ language.
Apache’s Xerces-C and James Clark’s expat enjoy widespread deployment and are gen-
erally considered highly performant.

To establish firm performance figures, we generated a series of test cases from the
MOST specification [MOST 2002]. The file specifies real-world automotive components
and spans two MB. Most functions reach a nesting depth of twelve or more. Using
our aXMLerat toolkit, we generated a validating parser from the corresponding DTD.
The generated parser builds a tree representation for the entire document in memory. It
allows for all DOM accesses to this tree. Additionally, it explicitly captures the parse
tree for the content models allowing a highly selective access to parts of an element’s
content. Xerces-C was tested in DOM and SAX mode – while both are validating, only
the former actually builds a tree representation. expat neither validates nor builds a tree
representation. Figure 1 shows their running times.

Measurements were taken on an Athlon 850 MHz with 256 MBytes RAM under
Windows NT 4.0 SP 6. We tested Xerces-C version 1.3.0 and expat versing 1.2 using
DOMCount and SAXCount respectively expat -t. The parser generated by aXMLerat is
targeted towards the Linux platform. We tested it using the Cygwin environment under
NT and separately under Linux on the identical machine.

Our generated Linux parser is up to 40% faster than the fastest Windows competi-
tor, expat. Even more significant, our parser is validating and builds a full tree represen-
tation in memory, whereas expat does neither.

The Cygwin simulation environment clearly imposes a large performance hit com-
pared to native compilers. Under Cygwin/Windows, our Windows parser runs some
15% slower than expat. Xerces-C, considered a high-performance implementation by
its authors, is not remotely comparable. In DOM mode, it even aborts processing the
largest input file due to memory restrictions.
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Figure 1. Parsing times.

6. Related work

The SGML [ISO 1986] designers solved the ambiguity problem by design restriction:
SGML requires content models to be deterministic regular expressions. If this restriction
continued to hold for XML, deterministic parsing would be no problem.

As shown in [Brüggemann-Klein 1993], there are deterministic regular expressions
not allowing for directly for parsing without look-ahead or back-tracking. For some of
them, no equivalent deterministic regular expressions without this negative property ex-
ist. This result justifies our approach of constructing context-free grammars for deter-
ministic parsing.

A theoretical view on XML languages is given in [Berstel and Boasson 2000]. The
authors ignore attributes, namespaces etc. In their paper, they take a language-theoretic
point of view. They show that some properties which are not decidable for general
context-free languages become decidable for XML grammars. The result most closely
related to our work is that DTDs (called XML-grammars) have a unique normal form.
However, this normal form can be ambiguous.

There are working parser generators for XML documents. Our own generators
in the aXMLerat [B2B Group 2002] toolkit exploit the transformations described in the
present paper. They generate lalr and javacc specifications from DTDs and directly gen-
erate an LL parser for XML Schema definitions. The XMLBooster [PhiDaNi 2001] uses
its own specification language. Thereby, they avoid the problems of ambiguous DTDs
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and schemas. Using the theoretical results above, it possible to transform their pro-
prietary specification to DTDs. However, it remains unclear if transformations in the
opposite directions are always possible.

7. Conclusion

This paper enables the generation of deterministic parsers for XML documents from ar-
bitrary, even ambiguous DTDs. We investigated the context-free DTD languages. As
our examples show, there exist ambiguous DTDs. Even deterministic DTDs may not be
parsable without lookahead. Despite this, all DTDs can be transformed into determinis-
tic grammars with the algorithms in this paper. The generated grammars are both LL(1)
and LALR(1). Respective transformations are non-computable for context-free gram-
mars in general. We also developed a generalization to a subset of the XML Schema
languages. Possible solutions for the problems arising from namespaces were outlined.

Our generated grammars are suitable for common parser generators. With those
tools, we automatically generated validating parsers that build full tree representations of
documents in memory. Generation eliminates the need to analyze the DTD at runtime.
Although they support more specific operations, our generated parsers are manifestly
faster than generic plain DOM parsers. Due to our targeting the Linux environment, we
are relegated to the Cygwin environment under Windows, so some no-op generic parsers
still retain a small performance lead.

We aim to modify our generator to support native Windows execution of the gener-
ated parsers. We will continue experiments in static high-speed parsing in native Linux
and Windows settings. Future test settings will vary document structures as well as sizes
and include a wider array of competitors, e.g., the GDome2, Microsoft and Qt generic
XML parsers and the XMLBooster generator. Finally, we expect to establish a correla-
tion between memory consumption and running times.

In this paper, we only considered applications with pre-agreed document types.
These settings admit for off-line parser generation. Future work will consider on-line
settings where parser generation speed is crucial to the processing system.

Appendix A. Basic definitions

Definition 5 (Formal language). An alphabet T is a finite, non-empty set of symbols.
The set of finite strings formed by concatenating symbols from T is denoted by T +. T ∗
denotes T + augmented by the empty string ε. Each subset of T ∗ is a formal language
over the alphabet T . Its elements are called words.

Formal languages are usually defined by grammars.

Definition 6 (Grammar and ambiguous grammar). A grammar is a quadruple G =
(T ,N, P,Z) with an alphabet T , T and N disjoined, Z ∈ N , and (T ∪N,P ) a general
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rewrite system. L(G) denotes the formal language defined by G. N is called the set of
non-terminal symbols of the grammar.

A grammar G is ambiguous if a sentence of L(G) may be derived form Z using at
least two different sequences of substitutions from P . Otherwise it is called determinis-
tic.

Grammars may be classified according to the form of their productions:

Definition 7 (Regular and context-free grammars and languages). A grammar is regular
if each production in P has the form B → b or the form B → bC with B, C ∈ N, b ∈
T ∪ {ε}. A grammar is context free if each production in P has the form B → x with
B ∈ N , x ∈ (N ∪ T )∗. A language is regular (context free) iff it can be defined by a
regular (context-free) grammar.

Regular languages may also be defined by regular expressions:

Definition 8 (Regular expressions and regular languages). Let T be an alphabet. Then
{a|a ∈ T ∪ {ε}} are regular expressions r defining the regular language L(r) = {a}.

Let r1 and r2 be regular expressions. Then

• r1|r2 defining the regular language L(r1) ∪ L(r2),
• r1, r2 defining the regular language L = {ab | a ∈ L(r1) ∧ b ∈ L(r2)},
• r∗1 defining the regular language L = {a . . . a | a ∈ L(r1)} ∪ {ε}

are regular expressions.

Remark. Some definitions of regular expressions include:

• r+1 defining the regular language L = {a . . . a | a ∈ L(r1)},
• r1? defining the regular language L(r1) ∪ {ε}.

These expressions can be derived, as r+1 = r1, r
∗
1 and r1? = r1|ε, respectively.

Appendix B. An example based on a DTD

We expand on example 2:

<!ELEMENT a ( x? , ( y* | z* ) )>
<!ELEMENT x ( #PCDATA )>
<!ELEMENT y ( #PCDATA )>
<!ELEMENT z ( #PCDATA )>

A corresponding ambiguous acceptor for the content model of a is given in figure 2.
The right hand side shows the unambiguous acceptor resulting from our construction.
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Figure 2. Deterministic finite acceptor.

According to the construction in lemma 1, this acceptor leads to the following
SLL(1) and SLR(1) grammar for the content model of a:

1. Na(1) → ε

2. Na(1) → xNa(2) Na(1) → NxNa(2)
3. Na(1) → yNa(3) Na(1) → NyNa(3)
4. Na(1) → zNa(4) Na(1) → NzNa(4)
5. Na(2) → ε

6. Na(2) → yNa(3) Na(2) → NyNa(3)
7. Na(2) → zNa(4) Na(2) → NzNa(4)
8. Na(3) → ε

9. Na(3) → yNa(3) Na(3) → NyNa(3)
10. Na(4) → ε

11. Na(4) → zNa(4) Na(4) → NzNa(4)

Where applicable, we printed the productions transformed by the construction in
lemma 4 in the right column. The grammars for the content models of x, y and z are
obtained accordingly. As they are identical up to renaming non-terminals, we display
the one for x:

12. Nx(1) → ε

13. Nx(1) → string

As the example does not define attributes, all grammars for element attributes ac-
cept e only. The productions are identical up to renaming of non-terminals, so we display
the ones for a (14) and x (15):

14. Aa → ε

15. Ax → ε
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The final construction algorithm of lemma 4 adds the productions which are identical up
to renaming of non-terminals and the opening and closing tag strings. We display those
for a (16–18) and x (19–21):

16. Na → <aAaBa
17. Ba → >Na(1)</a>
18. Ba → />
19. Nx → <xAxBx
20. Bx → >Nx(1)</x>
21. Bx → />

We reconsider the example sentence that lead to two derivations for the original
grammar.

<a><x> ... </x></a>

Its derivation is now unique:

Na → <aAaBa (16)
→ <aεBa (14)
→ <aε>Na(1)</a> (17)
→ <aε>NxNa(2)</a> (2)
→ <aε><xAxBxNa(2)</a> (19)
→ <aε><xεBxNa(2)</a> (15)
→ <aε><xε>Nx(1)</x>Na(2)</a> (20)
→ <aε><xε>string</x>Na(2)</a> (13)
→ <aε><xε>string</x>ε</a> (5)

≡ <a><x> ... </x></a>
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