ﬁ“ Annals of Software Engineering 13, 265-283, 2002
“ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

JAAFAAR: A Web-Based Multi-Agent Toolkit for
Collective Research

S. CALDERONI and J.-C. SOULIE soulie @univ-reunion.fr
IREMIA — Université de la Réunion, 15, Avenue René Cassin BP 7151,
97715 Saint-Denis messag cedex 9, France

Abstract. This paper introduces a generic and opened multi-agent platform that provides a powerful sci-
entific equipment for collective research on self-organized systems. A general thought on the mutation
of object model towards the agent model is presented. The paper details the construction of the platform
upon generic models of environment and agent. Then we present the extension of the toolkit to web-based
technologies, and its suitability for collective research and remote works.

1. Introduction

This paper introduces a generic and opened multi-agent platform that provides a power-
ful scientific equipment for collective research on self-organized systems.

Computer simulations have became an undeniable tool for experimental research.
On the one hand, many scientific domains like ecology, ethology, robotics or artificial
intelligence needs simulation. On the other hand, software development is a complicated
technical task.

We thus propose a multi-agent software platform to help scientists in designing
artificial systems by modeling and simulating distributed artificial worlds with agent
technology. JAAFAAR is a component-based system designed to build agent-oriented
simulators from basic bricks as software units. It provides a generic model of envi-
ronment that implements basic mechanisms inherent to multi-agent systems like signal
propagation, phenomenology, agent perception and action.

The generic part of the system may be considered as an opened kernel provided
with external interfaces. Each of these interfaces constitutes an entry point towards some
abstract representation of the simulated world. Then, the design of specific domains
consists in plugging some dedicated software components into these interfaces. Whether
it is a simple object, an agent or one of its components like a sensor or an effector, or
even an environmental phenomenon, such an entity is considered as a simple software
component and may be added to the system with the same facility.

By another way, JAAFAAR is a web-based toolkit, founded on a client/server archi-
tecture, and provides an actual distributed experimental laboratory for remote scientists.
Indeed, JAAFAAR permits to run a simulation on a server and offers entry points for re-
mote clients that may concurrently act on the simulated world, in real time, throughout
the Internet. Furthermore, it is possible to use the power of some remote computers by

266 CALDERONI AND SOULIE

distributing the reasoning process of agents that however evolve at the same time on the
same environment. This allow scientists to confront heterogeneous agent architectures,
without divulging their private components, throughout a common system. JAAFAAR is
thus fully oriented for collective work.

The paper first presents a thought on the concepts that led the researchers to ori-
ent themselves towards agent technology, and how the object paradigm has brought a
solid foundation to the implementation of multi-agent systems. Then, the heart of the
platform is fully described, exhibiting both the environmental and the agent model of
JAAFAAR, fundamental components of any multi-agent system. A case-base study is
presented to illustrate the wheels of the platform. Finally, the web-side of the platform is
presented. We examine the existing network technologies and explain how we enhance
the functionalities of the platform towards web-based potentialities.

The kernel of JAAFAAR has been entirely implemented in Java language and some
implementation details will be described in the paper.

2. From objects to agents

The increasing complexity of industrial softwares is due to the necessity to develop nu-
merous sub-systems of various nature, including numerous functionalities and interact-
ing with several human specialists (operators, experts, technicians, etc.) which are often
spatially distributed. Consequently, it has became a necessity to split these systems in
weakly coupled modules, namely in independent units where interactions are limited
and totally controlled.

Thus, rather than being confronted to systems of monolithic architecture and struc-
ture, object oriented technologies have permitted to develop interacting software com-
ponents which are locally defined and which don’t have any global view of the system.
Indeed, object-oriented programming proposes a different view of computer programs:
a program becomes a set of entities that interact and communicate through messages
sending. This conception brings up the autonomy of these entities called objects. The
control of globality then becomes a secondary effect of local interactions. This form of
program writing has introduced some new conception methods in software engineering
and a perspective change; we have passed from notion of program to those of organiza-
tion.

This evolution has also been observed in artificial intelligence, where intelligent
systems were based on centralized architectures. It has became necessary to adapt ma-
chines and systems to the increasing complexity of problems to be solved. The manner
to reduce this complexity was resting in the distribution of processes and knowledges.
Intelligence was furthermore considered as the result of a cooperative activity between
several simple entities, rather than the activity of a single omniscient and centralized
system. The works led in the beginning of 70’s on concurrency and distribution gave
birth to a new research domain: Distributed Artificial Intelligence.

Distributed artificial intelligence then intends to remedy the insufficiency of the
centralized approach of problem solving. The distributed approach proposes a distribu-

JAAFAAR: A WEB-BASED MULTI-AGENT TOOLKIT FOR COLLECTIVE RESEARCH 267

tion of processes on a set of systems able to interact in cooperation within a same envi-
ronment (be they logical or physical), and to solve some possible conflicts. Research in
distributed artificial intelligence is nowadays organized around three fundamental axes:

e Parallel Artificial Intelligence [Davis 1980], that focuses on development of efficient
parallel languages and algorithms for distributed artificial intelligence.

e Distributed Problem Solving [Durfee ef al. 1989], that focuses on the manner to dis-
tribute a given problem between cooperating entities.

e Multi-Agent Systems [Ferber 1994], that consist in putting in cooperation a set of
autonomous entities called agents, which are provided with intelligent behavior, and
in coordinating their goals and their action plans in order to solve a problem.

The approach that consists in studying, designing and implementing multi-agent
systems was named kenetic by Ferber [1999]. The kenetic is both considered as the
technique and the science of artificial organizations. It proceeds by constructing multi-
agent systems, namely by implementing electronic or computational models composed
of artificial entities that communicate and act in a same environment.

The term of agent is a pluridisciplinary term stem from specific vocabularies of in-
teraction sciences like sociology, psychology, biology or ethology, and thus takes a signi-
fication of multiple facets. However, there exists some resemblances at the crossroads of
these definitions, formulated by researchers from various domains. These resemblances
all converge towards general concepts that could be drawn from the specificity of each
science. Some researchers like Ferber applied themselves to formulate a minimal and
common definition covering up the whole of these resemblances.

Definition 1. An agent is a physical or virtual entity that:

Is able to act in an environment.

Is able to directly communicate with other agents.

Is prompted by a set of tendencies (as individual purpose or a satisfaction function).
Holds some own resources.

Is able to locally perceive its environment.

Holds a local representation of its environment.

Holds competencies and offers services.

S L

May eventually reproduce itself.

Distributed artificial intelligence, unlike classical artificial intelligence, takes an
interest in the inferaction that links agents among themselves, and agents with their
environment. Agents do not merely reason, they act. Action is a fundamental concept for
multi-agent systems, and relies on the fact that agents achieve actions that will alter their
environment and thus their intended decision making. Communication is considered as

268 CALDERONI AND SOULIE

an extended form of action. The concept of intelligence is thus totally reviewed: rather
than considering that it is only a property of cognitive faculties of an individual, we
consider that it emerges from interactions that agents keep up among themselves and
with their environment.

Agents hold not only the capability to act, but also the property of autonomy. Au-
tonomy is here considered as the property of self-control. The agent is thus free to
control itself by its own tendencies, that may take form of individual goals to satisfy or a
satisfaction or survival function that it tries to optimize. This is certainly the fundamental
difference between objects and agents.

Definition 2. A multi-agent system is a system composed of the following elements:
1. An environment E, namely a space generally provided with a metric.

2. Aset of objects O. These objects are situated, this means that at any time, each object
may be associated with a position in E. These objects are passive, this means that
they may be perceived, created, destroyed and altered by the agents.

3. Asetof agents A, which are particular objects (A € O). Agents are the active entities
of the system.

4. A set of relationships R that link objects (and so agents) among themselves.

5. A set of operations Op that allow agents to perceive, produce, consume, transform
and manipulate objects of O.

6. Some operators in charge of representing the application of these operations and the
reactions of the world to this attempt of alteration, that we’ll call the law of universe.

Among the numerous variable of multi-agent systems that meet this definition, two
of them are typical:

e The fully communicating multi-agent systems, where A = O, E = {J, and the rela-
tionships of R define a network: each agent is directly linked to a set of other agents,
which one call its acquaintances. These systems are distinguishable from the others
by the fact that interactions are essentially intentional communications and the work-
ing method is very similar to those of a social organization (working group, com-
pany, administration, etc.). The most famous example of such a system is certainly
ARCHON,! that proposes a general architecture of multi-agent systems in order to
integrate different applications which need to cooperate [Jennings and Wittig 1992].

e The fully situated multi-agent systems, where E is generally a metric and temporal
space, perceptible by the agents, and that stands for their communication medium as
a signal propagator. Agents, in this kind of systems, do not communicate directly by
message sending, but only by signals propagation. The MANTA system of Drogoul,
that turns on the modeling of the sociogenesis of an ant colony, is a splendid example
of such systems [Drogoul et al. 1993].

I Architecture for Cooperating Heterogeneous On-line Systems.

JAAFAAR: A WEB-BASED MULTI-AGENT TOOLKIT FOR COLLECTIVE RESEARCH 269

Agent-based software engineering is a very large field of work and study at present.
This is why there is a large number of platforms implemented in order to model multi-
agent problems and run multi-agent simulations. In this set of platforms, we can cite the
following ones:

e SWARM created by C. Langton [Minar ef al. 1996] at the Santa Fe Institute (USA);

o CORMAS created by F. Bousquet and C. Lepage [Bousquet et al. 1998] at the CIRAD
(France);

e MADKIT created by J. Ferber and O. Gutknecht [Gutknecht and Ferber 1997] at the
LIRMM (France);

the platform created by H.R. Gimblett and R.M. Itami [Gimblett and Itami 1997].

These platforms are used in various fields of research. For instance, CORMAS is
largely used in Europe to simulate natural phenomena and the managment of natural
ressources; SWARM has been used to implement ants algorithms from E. Bonabeau, M.
Dorigo and G. Theraulaz [Bonabeau et al. 1999].

Whether it is in software engineering or in artificial intelligence, we can notice that
the paradigm that gave birth to both objects and agents is fundamentally the concept of
organization. In both cases, the necessity to tackle problems or programs of increasing
complexity led the researchers to reconsider their systems from an organizational aspect.
But from a practical point of view, the link that joins these two artifacts is furthermore
intimate. Indeed, object model is undeniably an appropriate basis for the implementa-
tion of multi-agent systems. However, the mutation from object model to agent model
has not been achieved directly. Actually, there is an intermediary model that links the
two others: the actor model. One can define the actors as active objects, which are
autonomous and concurrent. Actor models are particular object models able to dread
the parallelism of actual systems. Actors are open to be implemented on parallel archi-
tectures. It is advisable to dissociate actors (active and autonomous objects) from the
computational model of actors presented by Agha [Agha 1986]. Indeed, actors are stem
from techniques of knowledge representation [Hewitt et al. 1973], then from parallelism
since the publication of Actl language in 1981 [Liberman 1987]. The main common
features are the use of scripts (to describe the behaviors of actors) and acquaintances (to
represent the attributes). The terminology of actor models draws nearer to living crea-
tures than those of the initial object model. Furthermore, it is more easy to conceptualize
the parallel interactions of several actors.

After the conceptual introduction of agent paradigm presented in this section, we
now present in the next section how we have applied these concepts and implemented a
powerful multi-agent platform with object-oriented technology.

3. JAAFAAR: a multi-agent platform...
3.1. What is JAAFAAR?

JAAFAAR is a generic multi-agent software toolkit designed with the aim to help re-

270 CALDERONI AND SOULIE

searchers in modeling and simulation of artificial worlds with agent technology. The
thought of developing such a platform came to our mind by discovering the double
clearness that — on the one hand, many scientific domains like ecology, ethology, robot-
ics or artificial intelligence need the use of computer simulation, since it has became an
undeniable tool for experimental research — and on the other hand, software develop-
ment is a complicated technical task. Indeed, computer simulation provide a powerful
device for virtual experiments, as opposed to physical ones which are difficult to design,
costly, or even worse dangerous. However, although computer models provide many
advantages over traditional experimental methods, some problems may be encountered
too. In particular, the actual process of writing software is a complicated technical task
with a high risk of error. This fact has brought us to design a powerful platform in order
to allow scientists to focus on their research rather than on building appropriate tools.
This platform is intended to provide a complete software environment viewed as a vir-
tual laboratory and providing agent-oriented support to model and simulate autonomous
artificial systems.

Another established fact induced us to extend the potentialities of JAAFAAR. At
the time of Internet and computer networks, we no longer can think globally. Indeed,
the computational space has became a huge world wide web in which any computer, be
it stationary, portable or mobile, is connected to all over the world. Data and process-
ing power are distributed on a considerable number of sites. Why not use this potential
power? It may be very advantageous to distribute an heavy application among several
computers interacting among themselves through Internet. Furthermore, this new di-
mension opens the way to collective research and brings the possibility of remote work.
JAAFAAR is thus more than a multi-agent platform. It is also a distributed experimental
laboratory for remote scientists. Finely speaking, JAAFAAR is based on a client/server
architecture, where the simulated world run on a server that can be reached by clients
like monitors for the remote control of the system, or remote agents.

We will now detail the software conception process we have adopted to design
JAAFAAR at a generic level, and explain how it is possible to use this generic platform
to design a dedicated multi-agent application. With this purpose, we chose to describe a
typical multi-agent problem in order to illustrate the different wheels of JAAFAAR. This
problem stages a colony of autonomous robots in a collective regulation problem and is
detailed on the next section.

3.2. Mining colony on Tatooine: a collective regulation problem

A few month ago in a galaxy far, far away . .. a group of settlers were sent to Tatooine, a
world of brilliant crystalline sands that revealed itself being a treasure trove of minerals
and ores. Mining colonies have been established in a relatively small area of the planet’s
Northern hemisphere. An unusual concentration of magnetic ores in the planet’s man-
tle, interacting with Tatooine’s intense planetary magnetic fields, shifts prevailing wind
patterns and atmospheric concentrations, creating a zone of relative coolness in one lo-
cation. While the remainder of the planet reaches highs better than 65.5°C throughout

JAAFAAR: A WEB-BASED MULTI-AGENT TOOLKIT FOR COLLECTIVE RESEARCH 271

the year, the single temperate zone rarely exceeds 43°C, while reaching nighttime lows
near freezing. Although little exploration has mapped out all of Tatooine’s surface, there
are no outstanding features or mining opportunities enticing enough to cause habitation
of the planet’s hotter regions.

Since the air is almost unbreathable, because of the presence of some poison gas,
the settlers were forced to build a biosphere providing an artificial atmosphere. They
tuned a novel chemical process that can produce oxygen from the transmutation of large
amounts of quartz (75%) and sodium salts (25%), both present in the sand-rich soil of
Tatooine. They built four types of autonomous robots, explorers, borers, carriers and
tenders, responsible for the prospecting task:

e The X-PLORERS are in charge of exploring task. These robots are provided with ore
veins sensors. Their task consists in wandering through the environment until they
find a vein. When a vein is localized, they have to emit a recruiting signal to warn
the borers and the carriers. Furthermore, they are in charge of supervising the mining
task to detect the exhausting of ore.

e The D-GERS are in charge of mining task. These robots have to join the explorers
when they detect their recruiting signal. Then they have to bore the soil to extract
ore samples while they perceive the recruiting signal (which indicates that the vein is
not exhausted). They are provided with a chain arm to pick up ore samples. When
carriers are close by, they put down the extracted samples in their tub. Their task
stops when the local explorer interrupt its signal because of the exhausting of ore.

e The S-CARGOS are in charge of conveying task. These robots have to join the ex-
plorers when they detect their recruiting signal, like the borers. They are provided
with a big tub to stock the extracted ore samples. They wait the borers fill in their
tub, then they convey their loading to the base.

e The /0-DERS are in charge of supplying task. Actually, each robot needs and con-
sumes energy while it performs an action. This energy derives from an electrochem-
ical process between the gas present in the Tatooine’s atmosphere and the oxygen
produced in the biosphere. Thus, the robots are all provided with a tank of liquid oxy-
gen with capacity depends on their respective task. When a robot lacks of oxygen, it
emits distress signal to wander tenders it needs gas supplies. Thus, the supplying task
of each tender consists in joining any robot emitting a distress signal and supplying it
with a sufficient amount of liquid oxygen (if available). When its own tank is empty,
it has to return to the base to fill up.

The figure 1 illustrates the activity of the robots in the mining colony of Tatooine.

At the global scale, it is essential that the total amount of quartz and sodium
salts held in the reserve tank of the base never decrease under a minimum threshold
to preserve the viability of the biosphere. Additionally, it seems obvious to minimize
the amount of oxygen consumed by the robots. Thus, the robots are confronted to a
dilemma: they have to keep a sufficient amount of ore in the base’s reserve tank required
to produce the vital oxygen of the biosphere, and in the same time, they need to consume
a part of this oxygen to achieve their tasks. So, they are faced with a regulation problem.

272 CALDERONI AND SOULIE

®

an X-PLORER in an ore vein that
search of an ore vein has not been discovered

@ a D-GER bores the ol

an $-CARGO conveys

its loading to the base -
an $-CARGO waits :
8!

N 1o be loaded o

X-PLORER %

- a 10-DER joins,the A e By an X-PLORER-has-found an ore vein
:4 D-GER X-PLORER in difficulty iy and emits a recruiting signal
X 8 5 1 sigms
—
1 ' I..

1)

S.CARGO an X-PLORER emits

‘its_distress signal

Figure 1. The mining colony on Tatooine.

Due to the specificity of each task and structural constraints, it was impossible to
design omniscient robots, able to achieve each step of the global prospecting task. Each
robot is then specialized in a specific sub-task, and has been provided with all individual
behaviors required for its local purposes.

However, these individual capabilities are insufficient to ensure the global regu-
lation task. Indeed, the robots cannot play their respective roles without coordination
mechanism. They are all capable of ensuring sub-goals, but most of them depend on
the others to achieve their local purposes. For instance, a D-GER is unable to perceive
the presence of ore, and needs the help of an X-PLORER to show it the good location
to bore. Also, it would be tedious and highly energy-consuming for a single D-GER to
convey the samples it has extracted with its sole chain arm. Thus, it needs the assistance
of an S-CARGO which is provided with a tub of high capacity. Furthermore, each robot
is depending on 10-DERS which are the sole able to supply it with liquid oxygen when
it works outside.

Actually, it is vital that robots respect a coordinating policy in their behavior to
secure the whole group, but additionally, they must keep their own survival, which is
also important for the group subsistence. Indeed, an X-PLORER must emit a recruiting
signal when it has discovered an ore vein to warn the others, but the action of emitting
is costly since it requires energy. Now, if no D-GER arrives on site, the explorer risks
to expense all of its reserves, preventing it to get back the base, therefore it must be
adaptive and able to detect the problem before it is too late! Indeed, a robot whom has
emptied its tank is unable to perform anything and stops immediately. The only thing

JAAFAAR: A WEB-BASED MULTI-AGENT TOOLKIT FOR COLLECTIVE RESEARCH 273

that may help it is then the spontaneous assistance of a 10-DER.

In summary, each robot must keep its integrity by adopting a survival behavior
while it must act in a social way through a collective commitment to ensure the coor-
dination of the group at each local step required for the global regulation constraint. In
other words, it has to balance its responses in reaction to local influences that condition
its behavior, in such a way that the whole of robots maximize its performance regarding
to the global task.

Now that the background has been explained, we can launch out into the conception
of JAAFAAR. The architecture of the platform is directly inspired of definitions 1 and 2
laid down in section 2 and is organized around a generic environmental model, and a
generic agent model.

3.3. The environmental model

The environment forms as it were the heart of the multi-agent system, since it is the
exclusive medium of interaction. Consequently, it is the essential link between agents.
The term of interaction indicates the mutual influence that an individual has on another
one. This concept of inter-individual interaction denotes the basis phenomenon that we
should use to describe the functioning of a social group. Any social mechanism should
thus amounts to a set of elementary interactions. Then, the environment is the support of
the interaction phenomenon. The first thing to consider is how to give a substrate to inter-
actions. Influences between two agents are exerted through the combination of percep-
tion and action. The exchange of information between perception and action processes
is materialized by the emission and propagation of signals in the environment.

Let us take the example of an agent A that perceives the motion of an object B.
The motion of B can be disclosed by A by the recognition of its change of location in
the environment. This analyze of such a change is only possible if objects leave a sort of
trail in the environment. In other words, each object should emit a recognition signal to
be perceived. Then the analyze of the variation of such a signal can reveal the result of
an action from the observer point of view. Suppose that the agent A is a robot, equipped
with vision sensors, and the object B is another robot that moves within the perception
field of A. The sensors of A, which are sensitive to light waves reflected by B (this is the
signal), can inform A on the nature of the B’s motion. Actually, the emitted signals holds
some properties of which some will be identified and valued by sensors. Practically,
signals propagation is entrusted to specific propagators (all instances of a Propagatoxr
class) depending on their respective nature which directly affect the sensors.

Let us consider our autonomous robots on Tatooine, and especially the re-
cruiting process by which X-PLORERS attract D-GERS by emitting a “recruiting”
signal. The environment is provided with a propagator dedicated to the propaga-
tion of signals whose signature is of “recruiting” type, namely an instance of the
jaafaar.environment.Propagator class. Each propagator is specific to a sin-
gle type of signal because the propagation process may differ according to the signal’s
nature. For example, some signals may be able to go through obstacles (like radio

274 CALDERONI AND SOULIE

achieve the propagation of-thic-signal- .~ /' /A D-GER provided with
S TN d'sensor sensitive to "recruiting signal

a "rec;‘uiliIr'x;"“pr.{}[gag‘%ﬁ;r: ‘‘‘‘ L .

X s attracted towards the source
S . ggf

Figure 2. Interaction between agents through signal propagation.
waves), whereas others are stopped (like light waves). Consequently, the environment
has to be provided with as much propagators as signal types.

The function of any propagator consists in scanning the set of agents that hold
the good sensor to perceive the signal that is to be propagated. Then, for each selected
agent, the propagator has to transmit to its sensor the properties of the signal which are
perceptible (e.g., intensity, direction, distance, etc.). One of the most important thing to
examine here is how to format this information, since this is precisely on this information
the agent will found its local perception of the world, and then its behavior. This is
precisely this information that makes the link between the state of the environment and
the agent. We chose to represent this information as a lisp-like symbolic description of
the following form:

(signal_type emittor_id (property; value;)
(property, value,)).

Obviously, another way to represent is the use of ACLs languages such as KQML [Finin
et al. 1993]. But our aim, when developping JAAFAAR, is to produce an esay to use plat-
form for researchers and scientists. Indeed, this is not very easy to learn and use ACLs
languages for researchers and scientists coming from other research fields such as biolo-
gists, genetitian, ... Our lisp-like language is easy to use and its symbolic is very expres-
sive, so that it can be easily learn. This description is given as a java.lang.String
to facilitate its transmission over the network in the case of distributed applications. Such
symbolic expressions are then easy to parse, due to their lisp-like syntax.

In the previous case of recruiting process, if we consider that the environment is
provided with a 2D-metric, the perceived information could be of the following form
(where distance is relative to the sensor and expressed in meters, and direction is relative
to the agent orientation and expressed in radians):

(recruiting explorer_4 (distance 20.68) (direction -0.74)).

JAAFAAR: A WEB-BASED MULTI-AGENT TOOLKIT FOR COLLECTIVE RESEARCH 275

We can notice with this example, that communication is a specific interaction process
that can be implemented as a signal propagation.

Generally speaking, we could draw together the notion of signal to those of field.
In physics, be they gravitational, electric or magnetic, fields can explain the origin of
powers and their influence on particles. In the same way, signals can be considered as
stimuli, and then stimuli fields can explain the influence of environment (or its compo-
nents) on agents. We generally distinguish two types of field: scalar fields and vectorial
fields. These fields associate to each point of the space a value. In the case of scalar
fields, this value is a scalar, which may represent the intensity (the potential) of the field
in this point, whereas, in the case of a vectorial field, this value represents a vector. These
fields may be combined and superposed if they are of same type. The visualization of
a scalar field’s intensity in accordance with its location in a two-dimensional space may
be illustrated by a surface with peaks in high intensity regions and with valley where
the intensity is low. The slopes of these “mountains” correspond to the field’s gradients,
that is to say its variation. The gradient is a vectorial function that associates a vectorial
field to the initial scalar field. Where the scalar field defines a potential field, the gradi-
ent field defines a power field that corresponds to the field’s potential. These fields then
determine some attractive and repulsive tendencies that condition the behavior of agents.

Outwards interaction processes, the environment (and, consequently, its compo-
nents) may be altered by what we name a phenomenology. A phenomenon is considered,
in JAAFAAR, as a process that may alter the properties (namely the state variables) of
any object in the environment. For example, motion may be considered as a phenom-
enon since it is a process that modifies the kinematics properties of any object affectable
by motion (namely its position, velocity and acceleration). Phenomena are described
by derived classes of the abstract class jaafaar.environment.Phenomenon.
The function of any phenomenon P consists in scanning the set of objects that are
affectable by P, and applying some operations on each object’s state. Let us con-
sider the case of a 2D-environment where objects are movable. Thus the envi-
ronment has to be provided with a Motion2D phenomenon that inherits from the
jaafaar.environment.Phenomenon class. All objects are provided with the
following time-dependent kinematics 2D-vectors: position p’, velocity v* and accelera-
tion y!. The decay factor represents frictions embodied by the environment. It alters the
objects velocity. This factor is simulation dependent: indeed, it can increase the veloc-
ity (i.e., decay > 0) or reduce the velocity (i.e., decay < 0). At each simulation step,
movement of each object is calculated by the Mot ion2D phenomenon as the following
manner:

> - -
uitl =t + yt’
pt-H =p' +ul,
- -
vitl =decay - u'*! for a damped movement,

- -
yH‘l =0 to reset acceleration.

276 CALDERONI AND SOULIE

sequential scheduling parallel scheduling

pl
1

Propagation of a signal ol

P 2

1

'

o [|
£ [
= []
' [

Application of a phenomenon

P n
B 1

P n
2

Y

Figure 3. Parallelization of phenomena and signal propagation processes.

It is important to notice that phenomenology and signal propagation are time-
continuous processes that must be discretized to be implemented. Indeed, it is not ac-
ceptable to wait for the end of such a process to apply the effect of another one. All
processes must be concurrent in time, and thus performed in a parallel manner. This
imply that processes effect must be discretized (this means sliced) in time, and executed
concurrently as shown on figure 3.

We achieved this functionality in JAAFAAR by providing the environment with
a clock that gives the rhythm to the simulation. This clock must be an independent
mechanism, asynchronous and concurrent with the rest of the system, thus it has been
derived from the java . lang.Threadclass. Ateach time step, a mechanism activates
a scheduler that successively performs the application of all discretized phenomena and
the propagation of all signals throughout the environment.

3.4. The agent model

As we had developed it in the environmental model, interindividual interactions are only
possible if agents are equipped with sensors to perceive any environmental information,
and effectors to act on the environment. Furthermore, the coordination between percep-
tion and action should be achieved by a control system, that stands for the brain of the
agent, and permits it to choose which action to accomplish, at what time, in accordance
with its goals. Thus, we can split the notion of agent into two complementary parts:

e the brain, that is entirely independent from the environment and constitutes its sou/
as it were,

e and the body, that corresponds to its physical part, namely those that exists within the
environment.

JAAFAAR: A WEB-BASED MULTI-AGENT TOOLKIT FOR COLLECTIVE RESEARCH 2717

brain

control process

command

i effector

perception action

signal propagation \

environment

stimulation

SEnsor

Figure 4. The JAAFAAR agent architecture.

The body of the agent constitutes the entity that links it to the environment. Indeed,
this is precisely its body that is provided with sensors for perception and with effectors
for actions. On the one hand, the signals perceived at the sensors level are redirected by
the body towards the brain as stimulations. In a symmetrical manner, the brain addresses
commands to the body which are communicated to effectors to be transformed into ac-
tions. The figure 4 illustrates the information flow exchanged between the agent and the
environment.

Concretely, at each simulation step, the signals propagators write information (as
symbolic descriptions), corresponding to perception, in body’s sensors. These descrip-
tions then forward by the body towards the brain as stimulations. In the same time-step,
all the commands addressed by the brain are stored in the corresponding effectors by the
body. In this way, some environmental processes can read these commands and trans-
form them into effective actions. Let us take the example of a robot that wishes to move
forward. It may formulate a boost command with appropriate parameters (e.g., the
associated power). This command is expressed as a symbolic expression for the same
reason as the perceptions: (boost 100).

By another way, the body also encloses the state variables of the agent, exactly as
the other objects. These state variables constitute a representation of the agent within
the environment. This is precisely these variables which are susceptible to be altered by
environmental phenomena. We saw, in the previous section, how an object (and thus an
agent) can be affected by a motion phenomenon through its kinematics properties. In the
case of the transformation of a command into an action, the process is exactly similar.
In the previous example of a robot that wishes to move forward, the command (boost
100) is transformed into an action by setting up (in this case) the acceleration vector of
the robot with a function of the power parameter of the boost command.

Now we have detailed the interactions between the agent and the environment, let
us focus on the autonomous part of the agent, namely the part that shapes its behavior:
its brain.

278 CALDERONI AND SOULIE

E'(t+At)
o«

- dangerous

sensor

A%
viability sphere

perception

effector

action

Figure 5. An adaptive perception—control-action triad.

The behavior of an agent may be qualified of adaptive while its control system is
able to keep its essential variables within their viability sphere. The figure 5 represents
a robot moving on a ground scattered with holes. Its brain should help it to avoid these
holes in order to preserve its integrity. Its state E(#) may be expressed in terms of two
variables ¢ (¢) and &;(¢) that vary over time. The viability sphere V may be considered
as a region of the states space where E should be kept. The outer side of V corresponds
to states that may endanger the survival or the goal of this robot. The sensors of the
robot should indicate to itself that there is a hole in front of it, and its control system
then has to choose which action to accomplish. Thus, at point P, E(¢) risks of leaving
V in E'(t + At) if the agent moves towards the hole. An adaptive behavior would be
the one that performs a corrective action on this state transition so as to transform E in
E(t + At), which is inside of V, by passing round the hole.

A detailed presentation of architectures for such adaptive control systems is out
of the scope of this paper. Nevertheless, the interested reader may refer to [Calderoni
and Marcenac 1998], that presents MUTANT, an evolutionary-based learning system for
adaptive control systems.

In conclusion to this section, what the reader should remember is that it is very
easy to design agents with the JAAFAAR toolkit. Indeed, all the underlying mechanisms
inherent to agent paradigm are already implemented, and the agent structure can be
summarized to only two generic classes:

e jaafaar.agent.Brain. This class is an abstract class and stands for the basis
to develop your own brain architecture. You are free to design you own learning
algorithm, your own control system by inheriting this generic class.

e jaafaar.agent.Body. This class is also an abstract class, and stands for the
basis to develop your own body architecture. This means you should inherit this

JAAFAAR: A WEB-BASED MULTI-AGENT TOOLKIT FOR COLLECTIVE RESEARCH 279

class to specify which kind of signal your agent is able to propagate, which kind of
phenomenon is able to affect your agent, which kind of sensor and effector you want
to provide your agent with.

4. ...For collective research
4.1. Why?

We have decided to extend the potentialities of JAAFAAR to the web-space by stating the
following facts:

e First of all, the dynamic of international research implies a constant challenge among
researchers. They need to confront their works constantly. The primary vectors of
scientific publications are obviously journals and conference proceedings. However,
with such sources of works reports, researchers are able to confront their ideas, but
rarely the way they have concretized them. In other words, the technical aspects of
any research is rarely described in such a way that they may be reproducible as they
stand. Especially in computer science, the details of implementation often occulted
because of the lack of room.

e A first alternative is to try to re-implement the described system, by interpreting its
hazy descriptions. But the resulted system may present some differences with the
original, and consequently the comparison with your own works risks to be falsified,
because you are comparing your interpretation of the desired system. Furthermore
the process of writing software is time-consuming and presents a high risk of error
for those who are not familiar with solid software engineering methodologies.

e A second alternative consists in contacting the author and ask him to send you its own
software or its source code so that you will be able to adapt it to your needs. However,
many researchers refuse to release their applications, or furthermore to divulge their
source codes. And in the case they do it, the software may be difficult to compare
with yours as it stands or even not suited to your operating system, or the source code
may not correspond to the language you usually use. Then you risk to find yourself
in the previous position.

e An ideal alternative would be to directly connect the systems to be compared within
a same structure, and make them interact. Actually, at the time of Internet, it seems
inconceivable that one cannot use the power of networks to link remote systems to
do so.

We thus decided to propose such a possibility in JAAFAAR by coupling our ability
in generic platform development with the power of web-based technologies. The solu-
tion we propose is to make JAAFAAR a web-based toolkit, founded on a client/server ar-
chitecture, in order to provide researchers with an actual distributed experimental labora-
tory for remote work. Our idea is to propose an opened system able to receive heteroge-
neous and physically distributed software components from the Internet to be confronted

280 CALDERONI AND SOULIE

among themselves. In other words, we have provided JAAFAAR with the capability to
receive remote agents from the Internet. Furthermore, we have added the possibility to
connect some remote monitors to allow remote researchers to control the evolution of a
simulation without being physically present on the site that hosts the simulation.

4.2. How?

To achieve our purpose, we first have had to examine the existing technologies to add
some network functionalities to JAAFAAR. The most famous of them are undeniably
— RM1,% which is a remote control extension of Java for distributed applications — and
CORBA,? which is a standard for remote control of common objects through the Inter-
net. In the case of RMI, we risk to limit the platform to interact exclusively with Java
applications, whereas in the case of CORBA, we open the possibility to interact with
object-based applications that however must implements this norm. In both cases, we
are limited to interact with object-based systems. This can be unacceptable since many
researchers use non-object-oriented language to implement their prototypes. That’s why
we chose to found our network extension of JAAFAAR to more basic protocols whose
are widely supported in the most common languages, be they object-oriented or not.

Despite of this established fact, we can nevertheless learn lesson from these fash-
ionable technologies [Orfali and Harkey 1997]. Both RMI and CORBA offer functional-
ities to transparently control and invoke methods on objects, be they local ore remote to
the system. This is achieved thanks to three basis components:

e The local and instantiable objects of the system, named skeletons.

e The remote and not instanciable objects which are the counter-parts of the skeletons,
named stubs.

e The channel that links the two previous entities for communication, named ORB* in
CORBA technology.

To transpose these concepts into JAAFAAR then consists in binding local and re-
mote components by a communication channel with a communication protocol. More
precisely, the remote components that may be connected to a JAAFAAR simulator are
either monitor applications for remote control of the simulator, or remote agents which
are actually remote brains. In both cases, these components are clients which can be
linked to the server by socket® connections.

One of the primordial steps in the design of client/server applications consists in
choosing the kind of socket used over IP (the level 3 in the OSI® Model that contains
seven levels). The Java Development Kit from SunMicrosystems provides two kinds of
built-in protocols:

2 Remote Method Invocation.

3 Common Object Request Broker Architecture.
4 Object Request Broker.

5 A socket is a network communication interface.
6 Open Systems Interconnection.

JAAFAAR: A WEB-BASED MULTI-AGENT TOOLKIT FOR COLLECTIVE RESEARCH 281

network connection

Y
NetGate \’L,) ‘”17 ®
{8 N
NetGuard for Remote Agent Gate
remote agents s |
\ / P

- ,/
| i
i) . J /

[Remote Agent
N

"‘_____)

Monitor

NetGuard for —
monitors
g T_
NetGate {T} NetGates T) @
MNetwork . . A

network connection
Figure 6. The network architecture of JAAFAAR.

UDP,” which is a connectionless protocol that runs on top of IP networks. UDP/IP
provides very few error recovery services, offering instead a direct way to send and
receive datagrams over an IP network. It’s used primarily for broadcasting messages
over a network. UDP is useful when TCP would be too complex, too slow, or just
unnecessary.

TCP,? which is the suite of communications protocols used to connect hosts on the
Internet. TCP/IP uses several protocols, the two main ones being TCP and IP. TCP/IP
is built into the UNIX operating system and is used by the Internet, making it the de
facto standard for transmitting data over networks. Even network operating systems
that have their own protocols, such as Netware, also support TCP/IP. TCP is useful
when you want to be sure that a packet send over the network is well arrived.

Due to the efficiency of UDP with respect to TCP and because an eventual loss

of data is not prejudicial to our applications, we have chosen to use UDP sockets rather
than TCP. Moreover, according to expected simulations, the speed of data transfer can be
crucial, then the speed is the more essential parameter. To implement UDP sockets, Java

7 User Datagram Protocol.
8 Transfer Control Protocol.

282 CALDERONI AND SOULIE

provides two dedicated classes [Flanagan 1997]: java.net .DatagramPacket and
java.net.DatagramSocket. Sockets represent the network communication inter-
faces, whereas packets represent the messages which are in transit on network between
two sockets.

Although Java provides some low-level mechanisms to exchange messages on
the network using UDP sockets, we have had nevertheless to implement the high-
level connection between sockets and our distributed software components. This was
achieved by implementing higher-level network communication interfaces which we
named jaafaar.net.NetGate. Actually, a NetGate embeds a Datagram-
Socket and is able to transmit some java.lang.Stringover the network by trans-
forming their encoding description into DatagramPackets. This gave us the freedom
to develop a small command language as communication protocol between our software
components: JaafaarTalk, whose syntax is based on lisp-like symbolic expressions.

Thanks to these NetGates, any JAAFAAR server is then able to communicate
with any distributed applications (remote clients) using JaafaarTalk as communication
protocol, and this whether they are written in C, C++, Ada, SmallTalk, Java, or in
any language that support the UDP protocol. The figure 6 finally illustrates the network
architecture of JAAFAAR.

5. Conclusion

This paper has presented the features of JAAFAAR, a web-based multi-agent toolkit for
collective research. We first have explained how the enhancement of the object model
led to the agent model. Then we have presented the heart of the platform as a multi-agent
toolkit founded on both an environmental model, which constitutes the exclusive inter-
action medium between agents and supports signal propagation and phenomenology,
and an agent model, that includes perception/action mechanisms and a behavior control
capability. We have then point out the utility to extend the potentialities of JAAFAAR to
web-based technologies. We have explained how we made our platform an actual dis-
tributed experimental laboratory for remote and collective research. Indeed JAAFAAR
takes into account not only internal components written with Java, but also networked
components written with any type of language, be they object-oriented or not. The re-
mote agents have a physical representation within the JAAFAAR’s environment (their
body), and remote users can control their behavior with remote brains and observe the
simulation with remote monitors. Moreover, since more than one remote agent can be
connected to JAAFAAR, researchers can then confront their own architectures to others
and, consequently, enhance the speed of their works and preventing them from errors
due to bad implementations. Research in multi-agent systems needs such toolkit to test
and validate agent architectures on commonly defined problems. JAAFAAR opens this
possibility with simpleness. Finally, we plan to introduce this platform in our teaching as
a challenging framework to emulate the creativity of our students through agent contests.

JAAFAAR: A WEB-BASED MULTI-AGENT TOOLKIT FOR COLLECTIVE RESEARCH 283

References

Agha, G. (1986), “Actors: A Model of Concurrent Computation,” In Distributed Systems, Artificial Intelli-
gence, MIT Press.

Bonabeau, E., M. Dorigo, and G. Theraulaz (1999), “Swarm Intelligence: From Natural to Artificial Sys-
tems,” Journal of Artificial Societies and Social Simulation 4, 1.

Bousquet, F., I. Bakam, H. Proton, and C.L. Page (1998), “CORMAS: Common-Pool Ressources and
Multi-Agents System,” In Proceedings of the 11th International Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Expert Systems, A. del Pobil and M. Ali, Eds., Lecture
Notes in Artificial Intelligence, Vol. 1416, Springer, Berlin, pp. 826-838.

Calderoni, S. and P. Marcenac (1998), “MUTANT: a Multi-Agent Toolkit for Artificial Life Simulation,”
In Proceedings of the 26th International Conference on Technology of Object-Oriented Languages and
Systems, M. Singh, B. Meyer, J. Gil, and R. Mitchell, Eds., IEEE Computer Society Press, Santa Barbara,
CA, pp. 218-229.

Davis, R. (1980), “Report on the Workshop on Distributed Artificial Intelligence,” SIGART Newsletter 73,
42-43.

Drogoul, A., B. Corbara, and D. Fresneau (1993), “Manta: New Experimental Results on the Emergence of
(Artificial) Ant Societies,” In Simulating Societies Symposium, C. Castelfranchi, Ed.

Durfee, E.H., V.R. Lesser, and D.D. Corkill (1989), “A Survey of Cooperative Distributed Problem Solv-
ing,” In The Handbook of Artificial Intelligence, A.B. Barr, P.R. Cohen, and E.A. Feigenbaum, Eds.,
Vol. 4, Chapter 17, Addison-Wesley, Reading, MA, pp. 83-147.

Ferber, J. (1994), “Reactive Distributed Artificial Intelligence: Principles and Applications,” In Sixth Gen-
eration Computer Technology, G. O’Hare and N. Jennings, Eds., Wiley-Interscience Publication, New
York, pp. 287-314.

Ferber, J. (1999), Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison-
Wesley, Reading, MA.

Finin, T., J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay, J. McGuire, R. Pelavin, S.
Shapiro, and C. Beck (1993), “Specification of the KQML Agent-Communication Language,” Technical
Report, The DARPA Knowledge Sharing Initiative — External Interfaces Working Group.

Flanagan, D. (1997), Java in a Nutshell (Version 1.1), Second Edition, O’Reilly.

Gimblett, H.R. and R.M. Itami (1997), “Modelling the Spatial Dynamics and Social Interaction of Human
Recreators Using GIS and Intelligent Agent,” In Proceedings of the International Congress on Modelling
and Simulation, Hobart, Tasmania.

Gutknecht, O. and J. Ferber (1997), “MadKit: Organizing Heterogeneity in a Platform for Multiple Multi-
Agents Systems,” Technical Report LIRMM-97189, Laboratoire d’Informatique, de Robotique et de
Micro-électronique de Montpellier.

Hewitt, C., P. Bishop, and R. Steiger (1973), “A Universal Modular ACTOR Formalism for Artificial Intel-
ligence,” In Proceedings of the Third International Joint Conference on Artificial Intelligence, Stanford,
CA, pp. 235-245.

Jennings, N.R. and T. Wittig (1992), “ARCHON: Theory and Practice,” In Distributed Artificial Intelli-
gence: Theory and Practice, ECSC, EEC, EAEC, pp. 179-195.

Liberman, M. (1987), “Concurrent Object-Oriented Programming in Actl,” In Object-Oriented Concurrent
Programming, Yonezawa, Ed., MIT Press, Cambridge, MA, pp. 9-36.

Minar, N., R. Burkhart, C. Langton, and M. Askenazi (1996), “The Swarm Simulation System: A Toolkit
for Building Multi-Agent Simulations,” Technical Report, Santa Fe Institute.

Orfali, R. and D. Harkey (1997), Client/Server Programming with Java and Corba, Wiley Computer Pub-
lishing, New York.

