
Annals of Software Engineering 13, 231–247, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

XML-Based Hypertext Functionalities for Software
Engineering

LUCA BOMPANI, PAOLO CIANCARINI and FABIO VITALI {bompani; cianca; vitali}@cs.unibo.it
Department of Computer Science, University of Bologna, Mura A. Zamboni, 7 I-40127 Bologna, Italy

Abstract. Hypertext functionalities represent a form of the distilled wisdom of the hypermedia commu-
nity. Even if they were introduced and advocated already in the pre-Web era, most of these functionalities
are absent in current Web browsers. However, such functionalities can be very useful in some specific ap-
plicative fields, like for instance browsing complex software engineering documents, using standard WWW
components. We propose to exploit the advent of XML as a basic infrastructure for describing software
engineering hypertexts. In fact, we describe XMLC, a prototype of an XML browser that, given its modular
architecture and general scope, can be seen as the basis for implementing sophisticated hypertext function-
alities for software engineering documentation to be maintained and browsed on the Web.

Keywords: XML, displets, hypertext functionalities, software engineering notations

1. Introduction

The community of researchers of hypertext functionalities was born in order to identify
and study systems and functions suitable to create and manage hypertext, and to either
verify them or introduce them in other communities such as document management
systems, software engineering environments, and worldwide information systems like
the Web [Rossi and Ziv (eds.) 1998].

Interestingly, even if it is a very huge hypertext, the World Wide Web has developed
according to ways that were very peculiar and difficult to predict for most hypertext re-
searchers. For instance, the WWW community valued the development of standards and
protocols more than functionalities. This lead to the creation of some dozens of differ-
ent languages and protocols that are necessary to master the task of creating satisfactory
Web sites.

Such a richness of languages shows on one hand, that there exists the possibility
of implementing a large number of interesting functionalities, and on the other hand,
that unfortunately the WWW does not enforce or even facilitate them, so that their use
depends on the will and awareness of the authors of Web pages and sites. Furthermore,
this richness of possibilities is coming to the detriment of simplicity, which was once the
real advantage of the World Wide Web over other systems such as Gopher or FTP.

Yet, the XML family is a considerable advancement over previous languages and
standards. The possibility offered by XML [Bray et al. 1998] to freely define a syntax



232 BOMPANI, CIANCARINI AND VITALI

(i.e., a Document Type Definition, or DTD) tailored for one’s document classes, and to
use standard XML tools to create, verify and exchange data is a real bonus.

In our opinion the strength of XML lies beyond its capabilities suitable to define
community-specific DTDs. For instance, it is becoming convenient to use it even for
application-only data, that is, for objects that are not naturally meant to be displayed to
a human user.

One of the long-term goals of our research group at the University of Bologna
consists of creating an environment that, while relying on several existing Web languages
and protocols, can provide fundamental hypertext functionalities in a streamlined and
easy way. In this paper we will concentrate on browsing and displaying hypertext data.

Our approach is particularly useful to make software engineering environments
Web-aware: most documents of current software processes tend to be composed of sev-
eral different chunks, some of text, some of formulas in special notations, and some of
structured graphical diagrams. Currently it is very difficult to turn these documents into
pages that can be made available through a Web browser, since each formula and each
diagram need to be converted into a passive image.

In this paper we discuss the design of XMLC, a compiler for XML documents that
is the kernel of a very general architecture for providing sophisticated functionalities to
documents created in the XML format. While our overall design goals are to create a
complete authoring environment for sophisticated hypermedia, in this paper we focus
on sophisticated browsing of XML data. Indeed, the architecture described here can be
fruitfully used for more than visualization, for it is an extremely general way to associate
behaviors to XML elements, and thus to produce active documents that perform com-
putations, enact goals, produce results. We call these documents declaratively active
documents (or DADs) because of this characteristic.

This paper is structured as follows: in the next section we discuss some of the most
important hypertext functionalities on the Web. Then we classify some hypertext func-
tionalities that are natural to single out in normal software engineering documents. In
the following section we discuss the current architecture of XMLC, and provide exam-
ples of some of the displet classes we have created. Of particular importance in our view
are the packages for displaying notations relevant to software engineering, which have
constituted for several reasons our main target for the implementation of displets.

2. Hypertext functionalities on the Web

In [Bieber et al. 1997] a list of nine fundamental (according to the authors’ opinions)
hypermedia functionalities were proposed and discussed, with the understanding that
few of them, if any at all, were either available on the World Wide Web or exploited to
their full potential:

• Typed nodes and links.

• Link attributes and structure-based queries.

• Transclusions, warm and hot links.



XML-BASED HYPERTEXT FUNCTIONALITIES FOR SOFTWARE ENGINEERING 233

• Annotations and public vs. private links.

• Computed personalized links.

• External link databases and link update mechanisms.

• Global and local overviews.

• Trails and guided tours.

• Backtracking and history-based navigation.

These items were selected from a longer list of 25 items assembled at the 2nd HTF
workshop in conjunction with the Hypertext 96 conference [Ashman et al. 1996].

Most of these functionalities could be easily implemented with current WWW
technologies. Server-side CGI, servlets and DBMS applications, as well as client-side
plug-ins, Java and Javascript programs allow now a degree of freedom in customizing
the WWW unprecedented in any other hypermedia system (even those that did imple-
ment some of these functionalities). Both the research and the commercial communities
have in fact already explored some of these functionalities in the last few years. Yet, few
of them have really caught on with the larger WWW community, or even found a small
visibility stand-point through the available commercial applications.

We suspect indeed that no Java applet, CGI application or other custom concoction
can possibly produce any relevant change in the way the WWW is used. The reason
for this is that these would all be added functionalities to the core sets in servers and
browsers, and, unfortunately, the WWW is neither the set of server functionalities, nor
the set of browser functionalities. The fact that the WWW is not a system, or a set
of interdependent systems, but a set of protocols and languages, is obviously not yet
sufficiently understood. No single system can provide added value to the WWW as
a whole. Almost no organization (in many cases not even Microsoft) can introduce a
new functionality in its products and find out that the WWW as a whole catches on.
The WWW must not be improved in the systems, but in the way it actually works: by
changing the underlying languages and protocols (namely HTML, HTTP, CGI, etc.).

We can group the above-mentioned functionalities in two larger families: those
that add to the active participation of the users in the production of information, and
those that add to the exploration of the available information. On the one hand, anno-
tations, private links and computed personalized links (that require external link bases
and link update mechanisms to work on a large scale) allow for the active participation
of readers to the nodes they read. On the other hand, overviews, trails, guided tours and
sophisticated backtracking patterns (that require richer types and attributes for nodes and
links) enhance the navigation and the access to the information of the hyperbase. Finally
transclusions and links of various temperature provide both a richer expressive means
for authors, and a richer exploration means for readers.

Both families share the same problem: they are not functionalities that can be
experienced by the single user, i.e., that one enlightened user can adopt for his/her own
purposes and be enriched by using them; they are functionalities that have to be shared by
a large community in order for them to fully provide their benefits. There is little point



234 BOMPANI, CIANCARINI AND VITALI

in using an external link database, if we cannot share our links with our colleagues;
there is little point in annotating or transcluding, if we cannot publish our notes and
transclusions; there is little point in being able to create overviews and guided tours on
some collection of documents, if we cannot publish them for our readers. Thus these
functionalities must be dictated through the standards and protocols that make up the
Web, rather than through any specific application.

More recently, in [Vitali and Bieber 1999] four hypermedia functionalities were
further identified:

• Editable browsers.

• Storing document content and link anchors separately.

• External linkbases.

• Displaying link spans, node and link attributes.

In all these cases, actual WWW protocols were cited that could provide the neces-
sary expressive power to implement these functionalities: WebDAV [Goland et al. 1999]
provides clients with remote writing power, thus make editable browsers a real possibil-
ity. XPointer [DeRose and Daniel Jr. 2001] and XLink [DeRose et al. 2001] allow
external links, thus making it possible to separate content and link, and to put links into
external linkbases. RDF [Brickley and Guha 1999] allows arbitrary meta-information to
be added to any Web document, and to be used for classification, indexing, and searches.

A shareable long term goal is to identify a single, simple and streamlined architec-
ture to provide all these functionalities using WWW protocols and hiding the complexi-
ties behind the protocols used. With XMLC, which will be described in the next section,
we are providing a single, easy to use and easy to expand architecture for browsing XML
documents. We consider it a first step in that direction.

3. Hypertext functionalities in a software development project

A software development process is the description of both the activities and the docu-
ments to be produced during the development of a software product. In short, a software
process is a method to produce a software product; it prescribes in details all the docu-
ments to be produced and all techniques and tools to be used in all development phases
starting from the exploration of the concept of a new product and ending when the prod-
uct is finally retired from operation.

In the last years, software engineering environments have evolved mainly in the
explicit support they offer to specific software process models. This means that most re-
search efforts have focused on how a software process is described and how its activities
are controlled and enacted by a process engine, namely a process-centered programming
environment that divides the whole software engineering lifecycle in several subsequent
and/or parallel phases, each with its own characteristic input and output documents.

The set of documents related to a software development process are many, of dif-
ferent forms, formats, and specificity. Documents belonging to different phases of the



XML-BASED HYPERTEXT FUNCTIONALITIES FOR SOFTWARE ENGINEERING 235

software process will sometimes have the same topic, but with a different level of de-
tail and granularity. Documents belonging to the same phase will be differentiated in
purpose, structure and content. Single documents belonging to one phase may contain
parts of differing structure, notation, and purpose: for instance, the same topic may be
handled with a free-text description, a formal specification using an appropriate mathe-
matical notation, a graphic depiction of its parts, etc.

A key issue that has become pervasive and obvious in recent years is the support
for hypertext functionalities in the data format. In its simplest form, hypertext is the
provision of connections and relationships between documents and text chunks, allowing
readers to move from a document to another one (navigation) following a different order
than the one imposed by the linear sequences of the documents themselves. In a complex
situation such as the one enacted in the software development process, the relationships
could be classified in scope as follows:

• Inter-phase relationships, or the relationships existing among documents belonging
to different phases of the software process.

• Intra-phase relationships, or the relationships existing among different documents of
the same process phase.

• Inter-part relationships, or the relationships existing, within a single document, be-
tween different parts and possibly different notations (free-text, structured text, math-
ematical notations, graphical depictions).

• Intra-part relationships, or the relationships existing within a single part or notation
of a document, between the atomic entities that compose it (for instance, between
different elements of the same schematics).

A more comprehensive and general definition of hypertext is relationship man-
agement for data-based applications. An application in our sense is not simply a pro-
gram, but a structured set of procedures that are concerned with a collection of data
elements and interest computer programs, people, processes, plus whatever storage, re-
trieval, transmission and processing engines are used for their management. The same
application can be used with different data, and the same data can undergo different
applications. So, according to our definition, hypermedia is all that is concerned with
structuring and giving access to the parts composing an application through their inter-
relationships.

These relationships do not simply have to be among the data elements, or be com-
posed of specific, ad hoc references between two specific objects. We take a broader
view of the idea, deriving from [Bieber et al. 1997] a list of classes of relationships.

3.1. Schema relationships

Schema relationships are the connections created by the structuring of the data elements
in separate objects where the relation is apparent in the structure itself. The schema
relationships deal with the structures of the entities of the software process: the modules
of software packages, the function points of a complex procedure, the elements of a



236 BOMPANI, CIANCARINI AND VITALI

complex data type, the methods of an object, etc. Modular design practices (top-down,
bottom-up, structured, object oriented, etc.) imply that some entities are defined once
and recur in several different places in the same document or across documents.

3.2. Ontological relationships

Ontological relationships are the connections linking data elements, programs, people,
process steps or underlying working environments with the parameters and descriptive
information that accompany and define them. Ontological relationships provide generic
information about the individual entities of a document: the meaning of an acronym or
of a specialized term, the numerical values of a quantitative design constraint, the global
identifier of a document section, issue, requirement or entity, etc. Such information
chunks are not necessarily contained in any other document and can usually be deduced
by the definition of the element, by its specification, or by an apposite data dictionary
provided for this purpose.

3.3. Occurrence relationships

Occurrence relationships are the connections between all appearances and uses of a data
element, program, person, etc., in the application. Sometimes the same entity, require-
ment, or function appears in several documents, for different purposes and in different
detail. Occurrence relationships exist between an entity and all the places in the docu-
ment where the information is presented, discussed or detailed. Indexes specify all the
occurrence of a given term. Specialized indexes may create a list of all the occurrences
of only those terms that are deemed interesting. Tables of content, on the other hand,
provide a general structure of the definition of terms. By combining these two services,
one can easily provide all the occurrence relationships in documents.

3.4. Process relationships

Process relationships are the connections between a data element, program, person, etc.
and the application’s processes that can or do interact with it. We say that there is a
process relationship between an entity and all the tasks in the software processes that
deal with the entity. For instance, there is a process relationship between drafts of the
same document as it progresses through all the stages of creation, verification and mod-
ification. Or, a process relationship exists connecting the test series and their output,
because each output is the result of a process on a specific test suite.

3.5. Structural relationships

Structural relationships are the connections that embody a structure of constraints and
references. Some information chunks may be seen as a different view of some data items
that may or may not be shown autonomously. For instance, if a read-only method of a



XML-BASED HYPERTEXT FUNCTIONALITIES FOR SOFTWARE ENGINEERING 237

class is a simple computation based on other read/write elements, a structural relation-
ship exists between the method and the formula. More abstractly, the choice of a given
software process model will impose the creation of a series of given documents, whose
structure and layout are often given in advance. Thus there exists a structural relation-
ship between each structure and the part of the specification of the software model that
requires it.

3.6. Dynamic relationships

Dynamic relationships are connections that are not intrinsic to the application model or
in any other way known in advance, but that become apparent during the life of the ap-
plication. These relationships may derive from applying some logic and computation to
the state of the document, or may derive from external events that happened since the
document was written. A dynamic relationship thus is a data-mining discovery about
the usage, structure, occurrence, etc. of entities and documents. Generally, these rela-
tionships present themselves during the lifecycle of a document, as opposed to the time
of its creation. That is to say, they cannot be discovered in advance, during the design
of a document, but are the result of computations on the instances of documents. In the
case of the software process, the most important computations that can be performed
on documents are validation and verification of their correctness, completeness and con-
sistency. Whenever a problem is found out, either automatically or by a human reader,
a relationship is created on the relevant documents. Besides actual problems, dynamic
relationships automatically discovered by appropriate engines may improve the consis-
tency in terms, interfaces, libraries, etc., which may be extremely important for large
and complex software projects.

3.7. Ad hoc relationships

Ad hoc relationships are all the relationships whose existence cannot be determined by
a rule, but are created because of an ad hoc decision (usually by a human, but not nec-
essarily). These are the well-known hypertext links in the stricter sense. For instance,
this includes all connections between structured elements of the documents and non
structured chunks (such as annotations, comments, discussions, etc.). Furthermore, of
course, all links and references to documents not produced within the software process
are ad hoc. Furthermore, we include in this category all connections that, for several
ad hoc reasons, cannot be included in the other categories (such as links to unclassi-
fied bug reports, unimplemented constraints, deliberate violations of requirements and
specifications, etc.).

To every type of relationship corresponds a type of link. With the exception of ad
hoc links, which have to be created one by one by skilled people, and dynamic links,
which should be created during the lifetime of the document base by ad hoc analysis
and data mining applications, all other types of relationships can and should be made
available to users without specific human intervention. These two classifications, in



238 BOMPANI, CIANCARINI AND VITALI

Table 1
Relationships among software process documents.

Inter-phase Intra-phase Inter-part Intra-part
relationships relationships relationships relationships

Schema Recurring Use Use Not
relationships definitions definition definition appropriate

Ontological Methodology Terms and objects Terms and objects Object
relationships explanation dictionaries dictionaries properties

Occurrence Table of contents Table of contents Table of contents Table of contents
relationships and indexes and indexes and indexes and indexes

Process Not Test sets Process Process
relationships appropriate and results descriptions descriptions

Structural Stub Not Not Computed
relationships generation appropriate appropriate class members

Dynamic Inconsistency Inconsistency Inconsistency Inconsistency
relationships reports reports reports reports

Ad hoc Comments and Comments and Comments and Comments and
relationships references to external references to external references to external references to external

literature literature literature literature

scope and types, provide us with the grid in table 1, which we filled with the types of
relationships that are relevant for the software process.

4. The architecture of XMLC

XMLC (XML Compiler) is an architecture for rendering displets. XMLC relies upon
technologies and languages such as XML, XSL and DOM.

The main purpose of XMLC is to read an XML document and to produce a dis-
playable tree of Java objects. This happens in a few steps: first, the XML document
is read and transformed by a normal XML parser into an internal tree representation
based on DOM. Then one or more layers of XSL stylesheets are applied to the DOM
tree through the use of an XSLT processor. This creates a final DOM tree that needs to
have an important property: for every element type in the tree there must be an available
Java class (a displet) that can be activated. XMLC will finally instantiate all the required
displets, creating a tree of runnable objects.

Each element in the DOM tree is transformed into a displet according to the fol-
lowing rules:

• The element’s name determines the Java class to be loaded.

• The element’s attributes determine the value of the settable properties of the instance
of the class.

• The element’s content (both sub-elements and text content) is added to the tree as
children of the class instance.



XML-BASED HYPERTEXT FUNCTIONALITIES FOR SOFTWARE ENGINEERING 239

Figure 1. The architecture of the XMLC engine.

The current implementation of the XMLC architecture is in Java; a displet can
be any sort of Java classes, but deriving them from the widget defined by the AWT
and Swing Java library, it is easy to create sophisticated and interoperable displets. In
particular using the Containers and Components base class they can be easily organized
in hierarchies, which nicely fit with the hierarchical nature of DOM trees and XML
documents.

Currently, our main use of XMLC is wrapped inside an applet within an HTML
document, as shown in figure 1. Parameters of the applet are the XML documents to be
displayed and the XSL stylesheets to be applied to it. This allows us to display XML
documents within well-known Internet browsers.

Furthermore, since XML elements are transformed into Java objects, complex be-
haviors can be easily added during the lifetime of the visualization, providing support
for hypertext jumps, animations, interactions with the reader, and in general all the com-
putational capabilities of the Java language.

5. Active documents for software engineering

In our research group we have adopted a displet-based approach to building tools for
software engineering notations, like for instance XML, Z [Brien and Nicholls 1992] and
Petri Nets. We have developed in the last year a number of specialized browsers/editors
for these and other well-known notations, which will be described in the following sub-
sections.

Given a formal notation (e.g., Petri Nets diagrams), we have looked for or defined a
DTD in order to capture its abstract syntax. Starting from the DTD, we have defined one



240 BOMPANI, CIANCARINI AND VITALI

or more XSL stylesheets that can be used to manipulate the XML documents. There are
at least two purposes that can be enabled by this transformation: we can either display
the document or provide some kind of computation on them, such as performing static
analysis on them. For instance, with a Petri Net diagram, a possible static analysis
consists of looking for loops.

The final step consists usually of enabling the editing and interactive display of the
notation inside a Java-enabled browser developing a library of specific displets. We
have developed displets for Petri Nets, Z, Statecharts, Data Flow diagrams, Entity–
Relationship diagrams, Workflow diagrams, and most UML diagrams. Interactive dis-
play is possible when some behavioral semantics is associated to the notations. For
instance, the Petri Nets displets can play the token game typical of this notation.

5.1. UML specifications

A key issue is how to define a DTD for a complex software engineering notation. For
instance, if an organization uses the UML family of notations and related development
process and tools, it is now available XMI (XML Metadata Interchange, by IBM and
others), an XML-based metamodel. All UML documents written according to XMI can
be displayed by XML-aware browsers and manipulated by XML-based tools to check
for some semantics constraints, like consistency. We are applying our approach to XMI
as well. A displet has been developed in our group to provide visualization of XMI.
An editor called Elmuth (reverse acronym for HyperTextual UML Environment) has
been developed. Elmuth is able to create hypertextual and active visualizations of UML
documents. Figure 2 shows an instance of MS Internet Explorer including an active
document describing (part of) the UML metamodel.

Hypertext multidirectional links among diagrams are managed using our imple-
mentation of XLink. The browser includes here four areas: the uppermost left area
shows an HTML index useful to navigate the document, the uppermost right area shows
a class diagram, the lower right area is a data dictionary, the lower left area shows some
code automatically generated from the class diagram.

5.2. The Z notation

A complete support for the Z notation has been implemented. The DTD we use is based
on the ZIF Interchange Format [Ciancarini et al. 1999], although, through the use of
different XSL stylesheets, other syntaxes can be used as well.

The support for Z elements is given by a single displet class, zElement, for all the
box types present in Z specifications (e.g., schema, axioms, etc.), and a special down-
loadable font for all the mathematical glyphs specific of the Z language (e.g., function,
subset, the set of integers, etc.).

All other elements of the Z language are mapped onto plain HTML elements such
as P, DIV and SPAN. An additional layer of XSL will then transform them into Paragraph
and Word objects as needed. In figure 3 we show a small fragment of a Z specification
(expressed in ZIF) and in figure 4 its rendering.



XML-BASED HYPERTEXT FUNCTIONALITIES FOR SOFTWARE ENGINEERING 241

Figure 2. The representation of a UML diagram.

5.3. Finite State Machines

A very simple notation for finite state machines has been implemented.
Lacking any agreed-upon DTD we have created our own, which composed of just

three elements: StateMate (the general container), State (representing a State in the Fi-
nite State Machine, shown as a rounded-rect box in the display) and Arc (representing a
transition in the Finite State Machine, and shown as an arrow in the display). Each state
has a position and a label, while the arcs have a label that start from and arrive to the
center of the state box. The labels are the content of the State and Arc elements, and can
be of any kind (that is, one can use any other displet for them, including HTML elements
or other notations as needed).

Each state has an identifier, which is used by the arcs to identify their origin and
destination. States can be initial or final. The author must specify the position of the
states, while labels are automatically drawn in the correct position. In figure 6 we pro-
vide an example of a simple StateMate fragment shown in figure 5. StateMate schemas
are an example of active displets, since both states and arcs are active. The active state is
highlighted, and by clicking either on a transition or on a destination state, it is possible
to traverse the available transitions and execute the finite state machine. Non-reachable
states and transitions cannot be activated.



242 BOMPANI, CIANCARINI AND VITALI

Figure 3. An XML fragment with a Z specification.

Figure 4. The visualization of the Z specification.



XML-BASED HYPERTEXT FUNCTIONALITIES FOR SOFTWARE ENGINEERING 243

Figure 5. An XML fregment with a finite state machine.

5.4. Hypertext links

W3C is proposing two languages to express hypertext links in XML. XPointer [DeRose
and Daniel Jr. 2001] provides a way to express sub-resource addresses within XML
documents and other resources, and XLink [DeRose et al. 2001] defines a syntax for
hypertextual links between XML documents.

XPointers can specify locations within XML documents by collecting progres-
sively detailed location specifiers. This makes it possible to specify an arbitrarily small
location without marking it with a tag as in HTML.

XLinks extend HTML links by introducing several new features:

• Links can refer to multiple end-points.

• Links can be multi-directional.

• Links can be stored externally to the resources they link.



244 BOMPANI, CIANCARINI AND VITALI

Figure 6. The visualization of the finite state machine.

Figure 7. The XLink-enabled architecture of XMLC.



XML-BASED HYPERTEXT FUNCTIONALITIES FOR SOFTWARE ENGINEERING 245

Figure 8. A simple hyperlinked document group.

• Links can be activated in a variety of ways (they may open a new window, substitute
the current content, or expand within the current content, etc.).

• Links can create groups of related documents to be loaded together.

We have provided a complete implementation of XLink based on displets for our
XMLC architecture. This has added a few steps to the sequence of transformations of
the XMLC application, as shown in figure 7.

After parsing the XML document, all link elements are identified and added to a
list. Then, an identifier is added to all the addressable elements of the document, since
after the application of the XSL stylesheets the structure of the document can become
arbitrarily different from the original one, and it is necessary to provide a way to identify
the elements that can be located through XPointers. The document then is subjected to
the usual XSL transformations. Before displaying, though, additional wrapper classes
are added around the document elements that are starting points of links, to provide the
most appropriate jumping functionality. When the user clicks on one such element, the
class reacts, consults the list of destinations, and activates the jump.

The implemented management of document groups is quite sophisticated and takes
into consideration whether the destination document will replace the current one, it will
be created in a new window, or it will integrate with the current document. Figure 8
shows a sample hyperlinked document group.



246 BOMPANI, CIANCARINI AND VITALI

6. Conclusions

Hypertext functionalities will be slow in implementation, and even slower in acceptance.
It is just too difficult to take care of them by non-professionals.

The kind of ideas and functionalities presented here and in the literature on hy-
permedia functionalities present important characteristics anyway, that we presume will
become more and more important as the public gets acquainted with the possibilities of
the new medium. Yet, in order to provide easily sophisticated functionalities as the ones
mentioned, the current architecture of the clients and the servers needs to be rethought.
In particular, fewer and more powerful protocols and standards need to be used.

The XML family is an important step in that direction. XML and its cohort can
actually let users and authors express their data and wishes in a sophisticated, customiz-
able and expandable way. But a new software architecture needs to be implemented to
take advantage of the generality of these languages.

XMLC is a customizable and expandable architecture for displaying XML doc-
uments. Being expandable, it has been easy to add support for several sophisticated
hypertext functionalities, such as the ones allowed by XLink and XPointer. Work is un-
der way to add more of them to future implementations. XMLC is a working prototype,
and can be examined, downloaded and used. We gladly point the interested reader to the
URL: http://www.cs.unibo.it/projects/displets/.

Acknowledgements

This paper has been partially sponsored by an Italian MURST 40% project contract
“SALADIN”, and by a grant from Microsoft Research Europe. We would like to ac-
knowledge here the contribution of all the people that have worked on this architec-
ture: Michael Bieber, Chao-Min Chiu, Cecilia Mascolo, Stefano Pancaldi, Alfredo Rizzi,
Alessandro Rocca, Alessandro Ronchi, Silvia Villa, and all our students of the Software
Engineering classes at the University of Bologna.

References

Ashman, H., V. Balasubramanian, M. Bieber, and H. Oinas-Kukkonen, Eds. (1996), Proceedings of
the 2nd International Workshop on Incorporating Hypertext Functionality into Software Systems
(HTFII), Hypertext 96 Conference, Washington, http://www.cs.nott.ac.uk/hla/HTF/
HTFII/Proceedings.html.

Bieber, M., F. Vitali, H. Ashman, V. Balasubramanian, and H. Oinas-Kukkonen (1997), “Fourth Generation
Hypertext: Some Missing Links for the World Wide Web,” International Journal of Human-Computer
Studies 47, 31–65.

Bray, T., J. Paoli, and C.M. Sperberg-McQueen (1998), “Extensible Markup Language, (XML) 1.0,”
10 February 1998, http://www.w3.org/TR/REC-xml.

Brickley, D. and R. Guha (1999), “Resource Description Framework (RDF) Schema Specification,”
3 March 1999, http://www.w3.org/TR/REC-rdf-schema.

Brien, S. and J. Nicholls (1992), “Z Base Standard, Programming,” Programming Research Group, Oxford.



XML-BASED HYPERTEXT FUNCTIONALITIES FOR SOFTWARE ENGINEERING 247

Ciancarini, P., F. Vitali, and C. Mascolo (1999), “Managing Complex Documents over the WWW: A Case
Study for XML,” IEEE Transactions on Knowledge and Data Engineering 11, 4, 629–638.

DeRose, S. and R. Daniel Jr. (2001), “XML Pointer Language (XPointer), W3C Proposed Recommenda-
tion,” 27 June 2001, http://www.w3.org/TR/xptr.

DeRose, S., E. Maler, and D. Orchard (2001), “XML Linking Language (XLink), W3C Recommendation,”
27 June 2001, http://www.w3.org/TR/xlink.

Goland, Y., E. Whitehead, S.C.A. Faizi, and D. Jensen (1999), “HTTP Extensions for Distributed Authoring
– WEBDAV, IETF RFC 2518,” February 1999, http://www.ietf.org/rfc/rfc2518.txt.

Rossi, G. and H. Ziv, Eds. (1998), Proceedings of the Fifth International Workshop on Engineer-
ing Hypertext Functionality into Future Information Systems (HTF5), ICSE’98 Conference, Kyoto,
http://www.ics.uci.edu/pub/kanderso/htf5/papers.

Vitali, F. and M. Bieber (1999), “Hypermedia on the Web: What Will It Take?” ACM Computing Survey,
in print.


