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Abstract. Separation of concerns is a well-established principle in software engineering that supports reuse
by hiding complexity through abstraction mechanisms. The Abstract Design Views model was created
with reuse in mind and allows the designer to apply separation of concerns in a software system from the
design to the implementation. In this model, viewed objects represent the basic concern, i.e., the algorithms
that provide the essential functionality relevant to an application domain, and viewer objects represent the
special concerns related to other software issues, such as user interface presentation, synchronization, and
timing. In this paper we use a reuse taxonomy to analyze and validate this model. Using this analysis
and the properties of the relationship between viewer and viewed objects, called “views,” we also indicate
how to map the views-based designs into implementations based on design patterns that satisfy the views
properties. Finally, we show how to apply the principles of our approach, using views and the design
patterns, to design e-commerce applications.
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1. Introduction

Software reuse is the branch of software engineering concerned with using existing soft-
ware artifacts during the construction of a new system. These artifacts include design
elements, documentation, specification, source code and many other aspects involved in
a software engineering project. It has been recognized that by introducing reusable ar-
tifacts at various levels of abstraction in the software development process, reuse is one
approach capable of making substantial improvements in software productivity, devel-
opment cost, and quality [Mili et al. 1995].

However, effective software reuse involves software that is reusable by construc-
tion, not by chance, and higher-levels of reuse are obtained with careful architectural and
detailed design [Wentzel 1994]. As a reuse technique that has been introduced with this
purpose in mind, separation of concerns is a well-established principle in software engi-
neering that hides complexity by means of abstraction mechanisms [Fayad et al. 1999].
Separation of concerns can be used, for example, to separate the user interface from the
application part of a system or act as an interface for distinct modules of a system. In
both cases, reusability is a consequence of the separation of concerns developed in the
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structure of the system. By preventing modules of the application from knowing about
the surrounding environment, the approach eliminates a significant drawback to reuse.

However, the many facets of separation of concerns are still rarely used in the
various phases of the software development lifecycle because of a lack of adequate prin-
ciples, theories, processes, and tools to support consistent application of these concepts.
There is a need for approaches including definitions, models and properties that clearly
separate the various functional concerns addressed in a software system and help the
developers realize their designs in terms of more detailed ones based, for example, on
design patterns.

The Abstract Design Views model [Cowan and Lucena 1995; Alencar et al. 2001]
was created with reuse in mind and allows the designer to separate the concerns in a soft-
ware system and to retain this separation in the implementation phase. According to this
model, viewed objects represent the basic concern, i.e., the algorithms that provide the
essential functionality relevant to an application domain, and viewer objects represent
the special concerns related to other software issues, such as user interface presentation,
synchronization, and timing. The model also indicates how an object-oriented design
can be separated into objects and their corresponding interfaces. In this model objects
can be designed so that they are independent of their environment, because adaptation
to the environment is the responsibility of the interface or view. Informal versions of
the model have already been successfully applied to many operational and commercial
software systems [Cowan and Lucena 1995].

In this paper we use a reuse taxonomy to analyze and validate this model. This
taxonomy will allow us to characterize the Abstract Design View model in terms of its
reusable artifacts and to show how these artifacts are abstracted, selected, specialized
and integrated. Based on this analysis and the properties of the relationship between
viewer and viewed objects, called “views,” we also indicate how to map the designs into
implementations based on design patterns that that satisfy the views properties. Finally,
we show how to apply the principles of our approach on separation of concerns, using
views and the design patterns, to design e-commerce applications.

2. Background

2.1. Separation of concerns

According to the Oxford English Dictionary, a concern is a relation of connection or
active interest in an act or affair. Alternatively, Czarnecki et al. define a concern as
a domain used as a decomposition criterion for a system or another domain with that
concern [Czarnecki et al. 1996].

The term concern has different meanings across software engineering. In some of
its connotations, a concern may refer to elements of design that cut across the basic func-
tionality of the system. For instance, memory access patterns may be considered in some
cases as one specific concern [Kiczales et al. 1997]. Other notions of concern might be
related to more general concepts such as performance and quality. However, in this pa-
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per we will use the same meaning of a concern as the one given by Fayad et al. [1999].
These authors mention that “current frameworks involve a basic concern and a number
of special-purpose concerns. The basic concern is represented by [Alencar et al. 2001]
algorithms that provide the essential functionality relevant to an application domain,
and the special purpose concerns relate to other software issues, such as user interface
presentation, control, timing, synchronization, distribution, and fault tolerance.”

Different concerns can be identified during analysis, design, implementation, and
refactoring. Objects with similar concerns are connected by a common interest in a
particular domain of the problem description, which may be of structural, functional,
or behavioral nature. Distinct concerns should be loosely coupled and as orthogonal
as possible. While there are guidelines for separating concerns, the identification of
the boundaries of a concern is still an arbitrary task. As Dijkstra states: “The crucial
choice is, of course, what aspects to study in isolation, how to disentangle the original
amorphous knot of obligations, constraints and goals into a set of concerns that admit a
reasonably effective separation” [Dijkstra 1976].

A significant barrier to the reuse of both design and implementation of software
objects and modules is the fact that they internalize knowledge about their surrounding
environment. For example, a typical module or object in an application often knows
about its user interface, specifically details of how its data structures will be displayed,
how the user will interact with the application, or what objects on the screen correspond
to activations of components of the module. Similarly, a module or object knows too
much about the services required from other objects or modules. For example, a module
will know too much about naming conventions in a file system, or about the names of
modules or functions from which it acquires services. Such depth of specialized knowl-
edge seems counter not only to reuse but to good engineering practice in general [Cowan
and Lucena 1995; Fontoura et al. 2000].

2.2. The Abstract Design Views model

The Abstract Design Views model [Cowan and Lucena 1995; Alencar et al. 2001] was
developed in an attempt to overcome the limitations inherent in the separation of con-
cern models, which are based on specific program paradigms. This model is an object-
oriented design model which bridges the gap between an internal world of application
objects and its requirement for knowledge of the external world [Cowan and Lucena
1995]. The basic constructs of the model are the Abstract Design View (ADV) and the
Abstract Design Object (ADO), which represent, respectively, interface objects (views
and interactions) and application objects which are independent of the interface. The
types of object support a disciplined model to design that attempts to separate concerns.

The separation of concerns introduced by the model divides the “world” into two
types of objects. These types are the ADVs and ADOs, and they characterize the concern
of an object in a software model as either interface or application. Although we can find
many structural similarities in both object concepts, it is important to observe that there is
a clear separation between capabilities of ADOs and ADVs. An ADO has no knowledge
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of its surrounding environment, thus ensuring independence of the application from its
interface. On the other hand, an ADV does know about its associated ADO and can
query or modify the ADO’s state by means of its public interface or a mapping between
the ADV and related ADOs [Alencar et al. 1995].

Initially ADVs were used to capture the user interface concerns of interactive soft-
ware systems. Later, the model was extended to general interfaces that could capture
other external concerns such as a timer or a network. A further extension captured other
special purpose concerns such as control, timing, and distribution.

ADVs have been used in various software system designs [Cowan and Lucena
1995; Alencar et al. 2001], e.g., to support user interfaces for games and a graph editor,
to interconnect modules in a user interface design system (UIDS), to support concur-
rency in a cooperative drawing tool, to design and implement both a ray-tracer in a
distributed environment, and to design a scientific visualization system for the Riemann
problem. A research prototype of the VX-REXX system [Watcom VX-REXX 1993]
was motivated by the idea of composing applications in the ADV/ADO style. In ad-
dition, we have shown how ADVs can be used to compose complex applications from
simpler ones [Cowan and Lucena 1995] in a style which is similar to some approaches
to component-oriented software development and megaprogramming [Wiederhold et al.
1992].

2.3. Properties of the views relationship

An Abstract Design Object (or ADO) is a software construct that has no direct con-
tact with the “outside” world. ADOs are only accessible through one or more Abstract
Design Views (or ADVs). ADVs are ADOs augmented to support the development of
“views” of an ADO, where a view is a simple user interface or an alteration of the ADO’s
interface, a contract [Helm 1990]. The ADVs affect the ADOs by means of input events
at the ADV, which are mapped in the ADO. However, the ADO has no knowledge of the
existence of any ADV acting as its intermediary. Thus, by construction, a viewer object
is aware of the public interface of the viewed object, however a viewed object should
have no knowledge about any internal property of a viewer object. This way, the first
property of this model is devised:

Property 1. Visibility property – An ADO is accessible through one or more ADVs.
Thus, one or more ADVs have references to an ADO at any given time, but
the related ADOs do not know about their associated ADVs.

The separation between views and objects allows us to associate many ADVs
(viewer objects) to a single ADO (viewed object). In this case, as the state of an ADO
changes, the ADVs connected to the ADO must be consistent with that change. Us-
ing morphisms or mappings defined between the ADV and the ADO, this invariant is
expressed, as in [Alencar et al. 1995].

The consistency among ADVs is called horizontal consistency, while the consis-
tency between ADOs and ADVs is called vertical consistency. The state of ADVs and
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Figure 1. An ADV–ADO interaction model.

ADOs should be consistent at all times by means of a mapping mechanism. Thus, a
change in the state of a viewed object will effect corresponding changes in the state of
viewer objects related to that object. Therefore, we have a second and a third property
of this model.

Property 2. Horizontal consistency property – Each ADV related to the same ADO must
be consistent among themselves, reflecting any state change of the ADO in
a consistent manner.

Property 3. Vertical consistency property – Each ADV related to an ADO must change
its state consistently with the ADO’s state change.

Like the visibility property, the vertical and horizontal consistency properties can
be found in many papers, e.g., [Cowan and Lucena 1995; Alencar et al. 2001].

In figure 1 we have an ADV–ADO interaction model. In this figure the horizontal
and vertical consistencies are illustrated, as well as how ADVs act as points of entry to
ADOs. In figure 1, we have a counter that gives us the current time. However, we wish
to provide two readings (or clocks) from this source: one digital and one analog. Using
ADVs and ADOs, we are able to map these clocks to the source. Each clock is a view
from the source, that is, each clock is an ADV, and the source is an ADO. Therefore,
in this way we have two different clocks from a single source. Each clock must be
consistent with the single source and the two different clocks must also be consistent
with each other.

In the Abstract Design Views model, it is possible for ADVs and ADOs to be com-
posed or aggregated. The enclosing ADV or ADO knows the identity of its constituents,
but the contrary is not true. The details of the composition of objects are declared through
morphisms [Alencar et al. 1995, 2001], specifying the relationships between the viewer
and viewed objects. For example, in figure 2, we have a composite ADV. In this case,
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Figure 2. A Composite ADV.

the ADVij and ADVji are enclosed within the ADVb
ij . Thus, we have a fourth property

of the Abstract Design Views model.

Property 4. Nesting property – ADVs and ADOs can have nested objects, but only the
enclosing objects have knowledge about the enclosed ones.

It is important to notice that so far only the visibility of ADOs relating to ADVs
was discussed. When discussing the visibility of the ADVs themselves, there are two
possible approaches: with or without transitivity. In the version without transitivity,
ADVs only relate to ADOs. However, where transitivity is present, it is possible for
ADVs to pose as “views” of “views,” but it is still forbidden for ADVs to communicate
in configurations other than this one. Thus, we have the transitivity property of the
Abstract Design View model.

Property 5. Transitivity property – An ADV may have visibility to another ADV, posing
as indirect viewers of an ADO, and direct viewers of another ADV.

The transitivity property has been introduced in a recent paper [Markiewicz et al. 2000],
and was not described in previous articles. When two ADVs are connected to the same
ADO, we consider that they are direct viewers of a same ADO. On the other hand, if
an ADV is not directly referencing an ADO, but it is another ADV that does it, it is
an indirect viewer of that ADO. For example, in figure 3, ADV3 and ADV4 are direct
viewers of ADOx, while ADV2 and ADV5 are indirect viewers. Even further, ADV5 is
both a direct viewer of ADV2 and ADV4 and an indirect viewer of ADOx .

2.4. Roles of ADVs and ADOs

It is possible, considering all the properties shown above, to classify ADVs architectures
according to their roles. In prior works on the Abstract Design Views model, the authors
considered only two types (or roles) of ADVs: an ADV that acts as an interface between
two media, and an ADV that acts as an interface between two ADOs operating in the
same medium [Cowan and Lucena 1995; Alencar et al. 1996]. Particularly, when an
ADV is used as an interface between two such media it can represent a user interface, a
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Figure 3. Direct and indirect viewers of an ADO.

network interface, or an external device such as a timer. In this paper we extend these
two roles to four possible roles.

According to the visibility property, an ADO can be referenced by more than one
ADV at one time. Even further, it is possible to connect two ADOs by a single ADV.
This way, ADVs can change roles from simple viewers to full-fledged interfaces between
two different media.

This communication can be performed in a unidirectional or bidirectional manner.
If unidirectional, the ADV will map actions directly into other ADOs. If bidirectional,
each ADV will map the actions into the other ADO, performing a duplex communication
mapping between the ADOs, such as ADVb

ij in figure 2. It is important to notice that the
interface ADV here can be used to perform translations and adaptations to convert one
ADO’s output to the format of the other ADO’s input. The roles of ADOs and ADVs are
explained below.

2.4.1. View of an ADO
According to the visibility property, the ADVs of an ADO are its points of entry. An
ADV observes an ADO, mapping the inputs onto the ADO, and relaying the output to
the user of the ADV. This architecture is shown in figure 4.

It is important to notice that it is possible to have a single composite ADV related
to an ADO. This way, many views can be related to an ADO, but there is only a single
point of entry for the ADO. This alternative is thoroughly discussed in [Markiewicz et
al. 2000] for access control purposes.

2.4.2. Unidirectional interface of two media
Another possible role for an ADV is to connect two ADOs, serving as an unidirectional
interface. In this role, the ADV serves as a mapper of actions to an ADO, possibly
introducing some rationale in this process. Thus, it is possible to translate the output of
an ADO to the format of the input of the other ADO. In figure 5 here is a representation
of this architecture.
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Figure 4. ADVs acting as viewers for an ADO.

Figure 5. Two ADVs serving as unidirectional interfaces for two ADOs.

2.4.3. Bidirectional interface of two media
Extending the previous role, it is possible that ADVs provide bidirectional communica-
tion between two ADOs. In this fashion, ADVs will assume a full-fledged “glue” role
between different ADOs, making proper translations and adaptations of the inputs and
outputs of the ADOs. This enables designers to compose the ADOs and make them col-
laborate without altering their original code. This architecture is represented in figure 6.

2.4.4. Facilitator of n-media
Finally, it is possible to extrapolate the previous roles using multiple ADOs and ADVs.
ADVs might receive the input of many ADOs and translate that for many ADOs. ADVs
this way are turned into shared communication devices, becoming the rendezvous point
of many ADOs. In figure 7 we have an ADVi that is the facilitator of ADOs x, y, z

and w.
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Figure 6. ADVs serving as bidirectional interfaces for two ADOs.

Figure 7. An ADV as a facilitator of n-media.

3. Analyzing the abstract design view model

Using the taxonomy introduced by [Krueger 1992], it is possible to analyze and validate
the reuse aspects of the Abstract Design Views model. The taxonomy is based on four
dimensions: abstraction, selection, specialization and integration. We will also discuss
the cognitive distance [Krueger 1992] of ADVs and ADOs from the software system
designer’s point of view.

3.1. Abstraction

Every software component is created having some form of abstraction in mind. This ab-
straction allows component (re-)users to determine the role of every artifact without hav-
ing to examine its code. Even further, the abstraction allows an easier understanding of
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complex components, suppressing irrelevant details. Examples for such abstraction are
lists, stacks, trees and other data structures. Computer scientists are able to understand
these concepts without having to read every line of code written in their implementation.
The Abstract Design Views model introduces the concept of the “view” of an object,
allowing the interpretation of an object at a higher abstraction level. This abstraction
level is therefore closer to the designer, bridging the cognitive distance.

For example, we presented in figure 1 a counter that gives us the current time.
Two readings (or clocks) from this single source: one digital and one analog. Using
ADVs and ADOs, we were able to map these clocks to the source. Each clock was
represented as a viewer object, i.e., an ADV, of the single source, and the source was
represented as an ADO. Therefore, it is possible for the designer to grasp the relationship
of consistency between the clocks and the counter without having to grasp details such
as shared buffers, message passing or references. These details can be dealt with at a
later step, when the ADVs and ADOs are realized. By being able to postpone dealing
with these details, the designer is spared from implementation issues that might have
been considered beforehand, influencing the design.

3.2. Selection

It is very important for the (re-)user to be able to distinguish components, by browsing
and searching through them. By classifying and cataloging components, it is possible
to organize a library of reusable artifacts. Thus, the use of each component in this
library must be clear and well specified. Otherwise, misuse and improper adaptation
of components will surely follow.

3.3. Specialization

Many reuse technologies use generic artifacts that are instantiated by parameters or even
inheritance. These artifacts are refined before use, allowing the reuse of the generic
artifact in many solutions. In our case, the ADV and ADO specifications can be reused
and combined using mechanisms such as composition, inheritance, sets and sequences.
This way, ADVs can be specialized or incrementally changed over time. It is important
to notice that these relationships are reflected in the ADV’s formal specification. Thus,
changes and alterations are not introduced in a complete ad hoc manner, requiring some
thought and analysis of the alterations.

3.4. Integration

Once components already exist or are being created, it becomes essential to combine
these components. This way, complex constructs are made possible through the union of
smaller and simpler artifacts. According to the visibility property of the Abstract Design
Views model, it is possible to “glue” ADOs or modules using ADVs as interfaces. Thus,
ADVs can serve as integration constructs, assembling large and complex architectures
from simple ones.
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Table 1
Reuse in the Abstract Design Views model.

Abstraction The Abstract Design Views model introduces the concept of the view of an object,
allowing the interpretation of an object in a higher abstraction level.

Selection The artifacts of this model are ADVs and ADOs. Each class in this model is real-
ized from ADVs or ADOs, so the re-user can always distinguish the view from the
application code, and how it reflects on the implementation.

Specialization ADVs can be combined and reused using mechanisms such as sequences, sets, com-
positions and inheritance. ADVs can be specialized or incremented over time.

Integration ADVs can be nested, and ADVs can act as interconnections between ADOs. ADVs
can be interconnected by these “glue” components.

Pros The Abstract Design Views model allows different views, separating concerns and
allowing reuse of views throughout the design process. Since these views are at a
high level of abstraction, the cognitive distance between the end-user of the software
and the design level is minimal.

Cons The ADVs must be chosen in a way to be semantically coherent with the ADOs, or
otherwise their contract might be misused or misunderstood.

3.5. Results of the analysis

In table 1 we present the overall picture of reuse in the Abstract Design Views model.
The major advantage of the Abstract Design Views model is the small cognitive distance
between the designer and the model, since the abstract level of the ADVs and ADOs con-
structs are very high. On the other hand, the Abstract Design Views model creates space
for loose semantics. One can create ADVs for an ADO that do not relate coherently.
This way, the resulting components can be misused or misunderstood.

4. Realizing Abstract Design Views

Once the reuse of ADVs at the design level is clear, it is necessary to investigate if these
artifacts also promote reuse at the implementation level. Since Abstract Design Views
are considered to be at a higher design level than the implementation, their realization is
possible through several distinct forms that will be discussed in this section.

4.1. Realization using design patterns

One possible approach for realizing ADVs and ADOs is through design patterns [Gamma
et al. 1995]. However, many design patterns can be used for that purpose and their se-
lection can be based on an ADV’s particular aspects and properties. All diagrams in this
section are in UML [UML 1999].

4.1.1. Using the Observer design pattern
The most obvious approach to realize ADVs and ADOs is the Observer design pat-
tern [Gamma et al. 1995]. The main objective of this pattern is to define a one-to-many
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Figure 8. The Observer design pattern.

dependency between objects, so that the dependent objects can monitor changes in one
object. In this realization, represented in figure 8, ADVs correspond to the observers,
while the ADOs are the subjects.

The ADO base class has references to the ADVs, and invokes the Notify( )
method every time it suffers any state change. This way, ADVs are promptly warned
of the ADO’s state change.

4.1.2. The Callback versus Polling tradeoff
According to the vertical consistency property, ADVs must keep their state consistent
with every state change of the ADOs. This means that if an ADO changes its state, the
ADV must somehow notice that change.

The Observer pattern allows the ADV to be updated in the case of state changes by
the ADO. This way, the ADO has a list of all objects that need to be warned about its
state changes. However, according to the visibility property, no ADO should be able to
determine that any ADVs exist.

Thus, the use of the Observer pattern might break the visibility property. However,
it is argued that the ADO has only the knowledge that there may be something monitoring
its internal state that must be notified of a change [Cowan and Lucena 1995]. In this line
of reasoning, the ADO has no explicit knowledge of any particular ADV object, hence
satisfying the visibility property and so the separation of concerns requirement.

The Observer pattern represents nothing else than a Callback as a solution for the
prompt update of the ADV state. This approach is recommended for user interfaces
for its timely action. On the other hand, a different approach is for the ADV to poll
the ADO for any state change. This polling can take place, for example, every time
an action takes place at the ADV and it maps it onto the ADO. This approach has less
run-time overhead, but might display incorrect views for large periods. The dynamics of
this process are shown in figure 9. In the Callback, the Notify( ) action taken by the
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Figure 9. Callback versus Polling dynamics.

ADO will cause all ADVs to be updated (Update( ) method with getState( )). With
Polling, once in a while the ADV will query the ADO’s state (isChanged( ) method),
and if any change has happened, it will change its state (changeState( ) method).

Therefore, it is important to consider the Polling versus Callback solution before
implementing the vertical consistency of ADVs and ADOs. One must trade run-time
overhead versus timely update.

4.1.3. Using the Proxy design pattern
The Proxy design pattern [Gamma et al. 1995] can also be used to realize ADVs and
ADOs. In this realization, the RealSubject is the ADO, and the Proxy the ADV. This is
represented in figure 10.

It is important to notice that the use of this pattern allows for the ADV and ADO
to be bound to a contract. This particular feature is very useful, as ADVs can be given
as references to ADOs seamlessly since ADVs and ADOs are derived from a common
ancestor. Thus, by belonging to the same inheritance hierarchy, ADVs can act as an
ADO’s interface without any overhead.

4.1.4. Using the Adapter design pattern
Another possible design pattern that can realize ADVs and ADOs is the Adapter design
pattern [Gamma et al. 1995]. In this realization, the client ADO is the target object,
the component ADO the adaptee, and the view (ADV) the adapter. It is represented in
figure 11.

As in the Proxy design pattern, this approach binds the ADV and ADO to the same
contract. However, in this case this is achieved by having the ADV inherit the ADO
interface.
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Figure 10. The Proxy design pattern.

Figure 11. The Adapter design pattern.

4.1.5. Using the Façade design pattern
In the case of the facilitator of n-media shown above, it is possible for an ADV to provide
a custom interface (or contract) based on the “clipping” of many ADO interfaces (or
contracts). By providing this custom interface, the ADV is encapsulating all the ADO’s
services, decoupling them from their users. This particular application of the n-media
facilitator can be realized using the Façade design pattern [Gamma et al. 1995]. This
design pattern is represented in figure 12.

For this realization, the ADV would be the Façade class, while all the other classes
in the encapsulated module would be the ADOs. It is interesting that in this case the ADV
is also serving as “glue” to the ADOs, binding them by providing a unified contract or
interface that is the front-end of all the ADOs.

Another important issue is that the façade only allows unidirectional communica-
tion between itself and the ADOs. In this pattern, the façade only forwards calls to the
ADOs.
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Figure 12. The Façade design pattern.

Figure 13. Semantically incoherent façade.

In using this particular realization, one must be cautious about binding incom-
patible classes in a single interface. If the bound classes have irreconcilable semantic
differences, the resulting façade might be counter-productive.

For example, in figure 13 we have two classes. The Vector class implements a
vector with a method that returns the value of the nth element, passed as a parameter.
The LinkedList class allows the insertion and removal of an element. It inserts at the end
of the list, and removes an element by receiving its value as a parameter.

By creating a façade for these two classes, we have a semantically incoherent
façade, as it can be misused through a misunderstanding. One can assume that the
component is itself a structure that has the three services (pos, insert and remove), and
not that it is two separate data structures.

4.1.6. Using the Pipes and Filters design pattern
The Pipes and Filters design pattern [Buschmann et al. 1996] can be used to realize
ADVs and ADOs. The Pipes and Filters pattern provides a structure for systems that
process a stream of data. Each processing step is encapsulated in a filter component.
Data is passed through pipes between adjacent filters. Recombining filters allows you
to build families of related systems [Buschmann et al. 1996]. In this realization, repre-
sented in figure 14, the ADOs are the data source and data sink, as the ADVs are the
filter objects.
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Figure 14. The pipes and filters design pattern.

Figure 15. The Master–Slave design pattern.

Unlike the Proxy pattern, this pattern does not bind the ADVs and ADOs to an
interface. The ADV can have any desired interface, thus allowing for the use of ADVs
without complying with the ADO’s interface. This grants re-users the possibility of
introducing old code to work with the ADOs without having to tamper with it.

4.1.7. Using the Master–Slave design pattern
The Master–Slave design pattern [Buschmann et al. 1996] can also be used to realize
ADVs and ADOs. The Master–Slave pattern supports fault tolerance, parallel com-
putation and computational accuracy. A master component distributes work to iden-
tical slave components and computes a final result from the results returned by these
slaves [Buschmann et al. 1996]. In this design pattern, ADVs are the master objects,
while the ADOs are the slaves. In figure 15 we have the class diagram of this pattern.

Like the Pipes and Filters design pattern, this realization allows ADOs to have
a different interface from the ADVs. However, it is mandatory that all ADOs have a
method (subService( )), that can receive the same number and type of parameters. In
this realization there is a single ADV for many ADOs (more than two). Thus, its use is
limited.

It is important to notice that in this realization only the ADVs have references to
the ADO, and since the master object is simply an object that forwards messages, being
“stateless,” the Callback versus Polling tradeoff does not take place. If not “stateless,”
the master object allows for the division of the work between different ADOs.

4.1.8. Using the Blackboard design pattern
The Blackboard design pattern [Buschmann et al. 1996] can also be used to realize
ADVs and ADOs. The Blackboard pattern is useful for problems for which no deter-
ministic solution strategies are known. In Blackboard several specialized components
assemble their knowledge to build a partial or approximate solution [Buschmann et al.
1996]. In this realization, represented in figure 16, the ADOs and ADVs do not map
directly into the pattern objects.
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Figure 16. The blackboard design pattern.

Figure 17. The Mediator design pattern.

In this case, the blackboard poses as the ADV, acting as a facilitator of n-media.
Each ADO will contribute to the blackboard, and it will represent a unique shared space,
a single view that is the collaboration of all ADOs.

4.1.9. Using the Mediator design pattern
Another possible design pattern that can be used to realize ADVs and ADOs is the me-
diator design pattern [Gamma et al. 1995]. In this realization, the ADVs are represented
as the mediator objects, and the ADOs as the colleague derivations. This pattern is
represented in figure 17.

It is important to notice that in this pattern the ADOs will have references to the
ADOs, being susceptible to the Callback versus Polling tradeoff. It also must be noticed
that this design pattern only applies to realizations where there is one ADV to one or
more ADOs.

4.1.10. Using the View Handler design pattern
The View Handler design pattern [Buschmann et al. 1996] is another design pattern that
can be used to realize ADVs and ADOs. The View Handler pattern helps to manage all
views that a software system provides. A view handler component allows clients to open,
manipulate and dispose of views. It also coordinates dependencies between views and
organizes their update [Buschmann et al. 1996]. This pattern is represented in figure 18.

In this realization approach, the ADOs are mapped to the supplier objects, and the
ADVs to the specific views. It is important to notice that in the original pattern there is a
one-to-one relationship between suppliers and specific views. However, shared suppliers
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Figure 18. The View Handler design pattern.

Figure 19. The Forwarder–Receiver design pattern.

(many ADOs to one or many ADV) or shared views (many ADVs to one or many ADO)
can be used to accommodate all possible cardinality relationships between ADVs and
ADOs. The uniqueness of this approach is the ViewHandler object. This object will act
as a director or manager of the ADOs and ADVs, becoming a single point of entry to the
entire component.

On the other hand, the presence of an object that has knowledge of both ADVs and
ADOs can pose as an inconsistency to the visibility property. Thus, this design pattern
should be used with caution so that the ViewHandler is not used outside the “spirit” of
the visibility property of the model. We do not consider the ViewHandler to be an ADV
or an ADO because, otherwise, the visibility property would be explicitly broken.

4.1.11. Using the Forwarder–Receiver design pattern
The Forwarder–Receiver pattern provides transparent inter-process communication for
software systems with a peer-to-peer interaction model. It introduces forwarders and re-
ceivers to de-couple peers from the underlying communication mechanisms [Buschmann
et al. 1996]. This pattern is represented in figure 19.

In this realization, the ADVs are the forwarder and receiver objects, and the ADOs
the peer objects. This design pattern allows the realization of the interface of the media
role of ADVs and ADOs. In this case, the forwarders and receivers objects will provide
the bidirectional communication between the two ADO objects.
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Figure 20. The Model–View–Controller design pattern.

4.1.12. Using the Model–View–Controller design pattern
The Model–View–Controller pattern (MVC) divides an interactive application into three
components. The model contains the core functionality and data. Views display informa-
tion to the user. Controllers handle user input. Views and controllers together comprise
the user interface. A change-propagation mechanism ensures consistency between the
user interface and the model [Buschmann et al. 1996]. This pattern is in figure 20.

Although this pattern guarantees all the ADO and ADV properties, a new artifact
is introduced. The ADVs are the view objects, and the ADOs the models. However,
the controller is like the ViewHandler object of the View Handler pattern. This way, a
new element is introduced that is neither an ADV nor an ADO. We do not consider the
Controller to be an ADV or an ADO because, otherwise, the visibility property would
be directly broken.

4.2. Composition

It is possible to realize ADVs and ADOs using not only the design patterns shown above,
but also combinations of them. For example, the Forwarder–Receiver design pattern
can be combined with the Observer design pattern, creating a bidirectional channel of
communication for objects.

The composition approach often will be present, and should be used carefully. The
use of complex realizations can introduce both a maintenance and run-time overhead.
Tangled solutions will be harder to understand and maintain, and will cause unnecessary
run-time delays. In our experience, compositions should be avoided, used only when
necessary.

4.3. Summing up

In the previous sections we have presented eleven design patterns that can be used to
realize ADV and ADO relationships. Since the Abstract Design Views model resides on
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Table 2
Possible design pattern realizations for ADVs.

Design
patterns

Pros Cons Comments

Observer Prompt refresh of the
ADVs keeps vertical
consistency at all times.

Profusion of references of
ADOs to ADVs causes run-
time overhead.

ADVs must keep vertical con-
sistency valid and refreshed con-
stantly. Recommended for user
interfaces.

Proxy Low run-time overhead
approach.

Inconsistency might be ap-
parent due to slow refresh
synchronization of ADOs
and ADVs.

Recommended for uses when
vertical consistency needs check
with a lower frequency.

Adapter Low run-time overhead
approach.

This approach binds the
ADV and ADO to the same
contract.

Recommended for uses when
vertical consistency needs check
with a lower frequency.

Façade Creates a unified point
of entry for a group of
classes or component.

Allows semantic binding of
incompatible classes.

Recommended for creation of
components and de-coupling of
sub-systems.

Pipes and
Filters

ADVs are not bound to
the ADO contract. Easy
composition of ADOs
with ADVs as simple
filters.

ADVs are not bound to the
ADO contract

Good solution where simple
input-process-output is needed.

Master–Slave Allows combination of
ADOs by splitting work
and combining it later.

Enforces a common method
signature for all ADOs.
Only makes sense for 1-to-n
ADV to ADO cardinalities.

Should be used when the ADVs
are ‘similar’ views of an ADO,
having common functionality
and points of entry.

Blackboard Allows collaboration
that can change dynam-
ically and without a
clear set of rules.

Synchronization problems
might be present.

Recommended for realization of
facilitators of n-media.

Mediator Simple realization. None. Horizontal and vertical consis-
tency properties are not neces-
sarily enforced by this pattern.

View Handler Different approach to
realizing ADVs and
ADOs.

A tertiary element is intro-
duced.

None.

The visibility property is en-
dangered.

Forwarder–
Receiver

Direct implementation
of bidirectional inter-
face of two media.

Difficult to apply to different
ADV cardinalities.

Recommended for realization of
bidirectional interfaces of two
media.

Model–View–
Controller

Long established pat-
tern.

A tertiary element is intro-
duced. The visibility prop-
erty is endangered.

None.
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Table 3
Realizations and ADV properties.

Design pattern Properties Roles of ADVs and ADOs

1 2 3 4 5 Views Uni-int Bi-int n-media

Observer � � � � � �
Proxy � � � � �
Adapter � � � �
Façade � � � � �
Pipes and Filters � � � � �
Master–Slave � � � � � � � � �
Blackboard � � � � � �
Mediator � � � � �
View Handler � � � � �
Forwarder–Receiver � � � � � � � � �
Model–View–Controller � � � � � � � �

a higher abstraction level than classes and objects, its realization through design patterns
is not by any means a direct or simple mapping.

The process of translating ADVs and ADOs onto classes must be guided by the
semantic meanings attributed to them, thus introducing a human element that cannot be
fully controlled or automated. In order to make this point clearer, in table 2 we have
the pros, cons and comments on each possible realization. It is important to notice that
the possibilities presented here are not exhaustive, and the composition of patterns will
happen often.

Another issue is the relationship between the realizations, properties and roles of
ADVs and ADOs. Many realizations will not enforce Abstract Design Views properties,
but none of these break the properties. This is shown in table 3. For example, the Proxy
pattern will not enforce the horizontal consistency property, leaving it to be checked
externally.

5. An e-commerce system

For the purpose of illustrating the concepts introduced in this paper, we will show the
process of implementation of ADVs and ADOs with design patterns in an e-commerce
application.

In figure 21 we have modeled an e-commerce system, from payment to shopping
cart systems using ADVs and ADOs. After the system is modeled in this fashion, the
next step is to mark the ADVs of ADOs as different groups. By this we mean marking
the components of the e-commerce system, by separating viewed and viewed subunits
of the whole diagram.

In the example shown in figure 21, there are six components: Payment, Database,
CheckOut, Inventory, Catalog and Browsing. The Payment component is responsible
for the sensitive information needed to buy products. The Database component provides
consistency in order to log all purchases. The CheckOut component models the process
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Figure 21. Modeling an e-commerce system using ADVs.

of purchasing and the steps necessary to achieve this purpose. The Inventory component
deals with the information and processes needed for the maintenance of the items being
sold, its characteristics and status. Finally, the Catalog component is the front-end of
all products to the consumer. Each of these systems must be realized using the design
patterns shown in the previous sections.

It is important to notice that some ADVs belong to more than one ADO, thus
requiring a merge.

5.1. The Payment component

In this component, the credit card class has some of its information hidden in order to
ensure security. The shopping cart must only be aware of some credit card details. Thus,
there must be an access control object that will act as a view of this class. For this
realization the pattern proxy is suitable, since the ADV is only a restricted view of the
ADO, only clipping some of its functionality, but adding no extra calculations or actions.

For this reason, the Proxy pattern is introduced, and a common interface class,
PaymentInterface, is also created. The result can be seen in figure 22.

In this case there is no need to update the CreditCardInvoice object, since it is
“stateless” in the sense that it only forwards calls to the CreditCard object. This way,
CreditCardInvoice will not perform any duties other than serve as a restricted function-
ality proxy.
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Figure 22. Realizing the payment component.

Figure 23. Realizing the browsing component.

5.2. The Browsing component

The Browsing component provides a view of the shopping carts, being the point of entry
of the customers to the e-commerce system. Much like the Payment component, the
shopping cart is visible to the end user in a restricted sense since there is no direct access
regarding the credit card number. Since it is a restriction of access functionality, once
more the Proxy pattern is appropriate. The resulting realization is shown in figure 23.
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Figure 24. Realizing the CheckOut component.

5.3. The CheckOut component

The CheckOut component models the interaction with the consumer in the buying
process after the items to be purchased were chosen. In this case, the ShoppingCart
object will act as an association class, being handled by the InfoGathering, Shipping-
Phase and CheckOut objects. Each of these will receive a ShoppingCart object in one
state and release it in another. This way, by the end of these transitions the purchase
process will come to its end.

Since this process takes place with layers that perform alterations to its input and
have no knowledge of the overall procedure, it is possible to realize it using a Pipes and
Filters design pattern. This process is realized in figure 24.

5.4. The Database component

This component will serve as an access layer to the Database Management System
(DBMS) program, which is typically a commercial relational database system. One pos-
sible realization for this component is the Façade design pattern, as shown in figure 25.

It is important to notice that in this case the ADO Database was not mapped into
any direct class, since it is actually the DBMS.

5.5. The Inventory component

This component models the use and maintenance of the item for sale. Since it must be
reliable, and shall be used to see the real inventory available at any given time, there
must be a prompt update of the state of the items. For this reason, an observer pattern
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Figure 25. Realizing the database component.

Figure 26. Realizing the Inventory component.

must be introduced, making sure that the inventory is always consistent with the “real”
status of the inventory. This realization can be seen in figure 26.
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Figure 27. Realizing the Catalog component.

5.6. The Catalog component

Much like the Payment and Browsing components, in this case the ADV acts as a simple
proxy of the products, showing only some of its functionality. Thus, the use of a Proxy
pattern is appropriate, as is shown in figure 27.

5.7. Integrating the realizations

Once all realizations are completed, it is clear that there are redundant objects, like the
ShoppingCart object, for instance. Moreover, there are interconnections between the
many components not yet considered.

Thus, the next step is to integrate the components. In the cases where there is name
collision (ShoppingCart) or even similar behaviors (Item class of both the Inventory and
Catalog components), it is necessary to apply refactoring. One can use the refactorings
presented by Fowler et al. [1999] in order to achieve a unified class diagram.
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Figure 28. The integrated realization.

For this example, we have resolved behavior and name conflicts by integrating the
functionality into a unified class (Item) or by referencing abstract classes that are made
concrete according to its use, like the PaymentInterface abstract class that is used by the
Payment and CheckingOut components. The unified class diagram is shown in figure 28.

6. Related work

With the concepts of information hiding and the notion of module specification, Par-
nas [1972] introduced some cornerstones of modern software design. In a sense, the
work of Parnas established the roots of our current work. Other early precursors of our
ideas were DeRemer and Kron [1976], who defined a module interconnection language
to support programming-in-the-large.

In the past few years, a number of architectural models and programming ap-
proaches have investigated support to the separation of different concerns in distinct
specification modules in order to achieve higher degrees of reuse. Goguen investigated
the general interface concept together with the reuse and interconnection of software
components [Goguen 1986]. Similar to the views approach, he uses formal languages
and mappings of types and operations to interconnect and maintain consistency among
objects. He also used category theory to put object theories together [Goguen 1986].
However, Goguen does not define a relationship theory among object specifications,
thus making the properties of his design mechanism quite different from our approach.
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The Common Object Request Broker Architecture (CORBA), which is supported
by the Object Management Group, defined an open standard for application interoper-
ability [Common Object Broker 1991]. This standard is based on a client/server interac-
tion model that separates application interfaces from their implementations. These inter-
faces are specified in a neutral Interface Definition Language. More recently, Kiczales
et al. [1997] described a new programming paradigm called Aspect-Oriented Program-
ming (AOP). AOP provides the basis for the identification, isolation, composition and
reuse of the several concerns, which are known as aspects, contained in the programs.
Nelson et al. worked on the specification and validation of models that describe aspects,
multi-perspectives, and their composition [Nelson et al. 2000].

The MVC model [Krasner and Pope 1988] was one of the first implementations
to address separation of concern issues specifically. Currently, several visual develop-
ment environments [IBM Visual Age 1994; Optima++ 1996] simplify the programming
task by making available a library of reusable interface (visual) and application spe-
cific (non-visual) objects. The interface objects are interconnected to the application by
mechanisms, which are specific to the particular programming paradigm supported by
the environment. In addition, the separation of concerns allowed by these mechanisms
is mostly directed at the user interface part of the system.

Currently, the Java programming language represents one of the popular paradigms
for the development of user interfaces. The Java interface mechanism is event-driven.
The event handling model of Java 1.1 is based on the concept of an event listener. An
object interested in receiving certain events is called an event listener, while the one
generating events is called an event source. This event source object keeps a list of all
the listener objects interested in being notified when certain events occur. Such a concept
may be very useful in the implementation of a mechanism that maintains the consistency
between interface objects and their respective applications. In addition, the AWT class
library of Java provides an implementation of the Observer design pattern [Gamma et al.
1995], which describes a mechanism for maintaining the consistency between interface
and application objects.

Modeling of user interface concepts has been one of the research topics addressing
the need for additional and rigorous modeling elements. Other researchers, however, try
to improve the expressiveness of modeling languages in other ways. Civello separates
roles and meanings of whole-part associations in distinct constructs [Civello 1993]. He
argues that the resulting models are easier to understand and maintain with the addi-
tional semantics represented. In another attempt to add semantics to modeling elements,
Steyaert et al. [1996] define reuse contracts based on specialization. These contracts
document the way an asset is related to its superclass, thus allowing a better understand-
ing of the circumstances in which an object is specialized.

7. Conclusion

In this paper we have shown how Views and Design patterns can be used to engineer
e-commerce applications. This approach allows the reuse of designs and implementa-
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tions by indicating how the properties between viewed and viewer objects can be realized
through design patterns.

Because of the many possible properties of the views relationship, there are various
possible mappings from designs that use views or interfaces and their corresponding
implementations based on design patterns. In this paper we presented eleven design
patterns that can be used to accomplish this purpose. This set of possible realizations
should not be seen as a complete set, but as illustration of possible means to implement
the views properties.

It is important to notice that each of the possible realizations based on design pat-
terns has its strong and weak points that must be considered. In fact, our approach
is helpful to clarify important choices and the tradeoffs that are involved in realizing
object-oriented designs. These compromises are based on the explicit properties that
should be satisfied when design patterns encapsulate different concerns. In this sense,
the principles and guidelines presented in this paper constitute a step forward in helping
designers to bridge the gap between a design with separation of concerns and its possible
realizations.

Acknowledgements

This work is partially supported by NSERC, the Consortium of Software Engineering
Research (CSER), CNPq, and by IBM as part of a research project at the TecComm/LES
project (htttp://www.teccomm.les.inf.puc-rio.br) at PUC-Rio, Brazil.

References

Alencar, P.S.C., D.D. Cowan, and C.J.P. Lucena (2001), “A Logical Theory of Objects and Interfaces,”
IEEE Transactions on Software Engineering (TSE), to appear.

Alencar, P.S.C., D.D. Cowan, and C.J.P. Lucena (1996), “A Formal Approach to Architectural Design
Patterns,” In Proceedings of the Formal Methods Europe Symposium (FME’96), Springer, Heidelberg,
pp. 576–594.

Alencar, P.S.C., D.D. Cowan, and C.J.P. Lucena (1995), “Formal Specification of Reusable Interface Ob-
jects,” ACM SIGSOFT Software Engineering Notes 20, SI, 88–96.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal (1996), A System of Patterns: Pattern-
Oriented Software Architecture, Wiley Computer Publishing, New York.

Czarnecki, K., U.W. Eisenecker, and P. Steyaert (1996), “Beyond Objects: Generative Programming,” In
Proceedings of the ECOOP’97 Workshop on Aspect-Oriented Programming, Jyväskylä, Finland.

Civello, F. (1993), “Roles for Composite Objects in Object-Oriented Analysis and Design,” In Proceedings
of OOPSLA’93, ACM Press, New York, pp. 376–393.

Common Object Broker (1991), “The Common Object Broker: Architecture and Specification,” OMG
Document Number 91.12.1, Revision 1.1, Digital Equipment Corporation, Hewlett-Packard Company,
Hyperdesk Corporation, NCR Corporation, Object Design Inc. and Sunsoft Inc., OMG Press, Needham,
MA.

Cowan, D.D. and C.J.P. Lucena (1995), “Abstract Data Views: An Interface Specification Concept to En-
hance Design for Reuse,” IEEE Transactions on Software Engineering (TSE) 21, 3, 229–243.

DeRemer, F. and H. Kron (1976), “Programming-in-the-large Versus Programming-in-the-small,” IEEE
Transactions on Software Engineering (TSE) 2, 2, 80–86.



140 MARKIEWICZ ET AL.

Dijkstra, E.W. (1976), A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ.
Fayad, M.E., D.C. Schmidt, and R.E. Johnson (1999), Building Application Frameworks, Wiley, New York.
Fontoura, M.F., S. Crespo, C.J.P. Lucena, P.S.C. Alencar, and D.D. Cowan (2000), “Using Viewpoints to

Derive a Conceptual Model for Web-Based Education Environments,” Journal of Systems and Software
(JSS) 54, 3, 239–257.

Fowler, M., K. Beck, J. Brant, W. Opdyke, and D. Roberts (1999), Refactoring: Improving the Design of
Existing Code, Addison-Wesley, Reading, MA.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995), Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, MA.

Goguen, J.A. (1986), “Reusing and Interconnecting Software Components,” IEEE Computer 19, 2, 16–28.
Helm, R., I.M. Holland, and D. Gangopadhyay (1990), “Contracts: Specifying Behavioral Compositions in

Object Oriented Systems,” In Proceedings of ECOOP/OOPSLA’90, Springer, Heidelberg, pp. 169–180.
IBM Visual Age (1994), Visual Age: Concepts and Features, IBM Corporation.
Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and I. Irwin (1997), “Aspect-

Oriented Programming,” In Proceedings of European Conference on Object-Oriented Programming
(ECOOP’97), Springer, Heidelberg, pp. 220–242.

Krasner, G.E. and S.T. Pope (1988), “A Cookbook for Using the Model–View–Controller User Interface
Paradigm in Smalltalk-80,” Journal of Object-Oriented Programming 3, 1, 26–49.

Krueger, C.W. (1992), “Software Reuse,” ACM Computing Surveys 24, 2, 131–183.
Markiewicz, M.E., C.J.P. Lucena, and D.D. Cowan (2000), “Taming Access Control Security Using the

“Views” Relationship,” Technical Report MCC19/00, Departamento de Informatica, Pontifical Catholic
University (PUC-Rio), Rio de Janeiro, Brazil.

Mili, H., F. Mili, and A. Mili (1995), “Reusing Software: Issues and Research Directions,” IEEE Transac-
tions on Software Engineering (TSE) 21, 6, 528–561.

Nelson, T., D.D. Cowan, and P.S.C. Alencar (2000), “A Model for Describing Object-Oriented Systems
from Multiple Perspectives,” In Proceedings of the Conference on Foundational Aspects of Software
Engineering (FASE2000), ETAPS2000 (the European Joint Conferences on Theory and Practice of Soft-
ware), Technical University of Berlin, Germany, pp. 237–248.

Optima++ (1996), Sybase Optima++, Sybase Inc.
Parnas, D.L. (1972), “On Criteria to be Used in Decomposing Systems into Modules,” Communications of

the ACM 15, 2, 1053–1058.
Steyaert, P., C. Lucas, T. Mens, and T. D’Hondt (1996), “Reuse Contracts: Managing the Evolution of

Reusable Assets,” In Proceedings of OOPSLA’96, ACM Press, New York, pp. 268–285.
UML (1999), Unified Modeling Language 1.3, specification available at http://www.uml.org
Watcom VX-REXX (1993), WATCOM VX-REXX for OS/2 Programmer’s Guide and Reference, Watcom

International Corporation.
Wentzel, K.D. (1994), “Software Reuse – Facts and Myths,” In Proceedings of the IEEE International

Conference on Software Engineering (ICSE), ACM Press, New York, pp. 267–268.
Wiederhold, G., P. Wegner, and S. Ceri (1992), “Towards Megaprogramming,” Communications of the ACM

35, 11, 89–99.


