
Annals of Software Engineering 13, 203–230, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Engineering Web-Based Systems with UML Assets

GRANT LARSEN glarsen@rational.com
Rational Software Corporation, 10632 W. Ontario Ave., Littleton, CO 80127, USA

JIM CONALLEN jconallen@rational.com
Rational Software Corporation, 181 Washington St. Suite 525, Conshohocken, PA 19428, USA

Abstract. Software development is a product of evolution. It builds on the experiences of the individual
and the community, continually refining every aspect of process. Web centric architectures are no different.
Their ever-increasing levels of functionality and complexity are evident in the latest generations of web
applications. In this paper we discuss some standards that enable teams to build, communicate and apply
their experiences in the art of web application software development. These standards appropriate various
levels of abstraction, and bring the focus of web application development back to the team. Combining
UML representation of web-based systems with techniques for packaging these solutions for reuse can
positively impact development timelines and efficiencies.

1. Introduction

Several challenges that continue to face software engineers developing web-based sys-
tems include:

(a) the increasing complexity of software solutions;

(b) the increasing demand for such systems; and,

(c) the high cost of delivering those solutions.

These issues clearly make web application development a team activity. Since web
application development at its highest level is no different than any other type of software
development it is clear that in order to make teams effective, standards need to be in
place for the communication, exchange and overall understanding of the artifacts and
issues involved in the development of software with complex web centric architectures.
It is a fundamental assertion of this paper that an adoption of two such standards; the
Unified Modeling Language (UML), with the Web Application Extension (WAE) profile
for expressing designs, and the Reusable Asset Specification (RAS) for the exchange
reusable bundles of design and code can accelerate teams building such systems.

The first standard, the UML allows us to express complex software structures and
behaviors visually and in a way that makes it easier to understand. The UML is al-
ready the defacto standard in the design community. Together with the WAE, a profile
for the UML that addresses the modeling of some web application specific issues, the
UML/WAE can be effectively used to express web application architectures and designs

204 LARSEN AND CONALLEN

at various levels of abstraction and detail. The second standard, RAS defines how we can
package bundles of software artifacts that as a unit represent something greater than the
sum of its parts; an Asset. Assets represent a higher level of artifact that can be reused
not only in the same software project but also across multiple projects.

Collectively these two standards and their supporting technology and sub-standards
enable teams to express, communicate and exchange software assets and components.
This article introduces the standards themselves and discusses the workflows involved
in putting them to use.

This article assumes a working knowledge of the UML and a fundamental un-
derstanding of web centric system designs. Some of the discussions in this article may
require more detailed knowledge of web architectural elements and of XML. Upon read-
ing this article you will have a high-level understanding of how to organize reusable
solutions for web-based system using the UML.

2. Web-based systems and the UML

Web applications have been receiving a lot of attention the past few years. They offer
some pretty significant architectural advantages that include but are not limited to:

• Execution in an unknown and largely heterogeneous environment.

• Deployment typically doesn’t require client side activities.

• Massively scalable.

• Fault tolerant client and server communications.

Of course selecting a web centric architecture in itself doesn’t guarantee the above
advantages will be met. Even web applications can be poorly architected, or fail for
unknown technical reasons [Earls 1999].

Looking at a high level of abstraction, web based systems are architecturally just
specializations of client–server systems. The key elements remain the client, the server
and the connecting network. The differences only appear a lower levels of detail and
typically are related to the principal communications protocol HTTP, and the vendor
specific extensions to the browser client software. Additional non-technical issues in-
clude expectations in the user interface paradigms, content management and in general
the technology churn so rampant in Internet-based web applications.

When the industry made its painful move from mainframe based systems to client–
server systems, a lot of lessons were learned about the very nature of software develop-
ment. This era of computing saw the development of ever increasingly complex software
systems, and the ubiquitous use of computers and software in nearly every aspect of
business life. To manage this complexity the industry collectively identified a set of best
practices. These best practices vary slightly from one organization to another and from
one vendor to another, but for the most part include the following principal elements
[Jacobson 1999; Kruchten 2000]:

• Iterative development.

WEB-BASED SYSTEMS WITH UML ASSETS 205

• Component architectures.

• Use Case (User Centered) requirements.

• Visual modeling.

An iterative software development process identifies and recognizes some things
that developers have know for along time. People make mistakes, and sometimes mis-
takes or missing information isn’t known until you’re already downstream in the process.
An iterative development process just acknowledges that artifacts and assumptions cre-
ated early on might need to be changed as a result of newly discovered information.

A component-based architecture simply embodies the principals of encapsulation
and modularity. Component models (i.e., COM, JavaBeans, SOAP/Web Services) pro-
vide the standards and infrastructure to make component-based architectures easier to
build and deploy. Practical component reuse is a direct result of these component inter-
operability standards. Such reuse will be broader and will have greater impact on your
projects if there is a standard for describing the nature and structure of reusable items.

Use Cases and User Centered are important to nearly all client–server systems,
especially web-based ones. Many web-based systems have anonymous users, who have
never had the benefit of attending a training seminar as the new application is deployed.
With the reach of computer systems extending farther and farther in to society, the need
for intuitive and predictable user interfaces is even more critical. Use Cases keep us
focused on delivering meaningful and understandable systems directly to the user.

People have been building complex things for years and techniques for managing
complexity have not changed much over the years. Two principal strategies for managing
complexity are to:

• divide and conquer;

• model (visually).

The use of component architectures is an example of how divide and conquer and
can help manage the creation of complex software, but even most components these days
are individually too complex for a human to comprehend in its entirety.

Modeling things lets us understand them at different levels of abstraction and lev-
els of detail. A model is representation and a simplification something. It describes a
thing from a particular viewpoint and at a particular level of abstraction and detail. Vi-
sual models do so with pictures and graphical representations. The Unified Modeling
Language (UML) [Booch 1999; Rumbaugh 1999] is a visual modeling language that is
presently the de-facto standard for modeling software intensive systems. It is the result of
a consolidation of the efforts of Grady Booch (Booch Method), Jim Rumbaugh (Object
Modeling Technique, OMT) and Ivar Jacobson (Object Oriented Software Engineering
and Use Cases), and is now managed by the Object Management Group (OMG).

The UML is a modeling language that was born out of the object oriented analysis
and design community. It specifies how systems can be visually represented in structural
diagrams (class, component, deployment, object) and in behavioral diagrams (use case,
sequence, collaboration, statechart, activity).

206 LARSEN AND CONALLEN

Its creators had standard object oriented languages in mind, but were wise enough
to provide a mechanism to extend the language to meet the special needs of future sys-
tems. This extension mechanism is used to add new semantics to the core language, that
are suitable to modeling different types of systems at appropriate levels of abstraction
and detail [Alhir 1999].

This flexibility must be used carefully. Extending any language with new semantics
requires careful thought, and to be successful must be internally consistent, and ideally it
must be interoperable with the core semantics, and with other extensions that are likely
to be used in describing any one system.

The key to successful modeling is to do so at appropriate levels of abstraction and
detail from a specific viewpoint. Abstractions that are too high or too low confuse our
understanding of what is important. Inappropriate levels of detail can either misguide
us into underestimating the level of effort, or into building rigid and intolerant systems.
Above all, models are to help us understand something. If our models do not make that
easier then we are modeling the wrong things or levels of detail.

3. User experience-level representation for web based systems

Some of the earliest models of a system are the use case models. These give us a view
into the system from the user’s point of view and capture the system’s functional require-
ments in a formal way. Each use case describes the functionality of the system in terms
of a dialog and a scenario. Each scenario represents an expected path through the system
as a dialog of activity that describes the user’s actions and the system’s responses.

One of the first analysis and design activities in a system is to elaborate the use
case model in to objects. In addition to representing classic server tier objects, it is
apparent that in web centric applications that the individual web screen is a first class
object, each with their own unique states and behaviors. This is where some of the
influences of a web centric architecture begin to present themselves. The popularity
of Internet based web applications has given rise to the development of common user
interface paradigms. The field of Information Architecture (IA) is an example of new
specialization of development team member whose focus extends the traditional Human
Interaction (HI) skills and branches out to include the entirety of the “user experience”.

A term User Experience (UX) is receiving considerable attention in web applica-
tion development circles. It is used to describe the team and activities of those specialists
responsible for keeping the user interface consistent with current paradigms and most
importantly appropriate for the context in which the system is expected to run in. The
UX team and in particular the Information Architect is responsible for creating the look
and feel of the application, determining principal navigational routes through the sys-
tem’s web pages, and for managing/organizing the structure of the content in the pages.
The artifacts that the UX team produces includes, in addition to others:

• Screens and Content.

• Storyboard scenarios.

WEB-BASED SYSTEMS WITH UML ASSETS 207

• Navigational paths through the screens.

A Screen is something that is presented to the user. The term screen is used instead
of the more common term page, since a screen of information may contain multiple and
independent pages of information. A page in this sense maps roughly to a URL, and
it is independently requestable. A screen on the other hand is simply the end result of
combining a number of pages into a consistent and coherent user interface.

In addition to any user interface infrastructure (menus, controls, etc.) a screen
contains business relevant content. Content is the generic term for business information
that appears in a web page. It is a combination of static content (field names, titles, text
and images that are constant for each user of the system), and dynamic content (selected
products, personal information, current status and other computed information).

One important distinction between screens and the mechanisms that build and pro-
duce screens, is that a screen is strictly what is presented to the user. How it got there
is not an inherent property of a screen. Usually a screen is built and presented to the
user by server side mechanisms (Java Server Pages, Servlets, Active Server Pages, etc.).
These mechanisms often interact with server side components that produce the dynamic
content in the screens. The static content is provided by templates and usually resides
on the server’s file system. This combination of template and dynamic content is what
builds screens. It is also important to understand that whether a screen is produced as
the result of a JSP’s processing, or dynamically assembled on the client from an XML
document the resulting user interface experienced by the user is still a screen filled with
content.

When screens are combined into scenarios, they express mini stories of the ap-
plication’s usage. In a given “story” any particular screen may be visited many times
(where each time it may have a new set of dynamic data). Each scenario is an expression
of a very specific use of the system. There are no conditional expressions in scenarios,
and actual business and domain terms and realistic phrases are used in the documenta-
tion. The whole goal of a storyboard scenario is to express a typical use of the system
through the eyes of the user. Early on in the development process, the screens might be
simple HTML prototypes, or even hand drawn diagrams. As the process continues these
artifacts evolve into higher fidelity mockups or actual HTML files.

Eventually these HTML files, or templates make their way into the actual applica-
tion and are delivered by web servers and embedded with actual dynamic content. This
integration of the UX presentation artifacts with the business presentation artifacts needs
to be done often and periodically. It is generally efficient to have the UX and engineer-
ing teams work independently, however without periodic and frequent sync points, the
integration events might become troublesome.

One of the most architecturally important artifacts that the UX team produces is
the navigational path map. This diagram(s) expresses the structure of the screens in an
application with their potential navigational pathways. It can be thought of as a road
map of the application’s screens. An important characteristic of this diagram is that it
expresses all of the legal paths through the system. The influence of the browser’s Back
button, or the caching of previously navigated to pages does not belong in this diagram.

208 LARSEN AND CONALLEN

Figure 1. «Screen» class stereotype icon.

They are important issues to be considered when designing and architecting the system,
but not something that belongs in the navigational map.

Capturing the UX design in UML is done via an extension to the UML (i.e., stereo-
types, tag values, constraints). What follows is a description of this extension. It is im-
portant to note that this extension and the models its produces are not at a level of detail
or abstraction that lend themselves to automated forward or reverse engineering. They
allow us to model the architecturally significant UX team’s contributions at a relatively
high level. It is fully expected that the UX model will be referenced by more detailed
design models, and that they will form, in part, a path of traceability from detailed design
models to the even higher level use case model.

3.1. UX model extension

A screen can be represented in a UML model with a «screen» stereotyped class.1 It is
also possible to give this new stereotyped class its own icon (figure 1). When working
with screens one of the pieces of information that is important to both the UX team
and the engineering team is the dynamic content in the screen. This dynamic content
is best expressed as attributes of the screen class. Figure 2 shows an alternative way of
expressing a «screen» element with its attributes exposed. Since the screen class is a
requirements or analysis level modeling element, expressing the dynamic content of the
screen can be relatively free formed. Strict data types and valid identifier names are not
necessary to just convey the dynamic content of the screen, that’s stuff better expressed
in the detailed design models. In this model, it is sufficient to identify the dynamic
content by name, and perhaps with a short description.

In addition to the dynamic content expressed as attributes in a «screen» stereotyped
class, operations can be defined and expressed in the model. Operations of a «screen»
indicate things that a user can do in and with this screen. These user actions or gestures
are a way of capturing some of the responsibilities and expected actions of users of the
system. When an operation is tagged as being static (i.e., underlined) then this operation
represents something that the system does, typically during the creation of the screen
instance.

Additional adornments can be added to «screen» elements in the model to express
additional properties of a screen. For example the sample screens provided in this article

1 The extensions to the UML presented in this article are part of the next version of the Web Application
Extension profile to the UML.

WEB-BASED SYSTEMS WITH UML ASSETS 209

Figure 2. «Screen» UML element with attributes shown.

use an exclamation sign postfix (!) to indicate that the screen is navigable from any
other page in the system (most likely from a common menu bar in the application user
interface). Another adornment that is useful is the plus sign (+), which when appended
to the screen name indicates that the page is a Paged List. Paged Lists are screens that
allow user to navigate through large lists of information where there is a limit to the
number of items that can be displayed on any one page. Results from Internet search
engines are examples this type of mechanism. Other adornments can be used to express
secure pages (SSL/TLC/SET). Officially these adornments are captured in the UML as
tagged values, however at this level of abstraction it is often convenient to adorn the
class icon or class name with the information to make the diagrams easier to understand.
Using color is another useful way to impart this information in diagrams.

In addition to the «screen» stereotype, a «screen form» class stereotype is used
to identify HTML forms that are contained in a screen. A separate class is required
to model HTML forms because in any given screen there is the possibility that multi-
ple forms might exist, each submitting themselves to a different next screen. Separate
«screen form» classes are also useful for clearly identifying related groups if input fields.
Figure 3 shows how a Cart screen contains an embedded form called LineItemsForm.
This form contains an array of RemoveProduct checkboxes and an array of Quantity text
input fields. The form itself points back to the Cart screen since it represents posted data
that when processed by the server will result in the return of the updated Cart screen.
This diagram implies that in a given Cart screen there are a number of checkboxes that
can be submitted to server, where they are processed and the Cart page returned. The
practical result of this is that each line item in the cart will have a checkbox that when
checked will remove the item from the cart.

It is also important to note that there is no submit button indicated in the form.
This level of detail is not really required at this level of abstraction.2 In an actual design
model, there would most likely be an HTML submit button, and possibly a number of
other input fields in the form, but from the UX team’s point of view these are not required

2 This of course is an arbitrary distinction, and depending upon the development team, inclusion of submit
buttons and even hidden fields may be appropriate for the given situation.

210 LARSEN AND CONALLEN

Figure 3. A screen that contains an HTML form.

to convey the important aspects of the user interface design. There is an additional class
encapsulating a single line item of dynamic data. Since the Cart screen’s dynamic data
contains a variable number of line item data in addition to a single total price value, it
is convenient to model the data bundled in a single class that as a group is optionally
repeated in the screen.

A proper system model should explicitly specify mappings of screens and analy-
sis/design elements (figure 4). In this figure the analysis objects are represented with
stereotyped elements suggested in Jacobson’s [1992] book. This link in the chain of
traceability identifies the actual classes of objects that are responsible for delivering the
screens in the runtime system. Farther down the process there might be similar mappings
or linkages that connect these analysis classes to detailed design classes and components.

The UX team’s storyboards are screens linked together to provide the stepping-
stones through which a use case scenario is realized. This is expressed in the UML
model as a collaboration diagram. A UML collaboration diagram is a diagram of object
instances. Each instance in this diagram represents a separate and distinct object. Even
though the same «screen» may appear multiple times in the same scenario, each and
every time it appears it represents a new “object” instance, one with a potentially differ-
ent state. In a web application the typical screen object’s lifetime is short. It is created
when first requested, and is terminated when the next screen is requested.

When creating a «screen» scenario diagram it is important to use actual instance
names. For example in the scenario of figure 5 many of the screens have instance names
in them (the part before the colon). These instance names should represent real life
names, and help to bring to life the nature of the scenario. Numbered message indicators

WEB-BASED SYSTEMS WITH UML ASSETS 211

Figure 4. Sample «screen» and analysis element mappings.

indicate the order of flow in the scenario. In this particular diagram the objects were
spatially organized from left to right to indicate specific tiers or classes of screens, and
vertically from top to bottom in chronological order.

The third piece of information that the IA is responsible for, and of interest to the
system’s designers is the navigational path map. For most systems this diagram might
actually require multiple diagrams to express clearly, however small systems (number of
pages less than 30) can express them in a single diagram easily. This diagram is akin to a
class diagram found in the analysis and design models. It expresses the «screen» classes
and their principal navigational paths to the other screens in the system. Its primary
purpose is to show the types of screens and their relationships with each other. Figure 6
shows a simple navigational map diagram for an eRetail application.

Color is used in this diagram to help express some inherent properties of some of
the pages (navigable from anywhere and scrollable). This diagram also shows only the
normal navigational paths. It does not attempt to address the use of the back and forward
browser buttons, nor of the use of locally cached pages. It should be possible to print
off copies of this diagram and with a highlighter draw paths through the system that
correspond to required use case scenarios.

More detailed diagrams expressing navigational flow can be created that include
screen attributes (figure 7). In these diagrams a combination of navigational flow, and
dynamic content are expressed. Diagrams like these provide a contract of sorts between
the UX team and the engineering team. In this diagram the screen names, and their
dynamic content are clearly identified. The UX team can use this information to evolve

212 LARSEN AND CONALLEN

Figure 5. Storyboard scenario expressed as a UML collaboration diagram.

the screen designs and prototypes by stubbing the actual values of the dynamic content
with dummy values. The engineering team can use this diagram to stub out the HTML
templates so that each page just displays a list of the dynamic content expected in the
page, and any associated forms. This temporary HTML is used during the debugging
of program logic, freeing the developer from the overhead and potential confusion of
presentation details. If each team agrees to uphold the spirit of this diagram and contract,

WEB-BASED SYSTEMS WITH UML ASSETS 213

Figure 6. Web application navigation map using stereotyped classes.

Figure 7. Navigational map with screen attributes.

214 LARSEN AND CONALLEN

the integration events, which should be happening at periodic and frequent intervals,
should be much easier.

3.2. Design-level representation for web-based systems

Modeling web-based systems is no different than modeling any system. Success is de-
fined by its understandability and correctness with the respect to the things it is model-
ing. The key to modeling web centric architectures is therefore to do so at the appropriate
level of abstraction and detail. The Web Application Extension (WAE) is a formal ex-
tension to the UML that defines a set of UML extension elements3 that allow designers
to model web based systems [Conallen 2000]. In addition to the WAE other extensions
have been proposed to express design model details of web-based systems [Baumeister
1999] and for more general user interfaces [Anderson 2000]. The former example tends
to focus on the client side elements and collaborations while the latter is useful for more
generalized interfaces and does not provide as much detail design information. The WAE
on the other hand tends to focus on the page creation aspects of the web tier and their
connections with the middle tiers of the system. This paper overviews the most funda-
mental elements of the WAE, its motivations and mappings to actual implementations.

One of the things that make the web application unique is the nature of client and
server tier communications. When client and server tier elements collaborate to accom-
plish some business task, a dialog of communication is exchanged between the client
and server. In traditional client–server systems this is usually done over a semi-persistent
communication channel. The messages that are sent back and forth vary widely, and are
typically very context and order sensitive. On the contrary most communication in web-
based systems are fragmented and over temporary communication channels. The nature
of communications is not message oriented, but rather resource oriented [Berners 1999].

When a web client communicates with a web server it is always in the form of
a request for a web page resource. The request often includes parameters, or submitted
fields of data supplied by the user. The server responds to a resource request by accepting
the supplied parameters and user input, processing it, and returning with a new instance
of a resource page. Each page is an instance of a HTML formatted document.4 HTML
provides a means to express a user interface that can be rendered and presented to a user
on the client. It also provides a mechanism for a user agent5 to accept simple input,
execute scripts, applets, controls and other client side resources.6

Deciding what is important to model in web-based systems, and at what levels of
abstraction depends on how designers think of their systems, and what it is that im-

3 Profile is the current term for a set of UML extension elements.
4 For web applications HTML is the predominant language used for resources, however similar systems

may utilize Wireless Markup Language (WML) or XML depending upon the application and user agent.
5 The technical term for a web browser.
6 Depending upon the client configuration, user agents might invoke special applications on the client to

render or process special types of information sent to the client. For example, many browser installations
are configured to run external applications to render PDF files or play multimedia clips.

WEB-BASED SYSTEMS WITH UML ASSETS 215

plementers actually build. For most web-based systems the principal concepts in the
presentation tier are web pages, and the hyperlinks that connect them. These two key
concepts in web centric architectures are often what distinguish a web design from any
other client–server design.

At higher levels of abstraction (requirements and analysis), the concept of a web
page is a singular one (i.e., UX Screen). The web page is thought of as a single element
that can be requested and rendered in a browser. While in the browser it might also
execute some behavior (via scripts or embedded applets). Designers, however, have a
more detailed view of a web page resource.

The construction and life cycle of a typical web page is complex. When a user
selects a hyperlink or submits a web form a request for a resource is made to the server.
The server accepts the request and identifies the resource. If the resource requires server
side processing, as, for example, a web page template might, then the template is loaded
and its processing instructions are executed.

Web page templates are things like Java Server Pages (JSP), Active Server Pages
(ASP), Cold Fusion Markup (CFM), PHP, etc. They are a combination of presentation
and rendering instructions and business logic coordination. They are the glue that con-
nects the business logic tier to the presentation tier of the system. Templates dynamically
build HTML content. They invoke operations on business tier objects and use the results
to build and stream out unique HTML to each client.

Once on the client, the page takes on a new life. The HTML rendering instructions
sometimes contain scripts or reference applets that execute on the client. These scripts
often contribute to the overall business logic processing of the system by performing
form validations, or by providing navigational assistance to the user. If they do indeed
contribute to the business goal of the system, then they need to be part of the system’s
design and hence the design models of the system.

The designer is faced with problem of how to model a web page, and its hyperlinks
in UML. During analysis web pages are conveniently modeled with a single class or
classifier element. A design model, however, contains much more detail and is a closer
abstraction to the real mechanisms and components that define a web page in the system
(JSP, ASP, PHP, . . .).

The solution to modeling web page designs is to represent a web page resource with
two class level abstractions, one to represent its server side life, and another to represent
its client side life. The two, however, are closely tied with a special relationship.

Using the UML’s extension mechanism, stereotypes are defined that can be
placed on common modeling elements and that denote new semantics to be ap-
plied to the element. Two class stereotypes and one association stereotype describe
this special relationship between the design modeling elements that make up a web
page.

The class stereotype «server page» is applied to a class in the model that represents
that part of the web page that exists on the server. Its attributes and operations exist while
the server is processing the page. This class has relationships to server side objects.
When a «server page» object is created it does two things:

216 LARSEN AND CONALLEN

Figure 8. Simple design model of a web page.

(1) process any incoming parameters or form data supplied by the user;

(2) produce HTML output, or redirect itself to another «server page» resource that does.

The class stereotype «client page» represents the web page as it appears on the
client. Its attributes are typically JavaScript variables, and its operations are JavaScript
functions. It has relationships to embedded applets, and other client side resources. The
relationship between a «server page» and the «client page» that it is responsible for
building is a «build» stereotyped directional relationship.

In figure 8 the «server page»7 GetHome class models the server side aspect of a
Java Server Page that delivers a user’s personalized home page. In this example the class
GetHome defines the String attribute username, and three operations; getPrefer-
ences(), buildMenu() and news(). It also has an association with the Java class
UserPreferences, and an identified dependency on the Java class NewsItem.

In the JSP code these appear in special declaration blocks,8

<%! String username; %>
<%! UserPreferences preferences; %>
<%! public UserPreferences GetPreferences() {

HttpSession session = request.getSession();
return (UserPreferences) session.get(‘‘UserPref’’);

}
public void buildMenu() { ... }
public void news() { ... }

%>

Operations defined in the JSP source can create and invoke methods on server side
Java objects. Through these data from the main application server can be obtained and
used in the construction of the HTML output. Further down in the JSP source there is
likely to be combinations of HTML statements and JSP statements. For example, in the

7 The UML extension mechanism allows stereotyped elements to be rendered with special icons. The full
set of icons and details of this extension are captured in the WAE.

8 The full source of the actual operations have been omitted for simplicity.

WEB-BASED SYSTEMS WITH UML ASSETS 217

following fragment we see how the HTML template contains embedded Java scriptlets
that execute on the server. Each scriptlet is bound by <% and %> tokens in the JSP source.

<h2>Welcome <%=username%></h2>
<p>Your personalized news items:</p>
<%

NewsItem items[] = preferences.getNewsItems();
for(int i=0; i<items.length; i++) {

NewsItem item = items[i];
String subject = item.getSubject();
String content = item.getContent(); %>
<h3><%=subject%></h3>
<p><%=content%></p>

<% } %>

The end effect is a combination of HTML code and server side Java code that
when processed by a JSP container produces HTML formatted output with appropriate
dynamic content. The HTML part is modeled with the «client page» stereotyped class
MyHome. In addition to having dynamic content embedded in the HTML, this class also
indicates the use of client side JavaScript. Two variables and three functions are defined.
They map directly to an HTML <script> element:9

<html>
<script language=’’JavaScript’’><!----
var menuImages; // array of images for the menu
var index;
function navigateTo(url) {

window.location = url;
}
function popUpMessage(msg) { ... }
function menuSelect(item) { ... }
// --></script>
<head>

<title>Your Home</title>
</head>
<body>
<h2>Welcome jimc</h2>
<p>Your personalized news items:</p>
<h3>Elvis Spotted in Conshocken</h3>
<p>April 1, 2001 Elvis was spotted again in
Cunninghams Pub in West Conshohocken... </p>
</body>
</html>

Each «server page» and «client page» are ultimately realized by a components. It
is the component that maps directly to a URL. In the example above both GetHome
and MyHome are realized by the same JSP component. This JSP component not only
provides the mechanism by which the logical classes can resolve to URLs, but it also

9 The full HTML source is not shown for simplicity.

218 LARSEN AND CONALLEN

Figure 9. JSP components realize logical client and server pages.

identifies the JSP source code file that provides the implementation of the classes. The
component is how the two logical abstractions of the web page are actually managed as
one web page, and one source code component (figure 9).

Additional conventions and stereotypes are used to further refine how URL paths
are captured and expressed in the model. Package hierarchies roughly map to URL
paths, with the top most package stereotyped «virtual root» mapping to the server part
of the URL.

Another important part of the design model is the ability to express hyperlinks
to other pages in the system. The most natural way to express this is with a «link»
stereotyped association. A «link» association can connect two «client pages» or a «client
page» to a «server page». Links can only originate from a «client page» since they are
essentially abstractions of the HTML anchor element (<a>). When a URL passes along
parameters, these are captured as tagged values,10 or optionally with a link class.11

The last major element type that needs to be modeled is the HTML form. This
element defines a combination of user input field types and a URL to submit their values
to for processing. In the design model the class stereotype «form» is used to capture this
collection of elements. The principal reason forms are modeled with separate classes is
because according to the HTML specification, it is possible for any given HTML for-
matted page to contain multiple forms, each submitting themselves to a different server

10 A UML extension element that allows additional values to be associated with model elements. In class
diagrams tagged values are rendered between curly braces.

11 The attributes of a link class can be used to define more exactly the set of expected URL parameters are
passed along with the request for the resource.

WEB-BASED SYSTEMS WITH UML ASSETS 219

Figure 10. Logical model of a searchable product catalog.

side URL. Forms are always contained by client pages, since an HTML form does not
operate outside the context of a an HTML element.

In the logical design model a stereotyped «submit» association is drawn from the
form to a «server page» stereotyped class. Figure 10 shows a class diagram with several
stereotyped classes that make up part of a searchable product catalog.

In this diagram a Catalog «client page» contains a search form. This form con-
tains three input fields, one text box, one selection list and a submit button. The when the
user presses the submit button, the values are passed along with the resource request to
the SearchCatalog «server page». In this particular model, the SearchCatalog
page just searches the catalog and when finished passes control over to the Build-
Results «server page». The BuildResults page is responsible for building the
SearchResults «client page». In the JSP Model 2 architecture, the SearchCat-

220 LARSEN AND CONALLEN

alog class is implemented as a Servlet, and BuildResults as a JSP. The determi-
nation of how any given «server page» or «client page» is implemented is made by the
type of component that realizes it.

This discussion of modeling web-based system designs with UML is just a broad
overview, and addresses only the highlights of the technique. It’s guided by the need to
express detailed designs of web applications at the appropriate level of abstraction and
detail. This detail is best expressed by extending the UML with the Web Application
Extension (WAE), where the logical structure of the web pages is clearly captured in
their client and server side life cycles. Although logically any given web page may be
modeled with many classes, in the component view it is modeled as a single component.
It is the component, which realizes the logical classes that «client page», and «server
page» classes resolve to.

4. Reusing web solutions

The ability to model and communicate at various levels of abstraction and detail (use
case, UX, analysis, design, implementation, etc.) with UML is only the first step in
enabling teams to efficiently build web applications. UML is a language for expressing
the structure and behavior of systems and parts of systems. It is apparent to the experi-
enced practitioner that the vast majority of software systems share common mechanisms,
frameworks, components and patterns. Like the art of software development itself soft-
ware architectures and systems themselves are evolutionary not revolutionary. Each new
generation of systems is built upon the success (or failure) of preceding generations.

Reuse in the software industry has a speckled past. The earliest successful ef-
forts in organized reuse came about with the use of compiled object libraries. Although
successful to an extent (and still used today) this form of reuse has its drawbacks in plat-
form transparency and often imposes significant design constraints on its clients. Early
object-oriented advocates lauded the promises of “classes” of objects to be reused and
specialized. In practice it has been found that the natural unit of reuse is really at the
collaboration or package level, where groups of tightly coupled classes collectively rep-
resent a unit of reuse. The first real success story for practical and wide spread reuse in
the industry came with the introduction of the Visual Basic Control (VBX). For the first
time thousands of third party components were being produced that could be effortlessly
incorporated into Visual Basic projects.

What made the VBX control even more successful than previous attempts at reuse
was an accepted standard. This standard allowed Visual Basic developers to produce
high quality components that had a good chance of integrating with existing projects,
without having the component developers deal with the issues of producing many ver-
sions of the component for different architectures. This success clearly helped to pro-
mote today’s most prominent component models (COM and JavaBeans).

Both COM and JavaBeans like the UML are accepted standards. They describe
actual component models (the details of object-to-object communication), and design
notations. What is missing is the standard that describes how these can be organized

WEB-BASED SYSTEMS WITH UML ASSETS 221

Figure 11. Assets are solutions to problems.

into a practical reusable unit. This reusable unit contains all the designs, code and other
artifacts that implement a pattern. A pattern considered here is a solution to a problem
in a context. The problem is most often a recurring problem that is evident across simi-
lar (or even dissimilar) systems. Solutions with supporting artifacts (models, code, etc.)
that are applied to multiple projects are considered reusable software assets. What is
described in remainder of this article is just such a standard for the packing and presen-
tation of reusable software assets for web-based systems (or any kinds of systems).

Any practical software reuse solution is reified as a collection of artifacts that can
be included directly in the target project’s artifacts or with minimal effort. An asset is a
package of relevant artifacts that provides a solution to a recurring problem, for a given
context. An asset has one or more artifacts and these are classified and have descriptions
of how to apply and use them. Figure 11 illustrates the major concepts of assets.

An asset is created or harvested with an explicit purpose of applying it (repeatedly)
in subsequent development efforts. Assets can be of different granularity and may allow
different degrees of customization (or variability) and can be applied (or targeted) at
different phases of software development. Variability Points, as defined in the RAS, are
locations within an asset that may be customized or where concrete elements must be
provided when the asset is applied or reused.

Raising the abstractions with which software engineers engage problems, systems,
and solutions, has an effect that is similar to the way an automobile user may approach
a car. Rather than focusing on the timing belt and the mixture of air and fuel in the
engine, the automobile user is faced with a higher level pattern including participants
such as the steering column, mirrors, the accelerator and so forth. Focusing on this level
of abstractions increases the effectiveness of the automobile user in achieving the target
destination.

Assets therefore are a named collection of relevant artifacts that provide a solution
to a problem for a given context and a description of how to use and apply the artifacts.
And, the reusable artifacts in an asset, such as those describing a pattern, may include

222 LARSEN AND CONALLEN

Figure 12. RAS-based asset structure.

not only the source code, but also may include the requirements, the models and designs,
as well as the relevant testing artifacts.

The Reusable Asset Specification (RAS) is being created to standardize the ap-
proach to organizing and packaging assets for reuse. This specification describes
the asset’s structure and the approach for reducing the friction in reuse transactions.
This enables the consumer of the asset to rely on a certain paradigm each time they
reuse an asset. Much like the automobile user who can rely on a certain set of par-
ticipants, such as the steering column, and so forth. The RAS is just a specifica-
tion. It describes how to bundle a varied collection of artifacts in a consistent pack-
age.

Briefly, the RAS describes the structure of an asset by saying that it must have a
usage section, a classification section, a solution section, and a related-assets section.
The usage section contains the documents describing how to apply the asset for a given
context. The classification section provides descriptors of the asset and describes the
contexts that are relevant to the asset. The solution section contains the artifacts that
comprise the solution of the asset. The related-assets section contains references or
pointers to other assets. There are several kinds of asset relationships defined in RAS.
Figure 12 highlights the top-level RAS sections.

At the technical level the asset package is just a collection of files in a hierarchal
structure, with a single XML based descriptor file that acts as a manifest. The struc-
ture illustrated in figure 12 is the structure of the XML descriptor file. The package is

WEB-BASED SYSTEMS WITH UML ASSETS 223

typically “zipped” together like Java JAR files. The XML descriptor file is located in a
fixed position in the zipped RAS file, and contains relative links to each of the individual
artifact files.

Assets that are based on the RAS can participate within reuse scenarios such as har-
vest asset, package asset, publish asset, measure asset, rate asset, search asset, browse
asset, and install/customize asset. See www.rational.com/rda for more informa-
tion on the RAS.

The final details of the official specification are still being discussed, however the
general approach has been agreed upon. Some tool vendors have embedded RAS func-
tionality into their offerings.

An example might best illustrate an asset for web-based systems using the asset
packaging as described in the RAS. Bringing together the representation of web-based
systems described earlier in this article with techniques for packaging these solutions for
reuse can positively impact development timelines and efficiencies.

An important point to remember is that an asset may include artifacts from all
aspects of the software development lifecycle. This includes, requirements, models,
code, tests, and so on. The UML plays a critical role in describing individual artifacts in
the asset making the asset consumable by those investigating its solution without having
to invest the effort in apply it first. In the example below, the focus is to illustrate the
kinds of UML models, artifacts, documentation and so on that are relevant to reusable
solutions for web-based systems. The asset is not completely documented or described
in this article due to space constraints.

5. Asset: paged dynamic list

5.1. Classification section

Context

• Development. This asset can be used in any web-development environment that pro-
vides user session management capabilities.

• Test. This asset has two test configurations; Linux, and Windows 2000.

• Deployment. This asset should be deployed on Tomcat and Apache servers.

Descriptors

• Keywords. Web search, search result, dynamic list, page dynamic list.

• Known Uses. This asset has been used in n-tier web-based systems.

• Author. Jim Conallen.

• Packager. Grant Larsen.

224 LARSEN AND CONALLEN

Figure 13. Browse results Use Case diagram.

5.2. Solution section

In this section the artifacts are organized into four sets: the requirements set, the design
set, the realization set, and the test set.

Overview. This solution provides a general mechanism for capturing queries and build-
ing server result lists and screens for the user to navigate.

Problem description. When navigating the web, users perform searches and must nav-
igate the results of those searches. The total number of results is can be more than can be
practically placed in a single web page, therefore the results must be viewed one section
at a time.

Requirements Set

Requirements Set Artifact List. Below is a list of the artifacts comprising the require-
ments set.

pageddynamiclist.mdl [Use Case Model package] ⇒ Rational Rose model,
browseresults.uc ⇒ Requisite Pro Use Case document.

The Requirements Set includes the artifacts that comprise the requirements that the so-
lution will support. Below is a small list of requirements.

1. The user must be able to enter searches for items on the web.

2. The search criteria must be managed.

3. The results of the searches must be configurable to a specified number per page.

4. The user must be able to browse the results of the searched; including forward, pre-
vious, and specific page browsing.

Figure 13 illustrates the Use Case diagram for this asset. The figure states that the
User (the Actor) will browse the results of a search.

The basic flow of the Use Case is illustrated below. Figure 14 outlines the expected
behavior that the asset will support. From this figure you can see that the user can issue
searches and then will have several options for reviewing the results including navigating
to the next page, to the previous page, and to a specific page.

Figures 13 and 14 represent the models describing the requirements set for which
the asset should resolve.

WEB-BASED SYSTEMS WITH UML ASSETS 225

Figure 14. Browse results: basic flow sequence diagram.

Design set

Design Set Artifact List. Below is a list of the artifacts comprising the design set:

• pageddynamiclist.mdl [Design Model package] ⇒ Rational Rose model.

The Design Set includes the models and other artifacts that comprise the design of
the solution.

226 LARSEN AND CONALLEN

Figure 15. Analysis Model sequence diagram.

The Analysis Model includes the models and other artifacts that comprise the
analysis views of the solution. Figure 15 describes what the asset does using a UML se-
quence diagram with «boundary», «control», and «entity» stereotypes [Jacobson 1992].
The model describes the interaction of the Search/Browse controller with the Query and
User Session to create the Build Results. These results are then placed on a Results
Screen and then displayed to the User.

Figure 16 represents the class diagram from the Design Model. It illustrates the
classes, attributes, methods, and relationships necessary to provide the paged dynamic
list solution.

The SearchPage, SearchForm, and ResultsPage classes are client side
pages that the user will see. The Search and BuildResults classes are server side
pages.

Variability Points, as defined in the RAS, are locations within an asset that may be
customized or where concrete elements must be provided when the asset is applied or
reused. The Search class and the BuildResults class have the following variability
points.

• Search class Variability Points.

Search scope describes the scope for the search, such as database, intranet, Internet.

• BuildResults class Variability Points.

Result set size describes the maximum size of the result set.

WEB-BASED SYSTEMS WITH UML ASSETS 227

Figure 16. Design Model class diagram.

Realization Set

Realization Set Artifact List. Below is a list of the artifacts in the asset:

• search.jsp ⇒ JSP file;

• buildresults.jsp ⇒ JSP file;

• pagedlistquery.java ⇒ Java file;

• item.java ⇒ Java file.

The Realization Set contains artifacts that are the models and implementation files
of the solutions. This set typically contains UML Component diagrams as well as the

228 LARSEN AND CONALLEN

Figure 17. Browse results basic flow test design sequence chart.

actual Java, JSP, C++, C#, and other relevant files. There are no models illustrated for
this set in this example.

Test Set

Test Set Artifact List. Below is a list of the artifacts in the test set:

• pageddynamiclist.mdl [Test Model package] ⇒ Rational Rose model;

• pageddynamiclist.rsp ⇒ Test Manager project.

The Test Set contains the models and tests that validate and verify the solution.
Tests may be located not only in this set but also may be located close to the actual
artifacts themselves.

Figure 17 illustrates the nature of a test sequence chart for a test design, which
may include a description of the verification points as well as the pre-/post-conditions
and data pool(s) and other relevant test design information.

In addition to these models are a series of tests, test cases, and so on handled by
the Rational Test Manager.

5.3. Usage section

This section illustrates how to apply the asset by describing the activities that should be
performed.

WEB-BASED SYSTEMS WITH UML ASSETS 229

Activities

(i) Verify Tomcat & Apache servers are operational. Make sure these servers are
installed.

(ii) Inject the Requisite Pro document into the project workspace.

(iii) Inject the Rational Rose model into the project workspace. Assign concrete values
to the Variability Points on the Search class and the BuildResults class.

(iv) Inject the Java and JSP files into the project workspace.

(v) Regenerate the source code from the Rose model to update with the concrete values
added to the Search class and the BuildResults class.

(vi) Inject the Test Manager project into the project workspace. Update the test cases
and test designs for the Search and BuildResults tests with the concrete
values chosen for the Search class and BuildResults class.

(vii) Recompile test scripts and harnesses.

(viii) Compile the JSP and Java classes into the project workspace.

5.4. Related assets section

This section identifies those assets on which this asset may be dependent or may contain
or may point to previous versions of this asset.

Related asset Reference Relationship
name

Pager Tag Library http://jsptags.com/tags/navigation/pager/ Association

Sun J2EE Pattern http://java.sun.com/blueprints/patterns/j2e Association
Value List Handler e_patterns/index.html

6. Summary

Web-based systems can be effectively designed and implemented using the UML. WAE
is the UML extension used to represent the items that are considered first-class citizens
in web-based systems. As the challenges facing software engineers continue to increase,
modeling, packaging, and applying assets for web-based systems will increase the effec-
tiveness of software engineers.

The RAS describes some techniques for packaging reusable assets and reducing
the friction in reuse transactions. We find that packaging reusable assets may require
additional models, artifacts, or documentation that will not typically be included in nor-
mal system development. This extra effort is justified by the value these items bring in

230 LARSEN AND CONALLEN

making the reusable asset understandable and useful. This article illustrated using the
RAS to partially package an asset for solving problems relative to developing web-based
systems.

References

Alhir, S.S. (1999), “Extending the Unified Modeling Language (UML),” available at http://home.
earthlink.net/∼salhir/extendingtheuml.html.

Anderson, D.J. (2000), “Extending UML for UI,” A Position Paper for the TUPIS2000 Workshop at
UML2000, http://www.uidesign.net/2000/papers/TUPISproposal.html.

Baumeister, H., N. Koch and L. Mandel (1999), “Toward a UML Extension for Hypermedia Design,”
available at http://www.pst.informatik.uniuenchen.de/projekte/forsoft/
pubs/uml99.pdf.

Berners-Lee, T. (1999), “Web Architecture from 50,000 Feet,” available at http://www.w3.org/
DesignIssues/Architecture.html.

Booch, G., I. Jacobson, and J. Rumbaugh (1999), The Unified Modeling Language User Guide, Addison-
Wesley, Reading, MA.

Conallen, J. (2000), Building Web Applications with UML, Addison-Wesley, Reading, MA.
Earls, A. (1999), “True Test of the Web,” available at http://www.informationweek.com/718/

18iutst.htm.
Jacobson, I. (1992), Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-

Wesley, Reading, MA.
Jacobson, I., G. Booch, and J. Rumbaugh (1999), The Unified Software Development Process, Addison-

Wesley, Reading, MA.
Kruchten, P. (2000), The Rational Unified Process, an Introduction, Second Edition, Addison-Wesley,

Reading, MA.
Rational Software (2001), “Rational Development Accelerators”, available at http://www.rational.

com/rda.
Rumbaugh, J., G. Booch and I. Jacobson (1999), The Unified Modeling Language Reference Manual,

Addison-Wesley, Reading, MA.

