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Abstract. In this note we describe (up to isomorphism) the real von Neiman algebras R with
Abelian skew-symmetric part Rk = {x ∈ R : x∗ = −x}, i.e., such that xy − yx = 0 for any
x, y ∈ Rk .
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Consider the *-algebra B(H) of all bounded linear operators on a complex Hilbert space H .
Recall [1, 2] that a weakly closed real *-subalgebra R in B(H) is called a real von Neumann
algebra if it contains the identity operator 1I and satisfies the condition R ∩ iR = {0}. There is
a close relationship between the real von Neumann algebras and the involutive (i.e., period two)
*-antiautomorphisms of (complex) von Neumann algebras (for details, see [1, 2]).

For a real von Neumann algebra R, the set Rs = {x ∈ R : x∗ = x} of all symmetric elements of
R forms a weakly closed Jordan algebra of self-adjoint operators (a JW -algebra [3]) with respect
to the symmetrized product x ◦ y = 1

2(xy + yx). The set Rk = {x ∈ R : x∗ = −x} of all skew-
symmetric elements in R is a Lie algebra with respect to the commutator [x, y] = xy − yx.

It follows from the results in [4] that if a real von Neumann algebra R is Abelian, then it is
isomorphic to the direct sum of algebras of the form L∞(Ω, µ, R) and L∞(Ω, µ, C), i.e., algebras of
essentially bounded measurable (real or complex) functions on a measure space (Ω, µ). This result
was generalized in [5], where it was proved that if R is a real von Neumann algebra with Abelian
symmetric part Rs , then, along with the above summands, R can have a direct summand of the
form L∞(Ω, µ, Q), where Q is the quaternion skew field.

In the present note we describe the real von Neumann algebras R with Abelian skew-symmetric
part Rk , i.e., such that [x, y] = 0 for any x, y ∈ Rk . Namely, we prove the following result.

Theorem. Let R be a real von Neumann algebra whose skew-symmetric part Rk is Abelian.
Then R is isomorphic to the direct sum of algebras of the following types:

(i) L∞(Ω, µ, R);
(ii) L∞(Ω, µ, C);
(iii) L∞(Ω, µ, M2(R)) = L∞(Ω, µ, R)⊗ M2(R),

where M2(R) denotes the algebra of 2× 2 real matrices.
Before passing to the proof of the theorem we present several preliminary results.
Lemma 1 (Putnam [6]). Let a, x∈B(H), where a is normal, i.e., a∗a= aa∗. Then [a, [a, x]] = 0

implies [a, x] = 0.
Lemma 2. Under the assumptions of the theorem, for any x, y ∈ Rk , the product xy is a

central element of R, i.e., it commutes with every element of R.
Proof. Since Rk is Abelian, we have (xy)∗ = xy ∈ Rs , and xy commutes with every element

of Rk . Further, since xy ∈ Rs , it follows that [a, xy] ∈ Rk for any a ∈ Rs , and therefore [a, xy]
commutes with x and with y, and thus with xy, i.e., [[a, xy], xy] = 0. Since the symmetric element
xy is normal, it follows from Lemma 1 that [a, xy] = 0 for any a ∈ Rs . Therefore, xy commutes
with any element in R = Rs + Rk .
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Lemma 3. Under the assumptions of the theorem, if the JW -algebra Rs is Abelian, then the
real von Neumann algebra R is commutative.

Proof. By assumption, [x, y] = 0 for any x, y ∈ Rk , and [a, b] = 0 for any a, b ∈ Rs . Therefore,
it suffices to prove that [a, x] = 0 for a ∈ Rs and x ∈ Rk . Indeed, [a, x]∗ = [a, x] ∈ Rs , and thus
[a, [a, x]] = 0. Since a = a∗ is normal, it follows from Lemma 1 that [a, x] = 0.

Lemma 4. Under the assumptions of the theorem, any family of mutually orthogonal pairwise
equivalent projections in the JW -algebra Rs has at most two elements.

Proof. Suppose the converse, i.e., let there exist three mutually orthogonal and pairwise equiv-
alent projections e = e1 , e2 , e3 . By [3, Proposition 10] they are conjugate by symmetries, i.e.,
e2 = s2es2 and e3 = s3es3 for some symmetries s2, s3 ∈ Rs (recall that s2

2 = s2
3 = 1I). Consider the

element x = s2es3 − s3es2 ∈ Rk . Since the projections e, e2 , and e3 are orthogonal, it can readily
be calculated that x2 = −e2 − e3 . By Lemma 2, the element x2 is central in R. On the other hand,
consider the element a = es2 + s2e ∈ Rs . Using the orthogonality of e, e2 , and e3 again and the
relations between them via symmetries, we can readily see that

[a, x2] = −[es2 + s2e, e2 + e3] = s2e − es2.

Therefore,
[a, x2]2 = (s2e − es2)2 = −e2 − e �= 0,

which contradicts the condition that the element x2 is central, i.e., [a, x2] = 0 for any a ∈ R. A
contradiction.

Proof of the theorem. By Lemma 4, there exists a central projection z in Rs such that zRs

is of type I1 (i.e., an Abelian JW -algebra) and (1I − z)Rs is a type I2 JW -algebra. The central
element z in Rs is automatically central in R. Indeed, for x ∈ Rk , the commutator [z, x] is in
Rs , and therefore [z, [z, x]] = 0, and Lemma 1 implies that [z, x] = 0, i.e., z commutes with each
element of Rk as well. Thus, R = zR⊕ (1I− z)R, where the real von Neumann algebra zR has the
Abelian symmetric part zRs and the Abelian skew-symmetric part (zR)k = zRk . By Lemma 3, the
real von Neumann algebra zR is Abelian, and, by [4], zR is isomorphic to the direct sum of algebras
of the form (i) and (ii). Therefore, it remains to consider the case in which Rs is a JW -algebra of
type I2 .

Since a1 · · · an + anan−1 · · · a1 ∈ Rs for any a1, . . . , an ∈ Rs , it follows that the JW -algebra
Rs is a reversible JW -algebra of type I2 . As is known [7], any JW -algebra of type I2 can be
decomposed into a direct sum of JW -algebras of the form

∞∑
m=3

L∞(Ωm, µm, Vm),

where Ωm is a locally compact Hausdorff space, µm is a Radon measure on Ωm , and Vm is a spin
factor (i.e., a JW -factor of type I2) of dimension m � 3. On the other hand, if the original JW -
algebra is reversible, then all spin factors Vm are reversible as well, which is possible only if m = 3,
4, or 6 (see [8]), i.e., if V3

∼= M2(R)s , V4
∼= M2(C)s , or V6

∼= M2(Q)s . As is known [9, Theorem
3], Mk = [Ms, Ms] for any real factor M except for Q, i.e., any skew-symmetric element of M
is a finite sum of commutators of symmetric elements in M . In particular, the skew-symmetric
matrices in M2(F) are algebraically generated by M2(F)s (where F = R, C or Q). Therefore, if
the reversible JW -algebra Rs contains direct summands of the form L∞(Ω, µ, M2(F)s), then R
contains direct summands of the form L∞(Ω, µ, M2(F)). However, for F = C or Q, the algebra
M2(F) has skew-symmetric matrices which do not commute, and this contradicts the assumption
of the theorem. Therefore, the only possible case is Rs = L∞(Ω, µ, M2(R)s).

As noted above, in this case the algebra R contains the algebra R0 = L∞(Ω, µ, M2(R)). We
claim that R = R0 . Indeed, Rs = R0

s . Let x ∈ Rk . Consider an arbitrary invertible skew-symmetric

element u ∈ R0
k , for instance, the function on Ω identically equal to the matrix

(
0 −1
1 0

)
in M2(R).
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Then xu is a symmetric element of Rs = R0
s , and therefore x = (xu)u−1 ∈ R0

sR
0
k ⊂ R0 . Thus,

Rk = R0
k and R = Rs + Rk = R0

s + R0
k = R0 , which proves that if the JW -algebra Rs is of type

I2 , then R = L∞(Ω, µ, M2(R)), i.e., case (iii) takes place. This completes the proof of the theorem.
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