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Abstract. We concisely and directly prove that the interpolation Macdonald polynomials are
orthogonal with respect to the Fourier pairing and briefly discuss immediate applications of this
fact, in particular, to the symmetry of the Fourier pairing and to the binomial formula.
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1. Introduction

The Fourier pairing introduced by Cherednik [1] is a fundamental notion in the theory of
Macdonald polynomials. In its simplest instance, it pairs the algebra Λn of symmetric polynomials
in n variables with the algebra Dn of Macdonald commuting difference operators acting on Λn [6].
By definition,

〈D, f〉 = [D · f ](0̂), D ∈ Dn, f ∈ Λn, (1)

where 0̂ is a distinguished point. There is a natural isomorphism Dn
∼= Λn , which makes (1) a

quadratic form on Λn . The most important and useful property of this form is its symmetry (see
[1, 6, 7]).

The main observation in this note is that there is a quite natural orthogonal basis for the
form (1). Namely, this is the basis {Iµ} of the interpolation Macdonald polynomials which were
intensively studied by Knop, Olshanski, Sahi, the author, and others (see, e.g., [3, 8, 11, 13] and
the references therein). The polynomials Iµ are defined by very simple multivariate Newton-type
interpolation conditions and have many remarkable applications.

The orthogonality of Iµ with respect to (1), stated in Theorem 1 below, readily follows from
the definitions and needs no nontrivial properties of the polynomials Iµ . It directly implies that (1)
is symmetric.

Moreover, the orthogonality of Iµ immediately implies an expansion of the simultaneous eigen-
functions of the operators in Dn with respect to the basis {Iµ}, and these eigenfunctions are known
as the symmetric Macdonald polynomials Pλ . This expansion, which is reproduced in Theorem
3 below, is the binomial formula for Pλ (see [9]). In fact, the orthogonality of Iµ is essentially
equivalent to the binomial theorem, but it certainly appears to be a much more basic, natural, and
appealing property.

The binomial theorem of [9] was extended [4, 10, 14] to a more general setting, including other
classical root systems and the nonsymmetric Macdonald polynomials. We do not strive for the
greatest possible generality in this paper. Our intention, rather, is to show how the basic idea works
in the simplest nontrivial example of the ordinary symmetric Macdonald polynomials. We even first
consider the (almost) trivial one-dimensional case to give a completely elementary illustration of
what is going on.

It should be pointed out that there is another source of orthogonality relations for the polynomi-
als Iµ . Namely, the polynomials Iµ can be obtained from the symmetric Macdonald polynomials of
type BCn (this can be seen explicitly by degenerating the binomial formula of [10] to the binomial
formula for the polynomials Iµ [9]).
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This work is based on my unpublished paper written in Fall of 1997. Later on, it was intended
to be a part of a survey article on interpolation Macdonald polynomials on which we were working
together with G. Olshanskii.

2. Simplest Example

2.1. As a warm-up, let us first consider the one-dimensional case. Let the operator T act on
polynomials in x by the formula

[Tf ](x) = f(qx).
Obviously, the monomials xn , n = 0, 1, 2, . . . , are the eigenfunctions of this operator with the
eigenvalues qn . Consider the following bilinear form:

〈g, f〉 = [g(T ) · f ](1). (2)

In the basis {xn}, this form has the matrix

[qnm]n,m=0,1,... =




1 1 1 1 . . .
1 q q2 q3 . . .
1 q2 q4 q6 . . .
1 q3 q6 q9 . . .
...

...
...

...
. . .


 ,

and it is clearly symmetric.
It is also clear that

x∗ = T, T ∗ = x, (3)
where x denotes the operator of multiplication by the independent variable and the asterisk indi-
cates the adjoint operator with respect to (2). Clearly, (3) is an anti-automorphism of the q-Heisen-
berg algebra generated by T and x (subjected to the relation Tx = qxT ) and deserves to be called
the Fourier transform.

2.2. Now consider the polynomial

In = (x − 1)(x − q) · · · (x − qn−1), n = 0, 1, . . . , (4)

satisfying the following Newton interpolation conditions:

In ≡ xn mod {xm}m<n, (5)

In(qm) = 0, 0 � m < n. (6)

We have the following assertion.
Proposition 1. The polynomials In are orthogonal with respect to the form (2), namely,

〈In, Im〉 = δn,mIn(qn). (7)

Proof. We advisedly avoid using the symmetry of (2) in our reasoning because we intend to
obtain the analogous symmetry in the general case as a corollary.

It is clear from the definition (2) that

〈xn, f〉 = f(qn), (8)

and since T · xn = qnxn , we also have

〈g, xn〉 = g(qn).

It now follows from (6) that

〈xm, In〉 = 〈In, xm〉 = 0, m < n,

and
〈xn, In〉 = 〈In, xn〉 = In(qn).

Now property (5) completes the proof.
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The following expansion is immediate from (7) and (8):

xn =
∑
m

〈xn, Im〉
〈Im, Im〉 Im(x) =

∑
m

Im(qn)Im(x)
Im(qm)

.

This is the Newton interpolation of the monomial xn with nodes 1, q, q2, . . . and also an instance
of the q-binomial theorem.

3. Symmetric Macdonald Polynomials

3.1. We now turn to polynomials in n variables x1, . . . , xn . Write

[Tif ](x1, . . . , xn) = f(x1, . . . , qxi, . . . , xn).

Let t be an additional parameter. Following Macdonald [6], we introduce the operators

Dk = tk(k−1)/2
∑
|S|=k

dS(x)
∏
i∈S

Ti,

where the summation is taken over the subsets S ⊂ {1, . . . , n} of cardinality k and

dS(x) =
∏

i∈S, j /∈S

txi − xj

xi − xj
.

3.2. The operators Dk commute and take symmetric polynomials to symmetric polynomials.
They act triangularly in the basis of monomial symmetric functions, namely,

Dk · mλ ≡ ek(λ̂)mλ mod {mµ}µ<λ,

where λ = (λ1 � λ2 � . . . � λn) stands for a partition,

mλ = xλ1
1 · · ·xλn

n + permutations

for the corresponding monomial symmetric function, ek = m(1k) for the kth elementary symmetric
function, λ̂ for the point

λ̂ = (qλ1tn−1, qλ2tn−2, . . . , qλn−1t, qλn),
and µ < λ for the dominance order on the partitions:

µ � λ ⇐⇒




µ1 � λ1,
µ1 + µ2 � λ1 + λ2,

. . .
µ1 + · · ·+ µn = λ1 + · · ·+ λn


 .

The simultaneous eigenfunctions Pλ of Dk ,

Dk · Pλ = ek(λ̂)Pλ, (9)

normalized by the condition
Pλ ≡ mλ mod {mµ}µ<λ (10)

are known as the Macdonald symmetric polynomials.
3.3. Let Λn be the algebra of symmetric polynomials in n variables. It is clear from (9) that

the mapping
D : Λn � ek �→ Dk

extends to an algebra homomorphism such that

D(g) · Pλ = g(λ̂)Pλ, g ∈ Λn. (11)

Following Cherednik [1], we now define the Fourier pairing

〈g, f〉 = [D(g) · f ](0̂), f, g ∈ Λn. (12)
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This is an analog of (2). It is clear that

〈hg, f〉 = 〈g, D(h)f〉.
In other words, D(h) = h∗ , where h is regarded as a multiplication operator and the asterisk
indicates the Fourier transform of this operator, that is, the adjoint operator with respect to (12).
It is also clear from (9) that the pairing (12) takes the normalized eigenfunction

Nλ =
Pλ

Pλ(0̂)
(13)

to the δ-function at λ̂, namely,
〈g, Nλ〉 = g(λ̂). (14)

3.4. Our goal is now to produce an explicit orthogonal basis for the quadratic form (12). As in
(4), this basis will consist of Newton interpolation polynomials.

Let � be any total ordering of the set of partitions λ that is compatible with both the ordering
of partitions by their size |λ| and the dominance ordering for partitions of the same number. Define
the interpolation Macdonald polynomials Iµ by the following generalization of (5) and (6):

Iµ ≡ mµ mod {mλ}λ�µ, (15)

Iµ(λ̂) = 0, λ � µ. (16)

For generic q and t, the existence and uniqueness of such polynomials are clear from their existence
and uniqueness for t = 1, which is elementary.

3.5. It can be shown (see, e.g., [3, 8, 11, 13]) that the polynomials Iµ do not depend on the
choice of the ordering � and satisfy the much stronger extra vanishing property

Iµ(λ̂) = 0, µ �⊂ λ. (17)

By the binomial formula (22), this gives the following strengthening of (15):

Iµ ≡ Pµ mod {Pλ}λ⊂µ. (18)

However, we do not need the extra vanishing (17) below, and this makes our reasoning applicable
in situations in which an analog of (17) is not available.

3.6. Our main result is the following assertion.
Theorem 1. The polynomials Iµ are orthogonal with respect to the Fourier pairing (12).
An immediate corollary of this theorem is the following central result of the theory of Macdonald

polynomials:
Corollary 1 (Koornwinder [6]). The Fourier pairing (12) is symmetric.
Koornwinder actually proved an equivalent symmetry, namely, the following label-argument

symmetry for the normalized polynomials (13):

Nλ(µ̂) = Nµ(λ̂).

Numerous application of this symmetry, for example, Pieri-type formulas for Macdonald polyno-
mials, can be found in [1, 6, 7].

3.7. The proof of Theorem 1 goes in two steps. First, we claim that

〈Iµ, Iλ〉 = 0, µ � λ.

Indeed, by (15), (10), and (14), this is equivalent to

〈Iµ, Nλ〉 = Iµ(λ̂) = 0, µ � λ,

which holds by (16).
3.8. Now we prove that

〈Iµ, Iλ〉 = 0, µ � λ.
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By (15), this is equivalent to proving that 〈mµ, Iλ〉 = 0 if µ � λ. Since

eµ
def= eµ1 · · · eµn ≡ mµ mod {mν}ν<µ,

it suffices to prove that
〈eµ, Iλ〉 = 0, µ � λ.

By the definition (12), this is equivalent to the relation

[Dµ · Iλ](0̂) = 0, Dµ = Dµ1 · · ·Dµn , (19)

which will now be established.
3.8. It is a crucial property of the operators Dk that(

λi = λi+1,
i /∈ S, i + 1 ∈ S

)
=⇒ dS(λ̂) = 0.

Hence,

[Dk · f ](λ̂) =
∑

ν/λ=vertical k-strip

dS(ν,λ)(λ̂)f(ν̂),

where S(ν, λ) = {i, νi > λi}. It follows that
[Dµ · f ](0̂) =

∑
ν<µ

cµ,νf(ν̂), (20)

with some coefficients cµ,ν . A similar property can be established in a more general context, e.g.,
for nonsymmetric Macdonald polynomials [2].

It is clear that (20) together with (16) imply (19), and this completes the proof of Theorem 1.
3.9. Theorem 1 can be sharpened as follows.
Theorem 2. We have

〈Iµ, Iν〉 = δµ,νIµ(µ̂)Pµ(0̂) = δµ,νcµ,µIµ(µ̂). (21)

In particular, this shows that Pµ(0̂) = cµ,µ , which, after making the number cµ,µ explicit, can
be seen to be equivalent to a known formula for Pµ(0̂) (see [6]).

Proof. Arguing as in Sec. 3.7, we see that

〈Iµ, Iµ〉 = 〈Iµ, Pµ〉 = Iµ(µ̂)Pµ(0̂).

On the other hand, arguing as in Sec. 3.8, we obtain

〈Iµ, Iµ〉 = [Dµ · Iµ](0̂) = cµ,µIµ(µ̂).

3.10. Theorem 2 implies the following Newton interpolation formula:

f =
∑

µ

〈Iµ, f〉
〈Iµ, Iµ〉Iµ, f ∈ Λn.

In particular, applying this to Nλ and using (14), we obtain the following expansion (in which we
explicitly keep the variables x to stress the label-argument symmetry).

Theorem 3 (Binomial theorem, [9]). We have

Nλ(x) =
∑

µ

Iµ(λ̂)Iµ(x)
〈Iµ, Iµ〉 . (22)

It follows from (17) that a partition µ can occur in this expansion only if µ ⊂ λ .
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