
Journal of Mathematical Modelling and Algorithms 1: 3–16, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

3

Finding Specified Sections of Arrangements:
2D Results

P. BOSE1, F. HURTADO2,�, H. MEIJER3, S. RAMASWAMI4,
D. RAPPAPORT3, V. SACRISTÁN2, T. SHERMER5 and G. TOUSSAINT6

1School of Computer Science, Carleton University, Otawa, Ontario K1S 5B6, Canada
2Universitat Politècnica de Catalunya, Barcelona, Spain
3Department of Computing and Information Science, Queen’s University, Kingston,
Ontario K7L 3N6, Canada
4Faculty of Computer Sciences, Rutgers University, Camden, NJ 08102, U.S.A.
5School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada
6School of Computer Science, McGill University, Montreal, Quebec H3A 2A7, Canada

(Received: 22 January 2001; in final form: 30 July 2001)

Abstract. Given a configuration C of geometric objects in R2 (called the input configuration), a
target configuration T of geometric objects in R1, and a class S of allowable sectioning lines we
consider in this paper many variations on the following problem: ‘Is there a line S ∈ S such that the
section S ∩ C is equivalent by rigid motion to the target T ?’

Mathematics Subject Classifications (2000): 68Q25, 68W40.

Key words: section, projection, tomography, probe, stereology, morphology, recognition.

1. Introduction

Mathematical tomography deals with a set of ‘techniques of reconstructing inter-
nal structures in a body from data collected by detectors (sensitive to some sort
of energy) outside the body’ ([23]). For example, one technique in computerized
tomography consists of measuring the attenuation of X-rays between multiple pairs
of points outside the body, each pair giving positions for a source and a detector,
from which the Radon transform is estimated, and the density distribution approx-
imated. Mathematical methods in tomography constitute a rich area of research
whose basic results go back to the beginning of the century (Radon proved his
inversion formula in 1917), but that has become especially active in the last two
decades, as new technologies and the spreading of computers have resulted in many
ways of gathering data about bodies as well as a powerful capability of handling
the information ([11, 22–25, 32]).

When density functions are replaced by geometric objects (for example, we
have a convex polytope instead of a body with nonconstant internal density), then
� Partially supported by DGES-SEUID PB98-0933 and GEN. CAT. 199SGR000356.

4 P. BOSE ET AL.

geometric information – shape, measure, etc. – is the detected data, and we arrive
at the area of Geometric Tomography ([15, 16]), a topic that recently emerged as
a well-defined domain of research, which is described by Gardner in [16] as ‘the
area of mathematics dealing with the retrieval of information about a geometric
object from data about its sections, or projections or both’. As an example of
how geometry changes the situation, let us recall the fact that a planar density
distribution is determined by its X-rays taken in every direction, while Gardner
and McMullen [19] proved that a selected set of four directions determine an
homogeneous convex body. Certainly geometric tomography and computerized
tomography overlap in several problems, and there are also many related domains,
such as stereology, mathematical morphology, image analysis, pattern recognition
and geometric probing.

Computational geometric tomography is a natural name for an area grouping
results in which the emphasis is on the algorithmic aspect of the problems above.
It is illuminating to distinguish first between direct and inverse problems. In direct
problems, the input is a geometric object and the objective is to efficiently compute
a section or a projection with prescribed properties. In inverse problems, which are
at the core of mathematical tomography, sections and/or projections are the input
and the aim is to determine, verify, reconstruct or approximate the object, or some
of its properties. Direct problems, besides its intrinsic interest, often provide the
basis for solving the inverse ones. Both kind of problems have attracted a lot of
attention in computational geometry; a few examples follow.

In [30] McKenna and Seidel gave algorithms for minimizing or maximizing the
shadow of a polyhedron by projection, a topic also studied by Burger, Gritzmann
and Klee in [9]. In [3], Avis et al. compute the maximum-area horizontal cross-
section of a convex polytope. Bose et al. in [7] and Gómez, Hurtado and Toussaint
in [21] consider the problem of computing ‘nice’ orthographic projections of ob-
jects in 3-space, according to different criteria of ‘niceness’. The computation of
shadows has been also studied by Chazelle, Edelsbrunner and Guibas in [10],
Ponce et al. in [33, 34] and Amenta and Ziegler in [1, 2]; these papers also contain
combinatorial results and pointers to many related works.

Boissonnat in [6], Barequet and Sharir in [4] and Gitlin, O’Rourke and Sub-
ramannian in [20] studied the problem of reconstructing polyhedra from parallel
slices by interpolation, a problem in which fairly extensive work has been done.
The compatibility of projections of point sets (whether or not they can come from
the same object) is considered in [21]. Geometric Probing, as described by Skiena
in [35], ‘considers problems of determining a geometric structure or some aspect
of that structure from the results of a mathematical or physical measuring device, a
probe’. This area of research, which is certainly related to geometric tomography,
has attracted a lot of attention [12, 14, 28, 29, 31].

In spite of all this research, much remain unexplored, a fact which is not strange
given the huge variety of problems and tools involved.

FINDING SPECIFIED SECTIONS OF ARRANGEMENTS 5

Table I.

Input Allowable sectioning lines

dimension Input configuration (target) Horizontal Through the origin All

2D line segments (points) O(n2) O(n2) O(n3)

lines (points) �(n log n) O(n2) O(n3)

polygons (intervals) O(n2) O(n2) O(n3)

discs (intervals) O(n2) O(n2) O(n3)

In this paper, we study some fundamental 2D recognition problems involving
objects and arrangements that are typical in computational geometry (3D analo-
gous results are described in a companion paper [8]). Specifically, given a con-
figuration C of geometric objects in R2 (called the input configuration), a target
configuration T of geometric objects in R1, and a class S of allowable sectioning
lines we consider many variations on the following problem: ‘Is there a line S ∈ S
such that the section S ∩ C is equivalent by rigid motion (translation plus rotation)
to the target T ?’ In the affirmative, the algorithms will report all the solutions, if
there are a finite number. When there is an infinite set of parallel sectioning lines
that give the same combinatorial solution, only one of them will be reported. This
framework is denoted throughout the paper as the sectioning problem.

The classes of input configurations that we will consider are sets of noncrossing
line segments (where the target is a set of points), sets of nonparallel lines (where
the target is a set of points), sets of nonintersecting discs (where the target is a
set of intervals), and sets of nonintersecting polygons (where the target is a set
of intervals). We consider horizontal lines, lines through the origin, and all lines
as allowable sectioning classes. We use n to denote the total input complexity of
objects in C, and k for the number of objects in T .

Table I summarizes our results.

2. Preliminary Results

In this section, we will prove two lemmas that are used in subsequent sections of
this paper. Assume that we have a line l containing three points a, b and c, and
three lines la , lb and lc. These three lines are fixed, but the line l can be rotated and
translated. We are interested in determining the number of ways the line l can be
placed with its points a, b and c on the three lines la , lb and lc, respectively. For
lines in the general position, the number of placements is at most 2, but in some
degenerate cases the number can be infinite. For example, when the three lines are
parallel, the number of placements is either zero or infinite. If two of the lines are
parallel, but the third has a different direction, then the number of placements is at
most 2. All other cases follow immediately from our first lemma below. The second
lemma of this section applies to a similar situation.

6 P. BOSE ET AL.

LEMMA 2.1. Let la and lb be two nonparallel lines. Let l be a line containing
three points a, b and c. If we consider all the placements of l such that a and b lie
on la and lb, respectively, then the collection of corresponding placements of the
point c forms an ellipse.

Proof. Let the point c be determined by the condition c = a + s · −→
ab, where s

is a fixed real number different from 0 and from 1. Let k be the distance between a
and b. Without loss of generality, assume that la is the x-axis and that lb is the line
x = my, for some constant m. Pick any point (α, 0) in la and any point (mβ, β) in
lb and consider these points as candidate positions for a and b; the corresponding
position for c would be the point (xc, yc) = (α, 0)+ s(mβ − α, β) = ((1 − s)α +
msβ, sβ).

From this we get

α = xc −myc
1 − s , β = yc

s
.

But the candidates for a and b give a true placement if and only if they are at
distance k apart, i.e. if and only if (α − mβ)2 + β2 = k2; by substitution, we get
the locus

(
sxc −myc
s2 − s

)2

+
(
yc

s

)2

= k2

for the placements of c, which is an ellipse as claimed. ✷
LEMMA 2.2. Let la and lb be two lines. Let ca and cb two circles bounding
disjoint discs, and let p be a point, p /∈ la ∩ lb. Consider a line l containing two
points a and b separated by a distance k. The line l can be rotated and translated,
but all the other objects are fixed. Then:

(i) there are at most four placements of l such that l contains p, la contains a and
lb contains b;

(ii) there are at most a constant number δ of placements of l such that l contains p,
ca contains a, cb contains b, and all the points of l ∩ ca and l ∩ cb lie between
a and b.

Proof. (i) If la and lb are parallel, the result obviously holds so, without loss
of generality, assume that p is the point (0, 0), la is the line y = 1 and lb is the
line x = cy + d. A candidate placement for l as the line x = my through (0, 0)
produces the point (m, 1) in la and the point (md/(m− c), d/(m− c)) in lb, which
corresponds to a placement for a and b if and only if the distance between them
is k, hence we get the equation

(
m− md

m− c
)2

+
(

1 − d

m− c
)2

= k2,

FINDING SPECIFIED SECTIONS OF ARRANGEMENTS 7

which can be expressed as

(m2 + 1)(m− c − d)2 − k2(m− c)2 = 0,

a degree-four polynomial from which we obtain, at most, four values for m.
(ii) We prove here an upper bound δ � 32 by relaxing the constraints. Without

loss of generality, assume that p is the point (0, 0), ca is the circle (x−a1)
2 + (y−

b1)
2 = r2

1 , cb is the circle (x − a2)
2 + (y − b2)

2 = r2
2 , and that at least one of the

circles lies entirely in the halfplane x > 0 . Let us consider a candidate placement
for l as the line y = mx and assume that the points a and b are (t,mt) and (z,mz),
respectively. As they must be at distance k, we have (t − z)2 + (mt −mz)2 = k2,
and this equation gives the two possibilities

z = t − k√
1 +m2

; z = t + k√
1 +m2

.

We take the first solution (the argument is identical for the second one), use the
value of z for point b, and impose now that ca and cb must contain a and b,
respectively, which gives

(t − a1)
2 + (mt − b1)

2 − r2
1 = 0;(

t − k√
1 +m2

− a2

)2

+
(
t − k√

1 +m2
− b2

)2

− r2
2 = 0.

These two equations can be considered as polynomials in t , which will have a
common root, therefore their resultant ([26], p. 135) must be 0. This resultant is an
algebraic equation inm, which can be transformed into a polynomial equation inm
with degree 16 and leading coefficient r8

2 ; therefore there are, at most, 16 possible
solutions for m. ✷

3. Two-Dimensional Problems

The classes of input configurations that we will consider are sets of noncrossing
line segments (where the target is a set of points), sets of nonparallel lines (where
the target is a set of points), sets of polygons (where the target is a set of intervals),
and sets of discs (where the target is a set of intervals). Each of these classes of
input configurations is treated in a separate subsection below.

3.1. INPUT CONFIGURATION: SET OF NONCROSSING LINE SEGMENTS

In the first three theorems, we look at the case of noncrossing line segments, i.e.
line segments that may intersect each other only in their endpoints. Therefore, the
results also apply to sets of nonintersecting polygons.

8 P. BOSE ET AL.

THEOREM 3.1. The following sectioning problem can be solved in O(n2) time:

Input configuration: A set of n noncrossing line segments in R2.

Target configuration: A set of k points in R1.

Allowable sections: Horizontal lines.

Proof.

(1) Sort the points in T . Let p0, p1, . . . , pk−1 denote the sorted points. Compute
the distances between consecutive points.

(2) Let bi denote the bottom y-coordinate of line segment i, and ti denote its top
y-coordinate. Compute bi and ti for all line segments. Sort the list of all values
bi and ti and define a horizontal slice as the set of all horizontal lines between
consecutive values in this sorted list.

(3) We say that an input line segment is in a horizontal slice if it is intersected
by all horizontal lines of the slice. Sort the list of input line segments in each
horizontal slice. We can sort the segments in the first slice on O(n logn) time.
Since there is only a constant number of changes between neighbouring slices,
we can obtain the sorted order of each subsequent slice in O(n) time. Therefore
this step can be done in O(n2) time.

(4) We examine each horizontal slice. If all input line segments in a horizon-
tal slice are parallel, then either all horizontal lines in this slice are correct
sectioning lines or none are, which can be verified in linear time. For all
other horizontal slices, find two neighbouring input line segments that are
nonparallel, line segments li and li+1 say. Let δ0 be the distance between the
corresponding points pi and pi+1 in T and let δ1 be the distance between the
corresponding points pk−1−i and pk−2−i . Determine the two positions of the
sectioning line with the correct distance δ0 or δ1 between li and li+1. Verify in
linear time whether or not the candidate sectioning lines are equivalent to T .

(5) For each horizontal line on the boundary of a horizontal slice, verify in linear
time whether or not it is equivalent to T .

Since there are a linear number of horizontal slices, this algorithm requires O(n2)

time. ✷
THEOREM 3.2. The following sectioning problem can be solved in O(n2) time:

Input configuration: A set of n noncrossing line segments in R2.

Target configuration: A set of k points in R1.

Allowable sections: Lines through the origin.

Proof.

(1) Sort the points in T . Let p0, p1, . . . , pk−1 denote the sorted points. Let � be
the distance between p0 and pk−1.

FINDING SPECIFIED SECTIONS OF ARRANGEMENTS 9

(2) For each line segment, compute the lines li and ti that pass through the origin
and the lower and top endpoints of the segment respectively.

(3) Radially sort the ti’s and li’s and define an interval as the set of lines through
the origin between consecutive lines in this sorted list.

(4) We say that an input line segment is in an interval if it is intersected by all
lines in the interval. Sort the list of input line segments in each interval. We
can sort the segments in the first interval in O(n log n) time. Since there is only
a constant number of changes between neighbouring intervals, we can obtain
the sorted order of each subsequent interval in O(n) time. Therefore this step
can be done in O(n2) time.

(5) In each interval compute the locations with a correct value for �. From Lem-
ma 2.2 we know that there are at most a constant number of such locations in
each interval. Test each candidate in linear time.

(6) For each line li and ti , verify in linear time whether or not it is equivalent to T .

Since there are a linear number of lines li and ti , this algorithm requires O(n2)

time. ✷
THEOREM 3.3. The following sectioning problem can be solved in O(n3) time:

Input configuration: A set of n noncrossing line segments in R2.

Target configuration: A set of k points in R1.

Allowable sections: Any line.

Proof. Sort the points in T . Let p0, p1, . . . , pk−1 denote the sorted points. We
first determine whether there is a sectioning line equivalent to T that does not pass
through an endpoint of a line segment. We will solve this problem by mapping
points (a, b) to a line in dual space with equation y = ax − b. Each line segment
in primal space is represented in the dual space by a collection of lines through a
single point, resulting in an area usually called a bow tie [5]. The combinatorial
complexity of the resulting arrangement of all bow ties in dual space is O(n2).
Assume the target contains k points. We traverse the arrangement in dual space
and maintain a sorted list of corresponding line segments in primal space. For each
area that is the intersection of k bow ties, there is a corresponding collection of
k line segments in the primal space that can be stabbed by a line. For each such
collection of k line segments, we either discover that all line segments are parallel
or find three line segments l0, l1 and li that are not all three parallel to each other.
From Lemma 2.1 we derive that in the latter case there are at most two lines that can
stab the k line segments such that the distances between the intersection points of
the three lines l0, l1 and li and the sectioning lines are equal to the distances between
p0, p1 and pi . Also there are at most two sectioning lines that give distances equal
to the distances between pk−1, pk−2 and pk−1−i . If all lines segments are parallel,
we verify whether or not there is a sectioning line that matches T . Since each

10 P. BOSE ET AL.

verification step can be done in linear time, the overall complexity of this part of
the algorithm is O(n3).

Sectioning lines equivalent to T that do pass through an endpoint of a line
segment can be found by applying the O(n2) algorithm of the previous lemma,
using the endpoints of the line segments as the origins of the sectioning lines.
Since there are a linear number of endpoints, the overall complexity of this step
remains O(n3). ✷

3.2. INPUT CONFIGURATION: SET OF NONPARALLEL LINES

The following theorem shows that there is an O(n log n) algorithm if the lines are
nonparallel.

THEOREM 3.4. The following sectioning problem can be solved in O(n logn)
time:

Input configuration: A set of n nonparallel lines in R2.

Target configuration: A set of k points in R1.

Allowable sections: Horizontal lines.

Proof. Sort the target points. Let p0, p1, . . . , pk−1 denote the sorted points.
Compute the diameter �, the distance between p0 and pk−1. Compute the left and
right envelopes of the line arrangement (by halfplane intersection). Both steps use
O(n logn) time.

Find the candidate positions for the sectioning line with the correct value for �.
It is not hard to see that there are at most two such positions since the diameter of
the sectioning lines is a unimodal function. Hence, the two positions can be found
by binary search. We check each one in O(n logn) time to see if we get our target
set of points. ✷

If we allow parallel input lines, we can still solve the above problem in O(n log n)
time if k = n. We may find an infinite number of candidate positions for the
sectioning line with the correct value for �. If that occurs, there are two lines,
l0 and ln−1 say, that intersect all candidate sectioning lines in points corresponding
to p0 and pn−1 (or pn−1 and p0). These two lines l0 and ln−1 are parallel. If all input
lines are parallel, we may have zero or an infinite number of correct positions for
the sectioning line, which we can verify in O(n logn) time. Otherwise we remove
from the set of input lines all lines that are parallel to l0 (but not l0 itself). We can
verify that the corresponding points on T exist in the list p0, p1, . . . , pn−1 (or in
the list pn−1, pn−2, . . . , p0). If they do not all exist, there is no correct position for
the sectioning line. If they do exist, we remove these points from T and repeat this
algorithm, with the added restriction that the intersection of l0 with the sectioning
line should correspond to p0 (or pn−1) on T . In this second iteration, there can

FINDING SPECIFIED SECTIONS OF ARRANGEMENTS 11

at most be two positions where the points on the sectioning line have the correct
diameter. So the overall complexity of the algorithm is O(n logn).

If k < n, we do not know whether an O(n log n) algorithm exists. We can prove
a lower bound, which matches the complexity of the algorithm when k = n or the
lines are nonparallel:

THEOREM 3.5. The following sectioning problem requires (n log n) time:

Input configuration: A set of n lines in R2.

Target configuration: A set of k points in R1.

Allowable sections: Horizontal lines.

Proof. We prove the theorem by reduction from Uniform Gap: given a set X of
n real numbers, X = {x0, . . . , xn−1}, and a positive value ε ∈ R, it takes (n log n)
time to decide whether or not the gap between each pair of consecutive numbers in
X is ε (see [27]). The main idea of the reduction is to construct a set of input lines
and a set of target points from the set X, such that the uniform gap problem can be
answered by solving the sectioning problem.

As input configuration consider the n lines through the origin and the points
(i, 1), i = 1, . . . , n. As target configuration, simply consider the set X ⊂ R.
Without loss of generality, we can assume that x0 � xi � xn−1 for all i =
1, . . . , n− 2. If you find that the target X matches the arrangement, check whether
or not xn−1 − x0 = (n − 1)ε. If so, the answer to the uniform gap problem is yes,
otherwise, the answer is no. ✷
THEOREM 3.6. The following sectioning problem can be solved in O(n2) time:

Input configuration: A set of n lines in R2.

Target configuration: A set of k points in R1.

Allowable sections: Lines through the origin.

Proof. First, construct the arrangement formed by the input lines, in O(n2) time.
Sort the target points p0, p1, . . . , pk−1 and compute the diameter �, the distance
between p0 and pk−1.

Consider the diameter of any section whose section line contains the origin. The
points realizing this diameter will be from (radially opposite) edges on the outer
envelope of the input arrangement. By Lemma 2.2 any pair of radially opposite
lines on the outer envelope can give rise to a constant number of candidate sections.

There are at most O(n) such opposite pairs, and they can be found in O(n)
time from the arrangement by a traversal of the outer envelope. From the opposite
pairs, we construct the O(n) candidate sections and then test each section to see
if it is similar to the target. This test can be performed by walking the zone of the

12 P. BOSE ET AL.

section line in the input arrangement (in O(n) time), seeing if the distance between
consecutive points is the same as in the sorted target set.

Since we do an O(n) test for O(n) candidate sections, and have O(n2) pre-
processing, we have spent O(n2) time. ✷
THEOREM 3.7. The following sectioning problem can be solved in O(n3) time:

Input configuration: A set of n nonparallel lines in R2.

Target configuration: A set of k points in R1.

Allowable sections: Any line.

Proof. First, construct the arrangement formed by the input lines, in O(n2) time.
Sort the points in T and let p0, p1, . . . , pk−1 denote the sorted points. Let δi be the
distance between pi and pi+1. We first assume that n = k.

For each unbounded cell C in the arrangement we repeat the following algo-
rithm. Let the edges in the arrangement forming the unbounded cell C be the
0-level edges. Define an i-level edge as follows: draw a line segment from a point
on the interior of the edge toC in such a way that it does not intersect a vertex in the
arrangement; the number of edges intersected by this line segment is i. From [13]
we know that the combinatorial complexities of the sets of 0-, 1- and 2-level edges
are linear. Consider sectioning lines that originate in C and pass through a 2-level
edge e. Because there are 2 lines between e and C, there are at most two different
1-level edges intersected by these sectioning lines. From Lemma 2.1 we derive
that each one of these two 1-level edges give rise to at most two positions for the
sectioning line such that it gives the correct values for δ0 and δ1. For each candidate
we traverse the arrangement in linear time and verify whether or not it is equivalent
to T . This part of the algorithm requires O(n2) time for each cell C, resulting in
on overall complexity of O(n3).

If k < n, then the sectioning line is parallel to one of the input lines or intersects
at least one vertex in the arrangement. The first case can be solved by applying
the O(n log n) algorithm of Theorem 3.4 for n possible directions. For the second
case, let pi be the first point on T that is the intersection of the sectioning line
and a vertex of the arrangement. If i > 2 then the above algorithm will find the
sectioning line. If i � 2 then the O(n2) algorithm of Theorem 3.6 can be applied
to all the vertices in the 2-, 1- and 0-levels. ✷

As is the case with Theorem 3.4, the above theorem holds if there are parallel
lines in the input set, provided that n = k. The only case for which the algorithm
has to be modified is when we find a line intersecting three parallel 0-level, 1-
level and 2-level edges that give the correct values for δ0 and δ1. In that case,
there are two possible orientations for the sectioning line, but an infinite number
of positions. First we can find all lines parallel to the first three edges and verify
that the resulting intersection points with the sectioning lines exist in T . If they do,

FINDING SPECIFIED SECTIONS OF ARRANGEMENTS 13

we can remove these points from T and now use the diameter � of the remaining
points in T to find at most 2 locations for the sectioning line for each of the two
possible orientations. So this modified step can still be executed in linear time.

3.3. INPUT CONFIGURATION: SET OF DISJOINT DISCS

THEOREM 3.8. The following sectioning problem can be solved in O(n2) time:

Input configuration: A set of n disjoint discs in R2.

Target configuration: A set of k intervals in R1.

Allowable sections: Horizontal lines.

Proof.

(1) Compute �, the diameter of the set of intervals in T .
(2) Let bi denote the bottom y-coordinate of disc i, and ti denote its top y-coordi-

nate. Compute bi and ti for all discs. Sort the list of all values bi and ti and
define a horizontal slice as the set of all horizontal lines between consecutive
values in this sorted list.

(3) We say that a disc is in a horizontal slice if it is intersected by all horizontal
lines of the slice. Sort the list of discs in each horizontal slice. We can sort the
discs in the first slice in O(n log n) time. Since there is only a constant number
of changes between neighbouring slices, we can obtain the sorted order of each
subsequent slice in O(n) time. Therefore this step can be done in O(n2) time.

(4) In each horizontal slice there are at most two candidate sectioning lines with
the correct diameter �. Verify in linear time whether or not the candidate
sectioning lines are equivalent to T .

(5) For each horizontal line on the boundary of a horizontal slice, verify in linear
time whether or not it is equivalent to T .

Since there are a linear number of horizontal slices, this algorithm requires O(n2)

time. ✷
THEOREM 3.9. The following sectioning problem can be solved in O(n2) time:

Input configuration: A set of n disjoint discs in R2.

Target configuration: A set of k intervals in R1.

Allowable sections: Lines through the origin.

Proof.

(1) Let � be the diameter of the intervals in T .
(2) For each disc, compute lower and top tangent line slopes li and ti .

14 P. BOSE ET AL.

(3) Radially sort the ti’s and li’s and define an interval as the set of lines through
the origin between consecutive lines in this sorted list.

(4) We say that a disc is in an interval if it is intersected by all lines in the interval.
Sort the list of discs in each interval. We can sort the discs in the first interval
in O(n log n) time. Since there is only a constant number of changes between
neighbouring intervals, we can obtain the sorted order of each subsequent
interval in O(n) time. Therefore this step can be done in O(n2) time.

(5) In each interval compute the locations with a correct value for �. From Lem-
ma 2.2 we know that there are at most a constant number of such locations in
each interval. Test each candidate in linear time.

(6) For each line li and ti , verify in linear time whether or not it is equivalent to T .

Since there are a linear number of lines li and ti , this algorithm requires O(n2)

time. ✷
THEOREM 3.10. The following sectioning problem can be solved in O(n3) time:

Input configuration: A set of n disjoint discs in R2.

Target configuration: A set of k intervals in R1.

Allowable sections: Any line.

Proof. Sort the intervals on T and let δ0 and δ1 be the lengths of the first two in-
tervals. We first assume that there is no interval on T of length 0. We will solve this
problem by mapping points (a, b) to a line in dual space with equation y = ax−b.
It can be shown that a disc in primal space maps to the set of lines enclosed in
the region between two hyperbolic curves [5]. The combinatorial complexity of
the resulting arrangement of all hyperbolic areas in dual space is O(n2). Assume
the target contains k intervals. We traverse the arrangement in dual space and
maintain a sorted list of corresponding discs in primal space. For each area that
is the intersection of k hyperbolic areas, there is a corresponding collection of k
discs in the primal space that can be stabbed by a line. For each such collection of
k discs we examine the eight sectioning lines whose intersection with the first two
or the last two discs in the collection have the correct lengths δ0 and δ1. Since the
verification steps can be done in linear time, the overall complexity of this part of
the algorithm is O(n3).

If T has intervals of length 0, we also have to consider the edges of the arrange-
ment in dual space. Since there are O(n2) edges, this does not increase the asymp-
totic running time of the algorithm. ✷

3.4. INPUT CONFIGURATION: SET OF DISJOINT POLYGONS

Since a polygon is a set of line segments that intersect each other only in their
end points, the following three theorems follow immediately from the previous
theorems dealing with noncrossing line segments.

FINDING SPECIFIED SECTIONS OF ARRANGEMENTS 15

THEOREM 3.11. The following sectioning problem can be solved in O(n2) time:

Input configuration: A set of disjoint polygons in R2 with a total of n edges.

Target configuration: A set of k intervals in R1.

Allowable sections: Horizontal lines.

THEOREM 3.12. The following sectioning problem can be solved in O(n2) time:

Input configuration: A set of disjoint polygons in R2 with a total of n edges.

Target configuration: A set of k intervals in R1.

Allowable sections: Lines through the origin.

THEOREM 3.13. The following sectioning problem can be solved in O(n2) time:

Input configuration: A set of disjoint polygons in R2 with a total of n edges.

Target configuration: A set of k intervals in R1.

Allowable sections: Any line.

Acknowledgement

This research started at Bellairs Research Institute of McGill University during the
International Workshop on Computational Geometric Tomography.

References

1. Amenta, N. and Ziegler, G.: Shadows and slices of polytopes, In: Proc. 12th ACM Sympos.
Comput. Geom., 1996, pp. 10–19.

2. Amenta, N. and Ziegler, G.: Deformed products and maximal shadows of polytopes, In:
B. Chazelle, J. E. Goodman and R. Pollack (eds), Advances in Discrete and Computational
Geometry, Contemp. Math. 223, Amer. Math. Soc., Providence, 1999, pp. 57–90.

3. Avis, D., Bose, P., Shermer, T., Snoeyink, J., Toussaint, G. and Zhu, B.: On the sectional area
of convex polytopes, In: Proc. 12th ACM Sympos. Comput. Geom., 1996.

4. Barequet, G. and Sharir, M.: Piecewise linear interpolation between polygonal slices, In: Proc.
10th ACM Sympos. Comput. Geom., 1994, pp. 93–102.

5. de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications, Springer-Verlag, New York, 1997.

6. Boissonnat, J. D.: Shape reconstruction form planar cross sections, Comput. Vision, Graphics
Image Process. 44 (1988), 1–29.

7. Bose, P., Gómez, F., Ramos, P. and Toussaint, G.: Drawing nice projections of objects in space,
In: Proc. of Graph Drawing’95, Lecture Notes in Comput. Sci. 1027, Springer-Verlag, New
York, 1996, pp. 52–63.

8. Bose, P., Hurtado, F., Meijer, H., Ramaswami, S., Rappaport, D., Sacristán, V., Shermer,
T. and Toussaint, G.: Finding specified sections of arrangements: 3D results, Manuscript in
preparation.

16 P. BOSE ET AL.

9. Burger, T., Gritzmann, P. and Klee, V.: Polytope projection and projection polytopes, TR
No. 95-14, Dept. Math., Trier University.

10. Chazelle, B., Edelsbrunner, H. and Guibas, L.: The complexity of cutting complexes, Discrete
Comput. Geom. 4 (1989), 139–182.

11. Deans, S.: The Radon Transform and Some of Its Applications, Wiley, New York, 1983.
12. Dobkin, D. P., Edelsbrunner, H. and Yap, C. K.: Probing convex polytopes, In: Proc. 18th ACM

Sympos. Theory Comput., 1986, pp. 424–432.
13. Edelsbrunner, H.: Algorithms in Combinatorial Geometry, EATCS Monogr. Theoret. Comput.

Sci. 10, Springer-Verlag, New York, 1987.
14. Edelsbrunner, H. and Skiena, S.: Probing convex polygons with X-rays, SIAM J. Comput. 17

(1988), 870–882.
15. Gardner, R. J.: Geometric tomography, Notices Amer. Math. Soc. 42(4) (1995), 422–429.
16. Gardner, R. J.: Geometric Tomography, Encyclop. Math. Appl. 58, Cambridge Univ. Press,

New York, 1995.
17. Gardner, R. J. and Gritzmann, P.: Successive determination and verification of polytopes by

their X-rays, J. London Math. Soc. (2) 50 (1994), 375–391.
18. Gardner, R. J. and Gritzmann, P.: Determination of finite sets by X-rays, In: Abstracts 12th

European Workshop on Comput. Geom., Münster, 1996, pp. 71–72.
19. Gardner, R. J. and McMullen, P.: On Hammer’s X-ray problem, J. London Math. Soc. (2) 21

(1980), 171–175.
20. Gitlin, C., O’Rourke, J. and Subramannian, V.: On reconstructing polyhedra from parallel

slices, Internat. J. Comput. Geom. Appl. 6 (1996), 103–122.
21. Gómez, F., Hurtado, F. and Toussaint, G.: Proyecciones de calidad y reconstrucción de

conjuntos (in Spanish), In: Proc. Congreso Espanol de Informática Gráfica, 1996, pp. 18–27.
22. Herman, G.: Image Reconstruction from Projections: The Fundamentals of Computerized

Tomography, Academic Press, New York, 1980.
23. Herman, G. T., Louis, A. K. and Natterer, F. (eds): Mathematical Methods in Tomography,

Lecture Notes in Math. 1497, Springer-Verlag, New York, 1990.
24. Herman, G. T. and Natterer, F. (eds): Mathematical Aspects of Computerized Tomography,

Springer-Verlag, Berlin, 1981.
25. Herman, G., Tuy, H., Langenberg, K. and Sabatier, P.: Basic Methods of Tomography and

Inverse Problems, Adam Hilger, Bristol, 1987.
26. Lang, S. L.: Algebra, Addison-Wesley, Reading, MA, 1967.
27. Lee, D. T. and Wu, Y.: Geometric complexity of some location problems, Algorithmica 1

(1986), 193–211.
28. Li, S. Y. R.: Reconstruction of polygons from projections, Inf. Proc. Lett. 28 (1988), 235–240.
29. Lindenbaum, M. and Bruckstein, A.: Reconstruction of polygonal sets by constrained and

unconstrained double probing, Ann. Math. Artif. Intell., to be published.
30. McKenna, M. and Seidel, R.: Finding the optimal shadows of a convex polytope, In: Proc. ACM

Sympos. Comput. Geom., 1985, pp. 24–28.
31. Meijer, H. and Skiena, S.: Reconstructing polygons from x-Rays, In: Proc. 5th Canadian Conf.

Comput. Geom., 1993, pp. 381–386.
32. Natterer, F.: The Mathematics of Computerized Tomography, Wiley, Chichester, 1986.
33. Ponce, J. and Faverjon, B.: On computing three-finger force-closure grasps of polygonal

objects, IEEE Trans. Robotics Automat. 11(6) (1995).
34. Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J. D. and Merlet, J. P.: On computing four-

finger equilibrium and force-closure grasps of polyhedral objects, Int. J. Robot. Res. 16(1)
(1997), 13–35.

35. Skiena, S.: Interactive reconstruction via geometric probing, Proc. IEEE 80 (1992), 1364–1383.

