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Abstract. The article contains an explicit formula for the restricted Lie algebra structure in
the Witt Lie algebra over a field of finite characteristic. Some combinatorial lemmas can be of
independent interest.
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1. Introduction. Let p be a prime, let F be a field of characteristic p, and let F be the algebraic
closure of F. Set A = F[x]/(xp − 1). Note that F[x]/(xp − 1) ∼= F[x]/(xp), and an isomorphism can
be established by the formula x↔ x− 1. We also note that

d

dx
(xp − 1) ⊂ (xp − 1) and

d

dx
(xp) ⊂ (xp),

and hence the operator d/dx is defined on A; the above isomorphism commutes with d/dx. Below,
we abbreviate the notation d/dx to ∂ .

The Lie algebra W = DerA is called the Witt algebra. It consists of the “vector fields” f∂ ,
f ∈ A. In particular, dimFW = dimFA = p.

Since W is a Lie algebra of derivations of a commutative algebra over F, it follows that W has
the canonical structure of a restricted Lie algebra. Recall that a Lie algebra over F is said to be
restricted if it is endowed with an additional (nonlinear in general) unary operation g �→ g[p] for
which

(λg)[p] = λpg[p] (λ ∈ F), ad(g[p]) = (ad g)p,

(g + h)[p] = g[p] + h[p] +
p−1∑
i=1

si(g, h),

where isi(g, h) is the coefficient of λi−1 in (ad(λg+ h))p−1(h) modulo p; in particular, [g[p], g] = 0
for any g (for details, see [1]). In DerA we have g[p] = gp (obviously, if g ∈ DerA, then gp =
g ◦ · · · ◦ g ∈ DerA.)

Although the operation g �→ g[p] need not be linear, it is completely determined by its values
on any basis of the Lie algebra. In particular, in W we have

(x∂)[p] = x∂, (xk∂)[p] = 0 for k = 0, 2, 3, . . . , p− 1

(these formulas hold if A is regarded either as F[x]/(xp − 1) or as F[x]/(xp); the same is true for
Theorem 1 below). However, we can give a more detailed description of the operation g �→ g[p]

in W .
Theorem 1. (a) (f∂)[p] = C(f)f∂ for any f ∈ A, where C(f) is a constant (depending on f ).
(b) The expression ∂(f∂(. . . (f∂f) . . . )) with p− 1 letters ∂ (and p− 1 letter f ) is a constant

for any f ∈ A, and this constant is equal to C(f).
(c) ∂p−1fp−1 is a constant for any f ∈ A, and this constant is equal to −C(f).
Since parts (a) and (b) of Theorem 1 are very simple (see Sec. 2), the main result of the paper

is part (c), or rather the equivalence between (b) and (c). Moreover, this result is majorated by
three (actually equivalent) combinatorial theorems. We state these theorems in Sec. 3 and prove
them in Sec. 4.
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2. Proof of parts (a) and (b) of Theorem 1. The Lie algebra W is of rank one, which means
that there exists a nonempty Zariski open subset U ⊂W such that h ∈ Fg if g ∈ U and [h, g] = 0.
Since [g[p], g] = 0, it follows that g[p] ∈ Fg, at least for g ∈ U . However, since the mapping g �→ g[p]

is algebraic, this implies that g[p] ∈ Fg for any g ∈W . (Strictly speaking, this holds if F is infinite,
but we can extend F to F and take U in the extended W if necessary.) This proves (a), namely,
(f∂)[p] = C(f)f∂ for some algebraic function C : W → F. To prove (b), apply this relation to
x ∈ A. This gives f∂(f∂(. . . (f∂f) . . . )) = C(f)f , which shows that ∂(f∂(. . . (f∂f) . . . )) = C(f),
at least if f ∈ A is not a zero divisor. Hence, the last relation holds for any f in a nonempty Zariski
open subset of A (for example, if f̃ ∈ F[x] has a nonzero constant term, then the image of f̃ under
the projection F[x] → F[x]/(xp) = A is not a zero divisor in A). Since the set of elements f ∈ A for
which our relation fails is also open, it is empty because any two nonempty Zariski open subsets
of an affine space over an infinite field nontrivially overlap, and the field F̄ is infinite (even if F is
finite). Thus, the relation holds for any f ∈ A, which proves statement (b).

3. Three combinatorial theorems. In this section, we state Theorems 2, 3, and 4 and show
that each of them implies Theorem 1(c) and that Theorems 2 and 3 are equivalent to each other
and imply Theorem 4.

First, we consider arbitrary finite words in a two-letter alphabet (∂, f) ending with f . (We
do not specify the nature of f and ∂ ; for example, f can be a C∞ function in one variable and
∂ the derivative.) By virtue of the standard differentiation rules, such a word can be represented
as an integral linear combination of differential monomials f (k1) · · · f (km) . For example, ∂f∂∂f =
(ff ′′)′ = f ′f ′′ + ff ′′′ .

Theorem 2.
(∂f)p−1 ≡ −∂p−1fp−1 mod p

for any prime p.
Example.

(∂f)4 = ∂f∂f∂f∂f = (f ′)4 + 11f(f ′)2f ′′ + 4f2(f ′′)2 + 7f2f ′f ′′′ + f3f (4),

∂4f4 = 24(f ′)4 + 144f(f ′)2f ′′ + 36f2(f ′′)2 + 48f2f ′f ′′′ + 4f3f (4).

We see that (∂f)4 ≡ −∂4f4 mod 5, as stated in the theorem.
Theorem 2 (together with Theorems 1(a), (b)) implies Theorem 1(c). Indeed, take f ∈ F[x]

and ∂ = d/dx and project the relation (∂f)p−1 = −∂p−1fp−1 (which holds if charF = p) to A.
Theorem 2 can be restated in the form of a congruence for symmetric polynomials as follows.

Theorem 3. In Z[t1, . . . , tp−1] we have∑
σ∈Sp−1

tσ(1)(tσ(1) + tσ(2)) · · · (tσ(1) + · · ·+ tσ(p−1)) ≡ (t1 + · · ·+ tp−1)p−1 mod p,

where p is a prime as usual.
(There is no minus sign in this congruence, this is not a misprint!)
Obviously, if

t1(t1 + t2) · · · (t1 + · · ·+ tp−1) =
∑

nk1...kp−1t
k1
1 · · · tkp−1

p−1 ,

then
∂fp−1∂fp−2 · · · ∂f1 =

∑
nk1...kp−1f

(k1)
1 · · · f (kp−1)

p−1 .

Similarly, if
(t1 + · · ·+ tp−1)p−1 =

∑
mk1...kp−1t

k1
1 · · · tkp−1

p−1 ,

then
∂p−1(f1 · · · fp−1) =

∑
mk1...kp−1f

(k1)
1 · · · f (kp−1)

p−1 .
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Hence, the congruence in Theorem 3 is equivalent to∑
σ∈Sp−1

∂fσ(p−1)∂fσ(p−2) · · · ∂fσ(1) ≡ ∂p−1(f1 · · · fp−1) mod p.

After substituting f1 = · · · = fp−1 = f , this becomes

(p− 1)! (∂f)p−1 ≡ ∂p−1fp−1 mod p

(the last two congruences are in fact equivalent). Since (p − 1)! ≡ −1 mod p, the last congruence
follows from Theorem 2. Thus, Theorems 2 and 3 are equivalent.

Our last combinatorial theorem concerns a certain function on Young diagrams. To avoid draw-
ing, we use the term Young diagram for a finite sequence (j1, . . . , jm) of integers with j1 � · · · �
jm > 0. The sequence can be empty (m = 0). For a Young diagram J = (j1, . . . , jm), we set
N(J) = j1 + · · ·+ jm , m(J) = m, and nk(J) = #{s | js = k}. Define the function d on the Young
diagrams recursively: d(∅) = 1, and, if J = (j1, . . . , jm), N(J) = N , and the values d(K) are
already defined for all Young diagrams K with N(K) = N − 1, then

d(J) =
∑

s,js>js+1

(N − js + 1)njs(J)d(j1, . . . , js−1, js − 1, js+1, . . . , jm).

(Here we set jm+1 = 0, and if s = m and js = 1, then js − 1 is zero, and we simply delete this
zero.)

Theorem 4. If N(J) = p− 1 (where p is a prime), then

d(J) ≡ 1 mod p.

Examples.

d(∅) = 1;

d(1) = 1 · 1 · d(∅) = 1;

d(1, 1) = 2 · 2 · d(1) = 4, d(2) = 1 · 1 · d(1) = 1;

d(1, 1, 1) = 3 · 3 · d(1, 1) = 36, d(2, 1) = 2 · 1 · d(1, 1) + 3 · 1 · d(2) = 11,

d(3) = 1 · 1 · d(2) = 1;

d(1, 1, 1, 1) = 4 ·4 ·d(1, 1, 1) = 576, d(2, 1, 1) = 3 ·1 ·d(1, 1, 1) + 4 ·2 ·d(2, 1) = 196,

d(2, 2) = 3 ·2 ·d(2, 1) = 66, d(3, 1) = 2 ·1 ·d(2, 1) + 4 ·1 ·d(3) = 26,

d(4) = 1 · 1 · d(3) = 1.

We see that, if N(J) = 2, then d(J) = 4, 1 ≡ 1 mod 3, and if N(J) = 4, then d(J) =
576, 196, 66, 26, 1 ≡ 1 mod 5.

Theorem 4 is equivalent to Theorem 2 restricted to the case in which f is a monic polynomial
of degree p− 1 (this special case of Theorem 2 is sufficient to prove Theorem 1(c)).

Indeed, let f(x) = (x− α1) · · · (x− αp−1) (where α1, . . . , αp−1 ∈ F). We set x− αi = ui ; thus,
f = u1 · · ·up−1 and ∂ui = 1. Let n � p− 1. Then (∂f)n = ∂f∂f · · · ∂f is a symmetric polynomial
in u1, . . . , up−1 of total degree n(p − 2) and of degree � p − 1 with respect to each variable ui .
Let J = (j1, . . . , jm) be a Young diagram with N(J) = n. Then an obvious induction based on the
relation (∂f)n = ∂(u1 · · ·up−1(∂f)n−1) shows that the coefficient at

un−j1
1 · · ·un−jm

m un
m+1 · · ·un

p−1

in the polynomial (∂f)n is d(J).
On the other hand, the coefficient at the same monomial in the polynomial ∂n(fn) is

n!
j1! · · · jm!

m∏
i=1

n(n− 1) · · · (n− ji + 1) =
n!

j1! · · · jm!
n!

(n− j1)! · · ·
n!

(n− jm)!
= n!

(
n

j1

)
· · ·

(
n

jm

)
.



143

Since (p− 1)! ≡ −1 mod p and
(
p−1

j

) ≡ (−1)j mod p, the last quantity for n = p− 1 is equal to

(p− 1)!
(
p− 1
j1

)
· · ·

(
p− 1
jm

)
≡ (−1) · (−1)j1 · · · (−1)jm mod p,

and (−1) · (−1)j1 · · · (−1)jm = (−1)p = −1 (if p is odd; if p = 2, then −1 ≡ 1 mod p). Thus,
Theorem 2 for f = ui · · ·up−1 is equivalent to Theorem 4.

We conclude this section with three remarks concerning Theorem 4. First, we do not mention
this theorem below; certainly, it follows from the other theorems of this section, but we have no
direct proof of it. Nevertheless, we think that it deserves to be stated as one of the results of the
paper. Second, this theorem can have some meaning in the representation theory of symmetric
groups, but this meaning evades us. Third, it is not hard to derive from Theorem 4 that the
congruence d(J) ≡ 1 mod p holds for N(J) = p− 2 as well (one can proof this fact for p = 3 and 5
by using the example after the statement of Theorem 4).

4. Proofs. Let us now prove Theorem 3 (by using its relationships to propositions similar to
Theorems 1 and 2). As we know, this will imply the other theorems of the paper.

Let W̃ = DerF[x]. This is an infinite-dimensional restricted Lie algebra. The elements of W̃
are “vector fields” f∂ , f ∈ F[x]. The pth power of a derivation f∂ is also a derivation, (f∂)p = F∂ ,
F ∈ F[x]. Raising f∂ to the power p, we obtain

F1∂ + F2∂
2 + · · ·+ Fp∂

p = F∂

(where F1 = f · (∂(f∂(· · · (f∂f) · · · ))) and Fp = fp). Applying this relation to (x − a)k , where
1 < k < p and a ∈ F, and then setting x = a, we obtain

Fk(a) · k! = 0,

which shows that F2 = · · · = Fp−1 = 0. Since ∂p = 0 on F[x], we see that

F = F1 = fg, g = (∂f)p−1 = ∂f∂f · · · ∂f.
But [(f∂)[p], f∂] = 0; hence, [fg∂, f∂] = (fgf ′ − ff ′g − f2g′)∂ = −f2g′∂ = 0, i.e., g′ = 0 (for
f 
= 0, and therefore for any f ). (Actually, this means that g is a polynomial in xp , but we do not
need this fact.)

Consider the differential expression

g(f) = ∂∂f∂f · · · ∂f (p ∂ ’s, p− 1 f ’s).

Polarize the restriction of the form f �→ (g(f))(a), a ∈ F, of degree p − 1 to the vector space of
polynomials of degree < p. We obtain a symmetric (p− 1)-linear form

G(f1, . . . , fp−1) =
∑

σ∈Sp−1

(∂∂fσ(1)∂fσ(2) · · · ∂fσ(p−1))(a),

which is equal to 0, since g′(f) = 0. The right-hand side of the last relation, regarded as a differential
expression, is a linear combination of monomials f (j1)

1 f
(j2)
2 · · · f (jp−1)

p−1 (a) with j1 + · · · + jp−1 = p.
However, setting f1 = (x − a)i1 , . . . , fp−1 = (x − a)ip−1 for any i1, . . . , ip−1 between 0 and p − 1
and equating the results to 0, we see that the monomials with j1 < p, . . . , jp−1 < p have zero
coefficients in F (i.e., they are 0 modulo p). Since the coefficient at f1 . . . fs−1f

(p)
s fs+1 . . . fp−1 is

obviously equal to (p− 2)! ≡ 1 mod p, we arrive at the following conclusion:

∑
σ∈Sp−1

∂∂fσ(1) · · · ∂fσ(p−1) ≡
p−1∑
s=1

f1 · · · fs−1f
(p)
s fs+1 · · · fp−1 mod p,

which can be rewritten as∑
σ∈Sp−1

tσ(1)(tσ(1) + tσ(2)) · · · (tσ(1) + · · ·+ tσ(p−1))(t1 + · · ·+ tp−1) ≡ tp1 + · · ·+ tpp−1 mod p



144

(the last factor on the left-hand side of the last formula comes from the first ∂ on the left-hand side
of the previous formula). However, tp1+· · ·+tpp−1 ≡ (t1+· · ·+tp−1)p mod p. Canceling t1+· · ·+tp−1 ,
we obtain the congruence of Theorem 3.
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