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ABSTRACT. In this paper, the direct and inverse isoenergy spectral problems are solved for a class
of multidimensional periodic difference operators. It is proved that the inverse spectral problem is
solvable in terms of theta functions of curves added to the spectral variety under compactification,
and multidimensional analogs of the Veselov—Novikov relations are found.
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Introduction

The spectral problem for the multidimensional Schrédinger equation with spectral data taken
from a single fixed energy level has a long history associated with the names of P. Newton,
P. C. Sabatier, B. M. Levitan, and others. (For example, see the book by Chadan and Sabatier [1],
containing a remarkable historical survey and an extensive bibliography.)

The algebro-geometric analysis of this problem was initiated in the well-known paper by
Dubrovin, Krichever, and Novikov [2], in which a class of two-dimensional Schrédinger operators
that are finite-gap with respect to a single energy level was introduced. The eigenfunction of such an
operator is defined on an algebraic curve and is meromorphic outside some isolated points at which
it has exponential singularities (a so-called Baker—Akhiezer function). In subsequent papers [3-5],
Veselov and Novikov found sufficient conditions on the spectral curve and the divisor of poles ¥
under which the related operator is purely potential.

The investigation of difference operators with similar properties was started by Krichever
in [6,7], where a construction was suggested for the inverse problem at a single energy level for
operators on the two-dimensional lattice. The direct problem for operators on the two-dimensional
lattice was investigated recently by Oblomkov in [8], where the answers to some questions posed
in [7] were also given. We also note the paper [9], in which the inverse spectral problem was inves-
tigated for a class of two-dimensional difference operators with nonzero diagonal.

Kappeler and Bittig [10, 11] constructed the compactification of the spectral variety for the
multidimensional Schrédinger difference operator at all energy levels and studied the question
concerning operators with same spectral varieties was investigated. (The continuous version of
these results was considered in [12,13].)

In recent papers by Novikov and Dynnikov [14, 15], some examples of discrete operators in-
tegrable in the style of soliton theory on a multidimensional simplicial lattice were found. These
papers stimulated further development of investigations in this direction [16], to which the present
paper also belongs.

We investigate the direct and inverse spectral problems at a zero energy level for a class of
operators L acting according to the following rule on the space V of functions defined on the
lattice T' = ZV:

(Lv)(n) = > am;QOv(n+C).
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It is assumed that the coefficients of the operator satisfy the selfadjointness and periodicity condi-
tions a(n;¢) = a(n + (;—¢) and a(n + Tie;;¢) = a(n; (), T; € Z, i =1,...,N.

We note that the diagonal elements of the operator L are zero. In the one-dimensional case, the
algebro-geometric analysis of the spectral theory of “diagonal-free” operators (L)), = ¢ptbn—1 +
Cn+1¥n+1 was carried out by Novikov (see [17]). In this situation, the spectral data were a curve
with a symmetry and a divisor on this curve. In [18], the relationship between these operators and
the Heisenberg chain was found and the distinction between the even and odd cases was revealed.

In the case we deal with, the spectral data are sets of hypersurfaces (spectral varieties) equipped
with a set of divisors satisfying some conditions. A part of these conditions generalizes the Veselov—
Novikov relations [3, 4], and the other part ensures the existence of multidimensional analogs of the
Baker—Akhiezer function [6]. The spectral data possess a remarkable property, which we refer to as
the existence of inductive structure. Namely, the components added under the compactification of
the spectral variety together with the restrictions of the set of divisors to these components are the
spectral data for the restriction of the original difference operator to some sublattice. This permits
reducing the problem of reconstruction of an operator from the spectral data to the one-dimensional
case and deriving formulas expressed in terms of theta functions. We shall describe these spectral
data and the corresponding relations. The affine part of the spectral variety of an operator L is
the hypersurface Y = Yz = {\ € (C*)V | V(A\) Nker L # 0}, where V(\) = {¢ € V | ¢(n + Tie;) =

1 (n)} is the space of Bloch functions. For simplicity, we shall assume that all 7;’s are odd. (This
constraint is absent in the main part of this paper.) In this case, the hypersurface Y7, for the generic
operator L is irreducible and invariant with respect to the action of the group Zév that changes
the signs of the components of the vector A. We denote by X = X the quotient of Y7 by this
group and call it the modified spectral variety. The embedding (C*)N c (CP')V gives the natural
compactification of X. The varieties added under the compactification have a similar structure;
namely, X7 m = Xm[i], where the operator L” [,’C] ,keZ,1<i< N, ~v==1,is the “reduction”

of L to the (N — 1)-dimensional sublattice I‘m ={¢ €T | & = k}. (For precise definitions, see
the main body of the text.) The involution o: A — A~! acts on X in a natural way. It interchanges
the “infinities” X7 [,:,] in a special manner.

To the generic point A € Y, there corresponds a vector ¥(\,n) € ker LNV (\), which is unique
up to the multiplication by a constant. In this case, (), 2n 4+ ¢)/¥(\,€), € € {0,1}¥, is a well-
defined function on X . Thus, the vector (A, 2n+-¢), n € ', normalized by the condition ¥ (A, &) = 1
is well defined on X . To simplify the statements, we set € = 0. Then there is an effective divisor 2,
without irreducible components at infinity (divisors with this property will be termed finite) that
satisfies the conditions

N (Ts-1)/2 N

P+ 0(%0) +Z Z 2p+1 _X71[2pi1})_ZXH[8]N=%/X, (1)
s=1  p=0 s=1

Don = (P(+,2n)) = 2o+ Q[5] —Q[*] >0  Vnel, (2)

X = XL QP ~0, =1 5

Here ¢x is the canonical divisor and Q[Qno] =N Z;lino (X050 — X0 where the

p+1 2p+1]) ’
summation is assumed to be performed only if n? < n!. Relation (1) is the multidimensional discrete
generalization of the Veselov—Novikov relation, formula (2) generalizes the standard requirements
for the Baker—Akhiezer function (the presence of a fixed singularity in the finite part and the
existence of poles (zeros) at infinity with multiplicities depending on n), and condition (3) ensures
the quasiperiodicity of the function . For N = 2, formula (2) was written out by Krichever in [6],
and relation (1) was given in our paper [8].
The variety X, together with the divisor 2y, is the spectral data for the problem. The fact that
{X7 [ ] 2N0X"7 [ ] } is the set of spectral data in the direct problem for the operators L” [ ] is the key
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point here. It permits reducing the solution of the inverse spectral problem for an N-dimensional
operator to the solution of spectral problems for two-dimensional operators. Finally, in the two-
dimensional case, this problem was solved in [7] (also see [8]), and there are explicit #-functional
formulas in this case.

On the space of operators L, the gauge group acts according to the formula a'(n;() =
g(n)g(n + ¢)a(n; ), where g is an arbitrary periodic function on the lattice. It can be seen easily
that this group preserves the spectral data corresponding to the zero energy level. The main result
in this paper is the assertion that the spectral data { Xy, %y} uniquely define the gauge class of the
operator L. The operator L can be reconstructed in terms of the theta functions of some curves
lying at “infinity” in X. For example, if N = 3, then the inverse spectral problem can be solved
as follows. We find %, from %, using formula (2) and then reconstruct the two-dimensional oper-
ator L7 [221] from the spectral data { X7 [27“17] , Do N X7 [anl,y]} following the scheme in [6]. The
expressions L7 [22] , 1,8 € Z, v==*£1, give all coeflicients of the operator L.

The author is grateful to Professor A. P. Veselov for the statement of the problem in the

two-dimensional case, valuable discussion, and suggestions for improving the original text.

1. Geometry of the IN-Dimensional Cubic Lattice.
Reduced Operators and their Spectral Varieties

Here and henceforth, we use the following convention: let pu = (u1,...,un), k = (k1,...,kn)
cZN, 1=(ly,...,l,) €Z", and I; < N; then y; = (g, ..., p,) and p¥ :p,'f1~--u§VN.

To describe the algebraic structure of spectral data for an operator L, we need the related
operators L;Y [,’J acting in the space VM of functions on the lattice M = ZN M < N. From now
on, i € ZN"M and j € ZM define a decomposition of the set {1,..., N} into two disjoint subsets
by the formula {iy,...,ix_ar} U {j1,...,dm} = {1,...,N}, k € ZV"M ~ c {+1,-1}¥M_ The
action of L;-Y [,’c] is determined by the formula

M
@ H0m = 3 am c>w<m T chrer),
CGi=y r=1

where ¢ = (£1,...,£1), m € TM = ZM n; = k, and n; = m. The vector j specifies the order of
the variables, and the subscript j will be omitted whenever this order is unessential. Note that the
operator L is the special case of the operator L;Y [,’J for M =N, ~v,i=@,and j=(1,...,N).

We elucidate the informal meaning of the operator L” []1] .Let M =N—-1,y=+1,and i = N.
Then (L)(n) = (L*l[gv]go*l)(ﬁ) + (L_l[N]go_l)(ﬁ), where 7 = (n1,...,ny-1) and ¢¥(m) =

ny
Y(my,...,my—_1,nn + ). This means that the operator L is represented “locally” as the sum
Lt [njj\,] ® L1 [n]:;] The operator L7 [;] can be regarded as the reduction of L to the sublat-

tice F[;] = {¢ e TN = k} in the direction 7. The points n+¢, ¢ = (£1,...,%1) are the vertices
of the N-dimensional cube. Furthermore, L” [;C] can be interpreted as an operator acting on the

space {¢ € VY | suppy C I‘[kfr |} = VM. Following the ideology of [14], we shall assume that
the edges joining each vertex m to the vertices n + ( enter this vertex and are marked by the
numbers a(n; (). To calculate (L md})(nj), it is necessary to take the corresponding face of the
cube, i.e., the vertices n+ ( such that n; = k and (; = v, and perform the summation of the values
of ¢ over the vertices of this face with the weights a(n;¢) assigned to the corresponding edges.
We say that VM(\) = {yp € VM | (n + Tre,) = Mp(n), » = 1,..., M} is the space of Bloch
functions with Floquet multipliers A. Consider the restriction of LY [i] to the subspace V*(\) and
denote it by the symbol LY [;])\ The set of points Y*7[/] = {\ € (C*)M | ker LY [;]/\ # 0} will be

called the affine part of the spectral variety of the operator L7 [,ﬂ . Choosing the compactification
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(CYM < (CP")M | which is natural in this case, we obtain the compactification Y [i] of the variety
Yo [7]. The set Y7 [;] \ Y*7[;] will be denoted by the symbol Y>7[;].

Generally speaking, the resulting variety Y7 [,i] is reducible, and to describe its irreducible
components, we need the following construction. The space VM naturally decomposes into the
sum VM =@ VM VM = {y € VM | suppyp C TM}, where e € Z¥ and TM = {¢ e TM | ¢ =
e (mod 2)}. This decomposition cannot be transferred to the space of Bloch functions, since the
shift by a vector having at least one odd component mixes lattice sites of different types. But this
complication can be overcome using the construction below. Let 7). = T,./2 if T, is even let T, = T,
otherwise. We introduce the space WM (u) = {1 € VM | p(m + 277 er) = prp(m), r=1,..., M}
and the maps ®: CM — CM and ®()\) = p, where p, = A2 if T}, is odd and y, = A, otherwise. The
even and odd periods will be denoted by I € Z°, h € ZM =5 S < M, {ly,...,1s}U{h1,...,hyr—s} =
{1,...,M}. Let r € {ln,...,lg} if T}, is even and 7 € {h1,..., har—g} otherwise. We define a map
FX WM () — VM(N), where p = ®()), in the following way: F2(¢) = v, and if m; = ¢; (mod 2),
then (m) = ¢o(m — Ei‘il prLrer) P, where p, =1 if Tj, is odd and m, # ¢, (mod 2) and p, =0
otherwise, and if m; # ¢; (mod 2), then ¥(m) = 0.

The symbol L7 [;]H will denote the restriction of the operator L7 [;C] to the space le‘f (),

L [Zc]u WM _(u) — WM(u). Tt can be seen easily that F? is a well-defined injective map. In
this case, we have Ff‘fg(kerLz[,ﬂu) C ker L7 [li])n p= ®(\). Let X207 [}] = {n € (C)M |
ker L2[;], # 0}, X2[i] = X" [[] < (CPYM, and Y2'[}] = @~ Y(X2[{]) € Y"[{]. The infinite
part of X7 [}C] added under the compactification will be denoted by X7 m =X/ m \X?ﬁﬂ [}c]
By the symbol VM(X) ¢ VM(X), we denote FA(W2(u)). Since the shift by the vector T}, ep,,

r=1,...,M — S, transforms Wj_.(u) to the space Wi_/(u), ' = ¢ + ep, (mod 2) and pre-
serves the invariance of the operator L7[;], we have Vi_.(\) = Vi_o(\) and F}* _(ker L2 m“) =

F} i (ker L], [’Zf]u) Consequently, Y/ [;] =Y) [;] if &, = ¢]. Dimensional calculations permits
showing that the decomposition V/(A) = €D, ., _o Ve(A) holds. Since F) _(ker LY [,Z{]#) =VM)n
ker LY[}], we have Y7 [}] = .., —oYZ'[}]. Let X7[}] = ®(Y7[}]) = U..,—0 X2 [}]. The variety

X7 [;] (X7 [li]) will be called the modified spectral variety of the operator L7 [;] (L? [;C] ).

The above construction has the simplest form if all 7} are even. In this situation, u = A,
We(p) = Ve(N), V(A) = @, V=()), and X2[;] = YZ'[;], and the problem of finding ker L7[;]
is equivalent to finding ker L2 [,:,] , for all e. As to the generic period Tj, in this case the above
construction is the reduction to the even case. Namely, we regard L7 [z] as a 2T]{—periodic operator
rather than a 7Tj-periodic operator. Accordingly, the Floquet multipliers A are replaced by pu.
However, one should bear in mind that the coefficients of the operator L” [;] are in fact Tj-periodic,
whence it follows that

XL = X2 = X2 pir e ) =1 N2, (4)

where g; = €]. The necessity of this reduction is motivated by the fact that det L7 [,ﬂ ) Is a rational
function of )\%LT, r=1,...,M — S, and the transition from Y [,i] to X7 [Z] corresponds to the
factorization of the variety Y7 [;] with respect to the involutions Ay, — —Ap,., r=1,...,M —S.

The Zariski open set of operators L such that X/ [;] are irreducible for all £ will be denoted

by the symbol U} [2,] . The nonemptiness of this set will be proved in Lemma 4.

2. Spectral Data. Inductive Structure

The existence of the inductive structure means the possibility of reducing the study of one
operator L acting in dimension N to the study of a large number of operators L} [,1], which
however already act in dimension M < N.
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Let us take a basis {e%-(u)} of WM(y) in which the matrix of L7 [,i] has a block struc-
ture reflecting the inductive structure of the operator L? [2] Let 0 < m,. < T]{r and a = 1+
Zé\il my, Hf,‘ibﬂ T; . Then eaj o (1) is uniquely determined by the conditions e. j.(1) € WM (u)
and eg jq(p, m) = Hiwl 00 om . for 0 < m —e < 27T}. The matrix of L! [’Zﬂ]u written in the bases

{e1—c;(p)} and {e.;j(p)} wil be denoted by the symbol M, [.] (). It has a block bidiagonal
structure with blocks of the form MzéE ! [gi] ; namely,

M o) 0 MY [t
T H _ Mz lka]l Mz () 0
J |k : . |
00 Myl
for 5, =1 and
MU ML 0
i 0 MI[] 0
M M N I . |
M;J [k,2§7“5171]/1'1 0 o Mg [, 21;31171]

for €;, = 0. Here the notation j = (j2,...,jm), & = (g2,...,em), 7' = (1, 1), and 4" = (7, —1) has
been used. Induction on M permits showing that

(M2, [ ) =M [ (e, (5)

where ' = (u7?, ..., MX/}) and t symbolizes transposition.

The equation R ;[ (1) = det(M_;[;] (1)) = 0 defines the variety X2 [;]. It can be seen easily
that RY (] (1) = CRZT(J) |
(Jr(1)s - > Jr))s and 7(i) = (fr(1), - - - » r(ar)) - Therefore, we shall omit j in the notation R7 [}C]

The form of the matrix M_ UC] implies that R ; [2] is a polynomial in ,ug i) of degree [T, 7j,,

and it also follows from the preceding argument that R [,i] is a polynomial in ug 25r) of degree

1

[,1]( (1)), where C' # 0 is a constant, 7 € Sy is a permutation, 7(j) =

(T3,)~ Hp 1Tg/p r = 1,..., M. Summarizing the above observations, we arrive at the lemma
below.

Lemma 1. The following assertions hold for the generic operator L: RZ [,’g] (1) is a polynomial
. 1—2¢; ; _
in u£ =) and degu(l_zaw R[] = (73,) 11_[?11 T;,

R[] = Bl [ ]

where r =1,...,N — M, g =¢].

Rz [k] ( ) Rl —e [k—i—’y] (M_l)' (6)
. 7 -1
R (77 H RY [0 20 0,) (), (7)

wherep=1,..., M, w==x1, = (v,w), i = (1, -, fp—1, Ppt1s---sfo0r), and € = (€1,...,p—1,
Eptl,---1EM)-
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Formula (7) is an immediate consequence of the block bidiagonal structure of the matrix MZ [z] .

It follows from relation (6) that the natural involution o on (CPY)Y | o () = p=1, acts on X7 [Z]
according to the following rule:

o(X2[i]) = X L[] (8)
The existence of this involution is a consequence of the selfadjointness of the operator L7 [;] .

The symbol (CP!) ﬂ/[ will be used to denote the variety (CP')M with a fixed set of coordinates
in which p, is the coordinate on the rth variety CP!. We now state the definition of a set of varieties
which is compatible with the group of periods T'. The set {X. C ((CIPI)ﬁ’}, where X. C (CPH)YN
irreducible smooth hypersurfaces, is called a set of varieties compatible with the group of periods T
if

e X_ is a variety of degree ((T})~',...,(Th) DI, T!

u=1"u’
o Xen{y " =0,... M;NvivA;M = 0} = Uoskerr X7 [Qk—l—ai]’ where X2 ['] is an irreducible
smooth variety of degree ((T’ )71, (TJ’M)_l) Hfj 1M ;.

e relations (4) and (8) hold

We use the symbol Ug), [Z] to denote the set of operators L such that X 7[ ] is nonsingular for
all €. This set is Zariski open and, as will be shown in Lemma 4, nonempty. Lemma 1 implies that,
for L €N, ;. Usm [}f] nu,. [li], the set {X.} is compatible with the set of periods T, where X; is
the set of spectral varieties for the operator L, i.e., X2 [g} .

We note that it follows from this definition that {XZ, [,i]} is a variety compatible with the set
of the periods T} and that

i,kyy

X2 [0 X2 0] = X2 (i), (9)

where {i1,...,im} N {7, ..., 0} =2, J = Uty eesgmay N gyt e €25k =€; (mod 2),
and k' =&y (mod 2). '

We proceed to studying the properties of Bloch functions in the kernel of L7 [’Zf]u In what

follows, for the generic p € X/ [;] , the symbol 1 [;] (1, m) will be used to denote a vector in WM (1)
such that the relation ker L [’Zﬂ]u = (¢2[;] (1, ")) holds and m in ¢2[}](m) always belongs to T'{_

Note that 7 [fy] € ker L7 [’Zf]u is defined up to the multiplication by a constant, but the ratio

e [l]( )/ [l] (m') is a well-defined meromorphic function on X7 m We investigate the behavior
of this function in a neighborhood of X ”[ ] For this, we need the following formula:

ORI [}] /aRz [ _ 920y +¢)
da(Gin)/ da(&n) — ¢2[}](n; + &)

where n; =k, (; =& =, and n; € '™ This formula is a direct consequence of the structure of
the matrix MZ [, ] Let W31, ] denote the set of operators L such that

OR2Y [i7]
da(&;n)

for any e € ZY, r,p,y' € Z, & =, & =+, n; = k, and n; € 'Y let Ugm denote the set of
operators L such that

(10)

Z0

o
X [z,r]
€ k.p.

ORI[}](j) A+ ., 7,
. Nq 7_é Oa
da(&;n) X273
where j, = r, T = (T7)” HM T, & = ~% & =7, ni =k, nj € I'M for any ¢ € ZY,

z,r,p,y € Z, such that either z = r or p 75 m,, and let U, [;] denote the set of operators L
such that the following condition holds for any ¢ € Z5 and r € Z : X2 [i;] X'y[”,] if and
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only if p = p/ (mod 27)). The above sets U]% [,Z], W; [,i], and U, [,i] are Zariski open, and their
nonemptiness will be proved in Lemma 4.

Proposition 1. The following relations hold for L € Uy, UC] N U% [,i] N Wg UC] nu,. [;]

M_’Yi_'yi_,yiml ~ i1 [m®
<¢gm(m0)> = Im [&] ) ) — Q7] [mo] + Q7 [ ] (11)

(my—e7)/2-1

M
LIl =2 > (XPeglie ] - X2 [ai ) (12)

where m, m%, m! € ny,

i max or M
i) = ;%ngdj{ ds <¢5 2l +2p))’

the summation extends over all finite divisors € C XZJ m, €= (81, yEr—1,Ertls---,EM), and
g=1-—c¢.

Recall that a divisor ¢ is finite if and only if it has no irreducible components at infinity, i.e.,
dim XL ;] Ne< M —1.

Proof. It is now easy to see that the assertion of the proposition is equivalent to the validity
of the formula

 wfm+2e) o
X2 1] W2 m (m) Jame+7?
where & = (e1,...,65-1,€s41,--.,6m) and js = r for arbitrary 4,7,p,d € Z and v = (v, 7).
Let ( =&§+29eq, g = —7, ni =k, § =, and nj =m —§.
We first consider the case jq # t. Let us rewrite formula (10) using (7) with regard to the fact
that L € Up.[;],

ord

8R7 K .

8Rg [k,p]
w2y 0l >// e Loy

g lk,p.

v2 [ (m + 27eq) _ ORZ[}] / ORZ[}]
W[ |xrpr ~ 9a(Gn)/ DalEm)
for &, = (, = 7. The desired assertion now obviously follows from the definition of W% []Zg] .

Next, we consider the case r = jq. Let us prove the assertion for e, =1, ¥ = —1, and j; = r.
(In the remaining cases, the proof is carried out in a similar way.) Since L € U, [}f] ,thereisa g # 1

such that ORI [} ]/8uq #0. Consequently, [41, - -5 Bg—1s Hg+1, - - - » par are coordinates on X7 [;] in

a neighborhood of Xg [k’p] and X/ Y [Z;] is defined in these coordinates by the equation p; = 0.

We write out the expansion in terms of these coordinates using formulas (10) and (7),

W[ (m + 27eq) _ ORY[}] /85'2[};]
P2 1] (m) da(¢;n)/ da(&;n)

C(ORY[]] )\ '_ aRg’[k;f_J
= (uten ) ' (Caateny 0l IIR” J+mw)

where
omf]
ordxvl[m] Qu) = OrdX—y[“] W ™ L — .

€ lkp.

An elementary analysis of the resulting formula in a neighborhood of p1; = 0 leads to the assertion
of the proposition. ]
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Note that formula (13) implies the relation
V4[] m3) _ ()

: - , 14
vd [ () ve(n) Ixo a9

and it follows from (12), (9), and (11) that
QL) =X [, (15)
7, [l = 2X2 [, (10

where n; = k+ v and n,n’ € I‘{V_E. The existence of the inductive structure of spectral data
consists in fact in the above three formulas relating the spectral data and the eigenfunction of the
operator L to those of the operator L7 [z] .

We introduce the additional notation A2[,](m,m’) for the algebraic adjunction of MZ [,’c]u w?
where u =1+ 320 my, Htj\ibJrl T}, and w = 1+, my, Hi\ibﬂ T;,, 0 <m,m’ <T]. Let us define
the following divisor on X7 [}C] :

e[ = ¢ min  (orde A2 [ (m,m)),

gH — 0<m,m’<T]f( anl )
where the summation extends over all finite divisors ¥ C X7 [,i] .
We now define the following important differential on X7 [ZC] :

o [z} _ <8R3 [,Z]>_1 ORI[] Nppr dity
&nid | ke Ofiy da((;n) szngl fp

where v = (;, ni =k, nj € M and fi, = py 27"
Proposition 2. The relation
(D)=L + 2 ) + 02 [1,]) - Zl X2 [;J,;Z;f],
-
where & = (£1,...,6r—1,&r11, .- .,€n), holds for any L € UL[}] nWR[;] N UL N U [}] N UL -

Proof. An elementary manipulation with Laurent series expansions in a neighborhood of X7 [Z]
(by analogy with Proposition 1) gives
= ¢
. Vo T ~
<Qz;n;(j [lzc]) ~ Z Xé ! [kz,'rjlﬂ] + @7
r=1
where 2> 0 is the effective finite divisor. ' .
Let us calculate ordg(2 — sz + ] —o(7m) [kfry])), where ¢ C X2[,] is a finite divisor. We
carry out the argument for ¢ = 0 and ¢ = 1. (The consideration is similar in the remaining cases.)
In view of the T)-periodicity, it can be assumed without loss of generality that 0 < n; < 2T]’-.
The structure of the matrix M2 [;] implies the relation OR2[}]/da(¢;n) = p*A(n;/2,n;/2), where
x € ZM. Thus, by the holomorphy of the differential (0RZ m /o)t 1,2 dity on x2t [,ZC] and
formula (5), we have

ord¢ 2 = min ordeg (
ml7m//

= min ord<g<

m'm’

A7) m (m, m)> = ord¢ &) [,i] ,
where 2m = n;. O
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We shall use the symbol U7 [ ] to denote the Zariski open set of operators L € Uy, [1] N U; [,i] N
w3 [k] satisfying the condition & [ ] =0 for all €.
Remark. A formula similar to (14) holds for the above differential,
P'R'X’Y’er iy J Q’y [z] Q'Y CJT [ = :|

[wT] en;C Lk &n;C Lk,ng, 10
k’”]r

where P.R. denotes the Poincaré residue. (See [19].) This formula reflects the presence of the
inductive structure in the spectral problem under study. O

We state the definition of a set of data that are compatible with the set of periods T'. Let
{X: C (C}P’l)fy } be a set of varieties compatible with the set of periods T" and let there be a set of

divisors 2, n € Z, on {X. C ((CIP’I)LV } satisfying the conditions

-@n — In+Treps (17)

Hx. ~ Dnyc +0(2, ZXCT M (18)

Dy — Do — Q[no] + Q[nl] ~0 (19)

(where € = (e1,...,6r—1,Er415-- -, ))foralln n EFN,n,{,z—:GZN,andrzl,...,N. (Here

formula (12) with j = (1,..., N) has been used.) This set {X. C ((CIP’l)fj, Py, } will be called a set
of data compatible with the set of periods T. Let 9 denote the family of sets of data compatible
with the set of periods T'.

If the system of equations (17)—(19) is regarded as a set of relations between the divisors, then it
is obvious that this system is redundant, since equation (19) can be eliminated from it and all 2,,’s
can be expressed via the divisors 2., €5 = 0, which, in turn, satisfy the relations

N N—S (Th,—1)/2
’ 1 1 ho —17 hy
Hx, ~ Der +0(Ze) — Z [ gr Z Z (X2 2p+1 - Xz [2p+1])’ (20)
r=1 p=
- — Q.5 + Q[eff”] >0, 0<n<T, (21)
where g;+¢; =1, ¢, =¢}, =0, and & = 1—¢, and it is assumed that j = (1,..., N). Consequently,

if we wish to treat M as the space of spectral data for the direct spectral problem, then the elements
m € My should be interpreted as the sets {X. C ((CIP’l) , D}, e, = 0, where {X. C (CIP’l)fY} is
compatible with the set of periods T', while 2. satisfies relatlons (20) and (21). We note that the
description of the space of spectral data for a multidimensional problem is similar to that of the
spectral data for two-dimensional problems [6,8]. The only distinction consists in condition (21),
which holds automatically in the two-dimensional case in view of the Riemann—Roch theorem, but
is a strong constraint on 2. and on X, in the multidimensional case.

The proposition below formalizes the assertion about the existence of the inductive structure
on the spectral data.

Proposition 3. If {X. C (C}P’l)ﬁ[,@a} € My, then {X7 m (CIP’I)M,_@;Yj [;]} € My, where
D, m is given by formula (16). (This means that {X2 [, ] (C]P’l) 92][ ]} are spectral data for
the T} -periodic spectral problem.)

Proof. It suffices to show that {X7 [;] C (CPl)g*I,QZm [;]} € My, T = (Th,...,Tr_1,
Tri1,-..,Tn). To prove this, we note that, by the adjunction formula (see [19]), we have %5 [~

€lp
(Hx. + X'Y[ ])X'y[ ] Substituting (18) corresponding to the T-periodic problem with n, = p + %

and ¢, = —%¥ into this formula and using (16) and (9), we conclude that condition (18) holds for
the T"-periodic problem. The validity of condition (19) is a trivial consequence of (15) and (9). O
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There is a gauge group acting of the space of operators L. For any T-periodic function g € V(1)
such that g(n) # 0 for all n € ZV, the map F,: Fy(L) = L', a’(n, () = g(n)g(n+()a(n, ) is defined.
The quotient space of the space of operators L by the action of the gauge group will be denoted
by £r. The images of the open sets Ugy,, Ui, Wg, Ur, Ug, and Uy under this factorization will
be denoted by the same symbols. Let 8 = (1, . (Usw [,] N U7 [, " WR [ nUL ] N UE L] 0T [])-
Then, as follows from the above sequence of lemmas, the map ©: £7 — 9 corresponding to the
direct scattering problem is defined on the set . In the next section, the density of the set U in £
will be proved and the inverse map J of ® will be found.

3. Inverse Problem

A solution method for the two-dimensional inverse scattering problem was suggested by Krichever
in [6]. (In the case considered in the present paper, the solution of the inverse scattering problem is
equivalent to the construction of the map J.) We shall use the results in [6] to show that the set i
is dense in £7 and also to prove the invertibility of the map ©.

Lemma 2. Let N =2 and let h.[")| = H(X.,0(Q|] + Zn)). Then My # &, and we have
dimh["] =1 (22)
for a generic representative m € M.

Proof. Let us consider the situation in which 77 and 75 are even. In this case, the spectral
data consist of the curves Xo o, Xo,1, 0(Xo,0), 0(Xo,1) and the divisors Z.. Here Xy and X are
curves of degree (17,T3) that are defined by equations with generic coefficients, and therefore X o
and X1 are smooth curves of genus (77 —1)(7%—1). It follows from (18) that |2, | = (T7—1)(T5—1).
We choose m, € Filfe, e =0, 1. Then relations (18) and (19) permit expressing all Z,,’s via %y, .
Moreover, if two generic positive divisors %, of degree (1] — 1)(T4 — 1) are taken, then, in view
of the relation |Q. [Z;M = Q. [Z;“ = 0 and the Riemann-Roch theorem, we have dim hg [TZJ =1,
and, by the Jacobi theorem (see [19]), for %, , there are unique positive divisors 2, for which
conditions (18) and (19) hold. Since the chosen 2, ’s are generic, the Riemann—Roch theorem
implies that relation (22) holds. The remaining cases are considered in a similar way. O

Theorem 1. Let N = 2. Then the set U is dense in L7 and the map ©: £p — My is invertible

on an everywhere dense set. The map J = ©~' can be described using the theta functions of the
curves X..

Proof. We begin with the case of even T and T5. Let us choose m. € I'11—¢, e = 0,1,
and take T-Bloch functions v (n) such that (11) holds. Using the method presented in [6], we
construct an operator Lo, from the functions ¢g. = toc(n)/voec(me) € hoe [WZ] which acts
on Vii—e, 507690076 = Z(Q @) a(n,()po.e(n + ¢), and satisfies the condition Eo,ecpoﬁ = 0. The
operator Eo,e is not uniquely determined by the functions ¢g.. Indeed, the operator E&e with
coefficients a’(n, () = a(n,{)C(n), where C(n) are arbitrary constants, also satisfies the condition
Lf)’ecp(),e :~0. If we now set a(n,() = a(n + ¢,—() for n € F%,lfe, e = 0,1, this results in an
operator L acting on V. Let us fix n, € F%’e, e = 0,1. By proposition 1 and Lemma 2, the

eigenfunction ¢1,1—, € = 0,1, chl,l,e = 0, satisfies the relation

©1,1-c(n) _ P1,1-e(n)

(Pl,l—e(ne) wl,l—e(ne),
where 6(71) are some constants. Setting a(n, () = a(n, C)é(n), n e F%’e, we obtain an operator L
such that Li) = 0. The arbitrariness in the choice of the functions (n) in constructing the
operator L possessing the property L = 0 corresponds to the action of the gauge group. We have
thus obtained a well-defined map J: 9y — Lp. In this case, the foregoing argument shows that
there is a unique operator L which satisfies the normalization condition a(mg;1,1) = a(m;;1,1) =1

129



and the relation Ly = 0. Hence, J® = ©J = id. Since the generic m € iy satisfies the relation
J(m) € 4, we have U # &.

The construction of J in the remaining cases is quite similar. The only distinction from the
above situation is that if 7} is odd and Tb is even, then 1 satisfies relation (11) and we have
Yoes(n) =1 (n+Tier), e = 0,1, and if both 71 and T, are odd, then 1) satisfies (11) and we have
7r070(n) = ¢071(n + Tgeg) = ¢170(n + Tlel) = 1/)171(71 + Tier + Tgeg). O

We now prove that the set U is dense in the case of an arbitrary dimension N. The proof will be
carried out by induction on NN. It can be assumed that the spectral varieties of all operators L lie
in the same space (CP!)". In this case, if the spectral variety of L is denoted by the symbol X, (L),
then the lemma stated below is true.

Lemma 3. The relation (; Xc(L)=@ holds for an arbitrary e €Z".

Proof. We shall use induction on N.

Let us fix some arbitrary numbers 1 <r < N, k € Z, and k € C*. Note that if two operators L
and L’ such that a(n; ) = a/(n; () for n, # k (mod T;.) and a(n;¢) = ka(n; () for n, = k (mod T;)
are given, then

(f1s - fis - piy) € XYL = (1, Kppry . i) € XYI(L).

Therefore, if pn € (), Xo(L), then o= (1, ..., Kpr, ..., 1in) € (), ngf(L) for arbitrary r and k.
Thus, we conclude that if p € (), Xo(L), then p € (), X°(L). Furthermore, we can use the
induction hypothesis, since X2°(L) is the union of the spectral varieties of the operators L] [;] . g

Lemma 4. The set M is dense in £ for any N.

Proof. Since the set under consideration is the intersection of Zariski open sets, it suffices to
show that the sets Ugy,,, Ui, Wg, Ug, and Uy, are nonempty.

The fact that U, # @ immediately follows from Lemma 3.

Let us prove that Ur # @. The proof will be carried out by induction on N. Suppose that the
desired assertion is not true, i.e., there are r, ’7 €7, €€ Zév , and ¢ such that

8R5 77 1 26 Q]r

= — F +1=0 23
8(1(”7 C) ) ‘Xg [nr] ) ( )
where @), = (T](T)_1 [12., T.. Let s # r. Then

ORY - ORY [*
Pl = o ] I = o e T 7 ). (24)

Xé ["s} (n7 C) ( g

pFENs

Where g = (61’ R ’65717 €S+17 e 76N)7 ’7/ = CS? v = 6?/725]7‘ er’ U/ = 6?—25]7‘ eryjs? a’nd QjTyjs =

Qj,/Tj,. Since the relation L € Uy, holds for the generic L, it follows from (23) and (24) that

Y[ s
8R [ng] 'u +'y| . =0
da(n; C) X ] ’
where &/ = (1,...,6r—1,Er41y- -+ ,Es—1,Es+1, - - -, EN ), which contradicts the induction hypothesis.

The fact that Wi # @ can be proved in a similar way.

Let us prove that Us,, # &. Indeed, the polynomials R. depend linearly on the coefficients a(n, (),
i.e., the X, form a linear system of divisors on (CP!)". The Bertini theorem on linear systems of
divisors asserts that the generic term of the linear system has no singular points outside the base
set, i.e., if z € Sing X, for the generic L, then z € X.(L) for all L. Thus, Lemma 3 completes the
proof of the fact that U, # 9.

We shall prove that Ugp # @ by induction on N. Suppose that Ug = @. (This means that
&. # 0 for the generic operator L..) Then it follows from elementary intersection theory that there
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are v, t,u € Z such that &' [i] =&N X7 [fb] # 0. Consequently, U}, [ft] = @, which contradicts the
induction hypothesis.

If the variety X. C (CP!)¥ is reducible and nonsingular, then X, = XUX/” and XN X! =g
and hence X/ and X! have degrees (a},...,ad)y) and (af,...,a) such that a.a ” =0,r=1,...,N.
In exactly the same way as before, it can be proved by induction on the dlmension that this
decomposition is impossible for the components of the modified spectral variety of the generic
operator L. [

We have thus shown that ® is defined on an open subset in the space £7. Let us introduce the
notation D (Ly) = M), C My

Theorem 2. The map ©: L7 — M. is invertible on some dense set. The map J = D! can
be described using the theta functions of the curves X, [;], ik ezN2,

Proof. By Proposition 3, the map J can be constructed by induction. So, we suppose that J has
already been constructed for dimensions lower than N and then construct J in the dimension N.
We note that the eigenfunction 1, Ly = 0, satisfies the equation

a(n; =L )¢7 [, 2 T = 1) +aln; Ly [y, 225 ] +1) = 0.

ko, kN —1 kaykn—1

The validity of this equation for all n € Z¥ is equivalent to the following relations for all n € Z":

amity) VTl )0 42 9 2 Jm £ 9) (25)
a(ny +2,7; 177) ] [kl?”k’i\[[ 1] (ny) 7 [k ’2 k]]\\][ 1] (n1 + 1)7
a(n; _1a7) P [161 7I.2I€7N 1] (nl + 1) P 7[’612 ka\\f[ 1] (nl t 2) (26)
a(ny +2,7;—1,7) q,m[ N N =1 e[ 2N Jn)
where n = (ng,...,ny).

We now choose meromorphic functions t¢.(n) on X, such that relations (11) and .(n) =
Vetey,, (N + T,’ZreT) hold, where ¢, = 0, r = 1,...,N — S, n € T¥ _, and ¢(n) are T’-Bloch
functions with Floquet multipliers p. By the induction hypothesis, we can construct the opera-
tors Mow_l[(l)] = 0 and Mﬂb‘l[ﬂ = 0 using the functions 1/1_1[5] and ¢_1[ﬂ defined by for-
mula (14). Let the coefficients of the operator M., e = 0,1, be ac(k,(), ¢,k € ZN~1, (. = £1,
r=1,...,N —1. Formulas (25) and (26) permit expressing the coefficients a(2s+ 1,7;~) in terms
of a(1,n;7). Thus, formulas (25) and (26) together with the relation a(1,k;1 — 2e,7) = a.(k;7),
e = 0,1, give the map J, and the arbitrariness in the choice of 1/ corresponds to the action of the
gauge group. Consequently, J is a well-defined map from ;M7 intoLr, and, by construction, we

have 7D = id.
We note that the fractions involved in formulas (25) and (26) can be expressed via the theta
functions of the curves X, [kl ifj::"k]yv%] . (See [6].) O

It should be noted that the proof of Theorem 2 provides an inductive method for constructing J.
In particular, the procedure of solving the inverse spectral problem for N = 3 and h = @ (i.e.,
S = 3) is as follows. First, it is necessary to consider the intersection of %..d ¢; = 0,1, i = 1,2, 3,

with the curves X2 [2_5‘;%] , 1 <t < T;/2. This results in the divisors Zz(t) = X7 [2 £3+2t] NDe.
In view of (16) and (15), the intersection of the left-hand side of (19) with X [2 o +2t] for

n® =1—¢e4 2tez and n! = 1 — ¢ gives a relationship between F2(t) and @175 [2—22+2t] , which has

—1 3 T -1,1 3,2 T —11 3,1
the form 2, - [2 53+2t] Fe(t) —t(Th 3232, Xey [2 £3-+2t, €2+27,:| + 15301 Xe, [27573+2t,51+2i})‘

3 3
The divisors @ [1 e +2t] are constructed from 91 : [2 cat2t
1

As a consequence of Lemma 2, the relation dim H°(X] [ 3 |,o(7]_. + Q" [sgizt] [m])) =1,

es3+2t1’
m® m! € I'?__, holds. Let us take the functions 1] [6 +2t] € H(Xx? [€3+2t] o(7]_.+Q" [@)i%} m;} ).

The arbitrariness in the choice of these functions is related to the action of the gauge group. By

| using formula (16).
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el ¥ 3 3 2
definition, L; [53+2t] 83+7+2t] acts from V:

into Vf_é, and, by formula (5), these operators are mutually conjugate. These two operators should

is an operator from V12_5 into Vé?, the operator Ll_jé[

be regarded as two parts of one selfadjoint operator Eg[ acting on the space V2 & V7 ;

3
. 63+2t]
according to the formula (Iﬂ [Egi%]w)(m) = (L [Egi%]w)(m) if m € T1_¢ and according to

(L2, 3]0 m) = (L2, J#)(m) if m € Te. We also note that L2, = L, )

and that the involution o identifies the curves X [e izt] and Xf_l: [53 _ét +7]. It follows from the

- €3 +2t] such that Eg [53-?-%] @;g [833—2tj| = 0, where
e [833—215] (m) = 2 [53_,_2,5}( m) if m € T?_. and ¢ [53+2t] (m) = ¥, : [53_‘_;_’_7] (m) if m € I'Z
The coefficients of the operator LW[
the curve X7 [6 +2t]

to which Lg [E i%] is defined. This can be done if we require that relations (25) and (26) hold.

(For N = 3.) After that the operator L is uniquely determined by the functions QW [53 +2t] up to
the multiplication by a constant. Consequently, we have reconstructed the operator L from the
spectral data {X., Z.}.

results in [6] that there is a unique operator LW[

o +2t] can be written down in terms of the theta functions of

It now remains to remove the arbitrariness in the choice of the constant up
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