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Abstract. In this paper, the direct and inverse isoenergy spectral problems are solved for a class
of multidimensional periodic difference operators. It is proved that the inverse spectral problem is
solvable in terms of theta functions of curves added to the spectral variety under compactification,
and multidimensional analogs of the Veselov–Novikov relations are found.
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Introduction

The spectral problem for the multidimensional Schrödinger equation with spectral data taken
from a single fixed energy level has a long history associated with the names of P. Newton,
P. C. Sabatier, B. M. Levitan, and others. (For example, see the book by Chadan and Sabatier [1],
containing a remarkable historical survey and an extensive bibliography.)

The algebro-geometric analysis of this problem was initiated in the well-known paper by
Dubrovin, Krichever, and Novikov [2], in which a class of two-dimensional Schrödinger operators
that are finite-gap with respect to a single energy level was introduced. The eigenfunction of such an
operator is defined on an algebraic curve and is meromorphic outside some isolated points at which
it has exponential singularities (a so-called Baker–Akhiezer function). In subsequent papers [3–5],
Veselov and Novikov found sufficient conditions on the spectral curve and the divisor of poles ψ
under which the related operator is purely potential.

The investigation of difference operators with similar properties was started by Krichever
in [6, 7], where a construction was suggested for the inverse problem at a single energy level for
operators on the two-dimensional lattice. The direct problem for operators on the two-dimensional
lattice was investigated recently by Oblomkov in [8], where the answers to some questions posed
in [7] were also given. We also note the paper [9], in which the inverse spectral problem was inves-
tigated for a class of two-dimensional difference operators with nonzero diagonal.

Kappeler and Bättig [10, 11] constructed the compactification of the spectral variety for the
multidimensional Schrödinger difference operator at all energy levels and studied the question
concerning operators with same spectral varieties was investigated. (The continuous version of
these results was considered in [12, 13].)

In recent papers by Novikov and Dynnikov [14, 15], some examples of discrete operators in-
tegrable in the style of soliton theory on a multidimensional simplicial lattice were found. These
papers stimulated further development of investigations in this direction [16], to which the present
paper also belongs.

We investigate the direct and inverse spectral problems at a zero energy level for a class of
operators L acting according to the following rule on the space V of functions defined on the
lattice Γ = Z

N :
(Lψ)(n) =

∑
ζ=(±1,...,±1)

a(n; ζ)ψ(n+ ζ).

∗Supported by RFBR Grant No. 01-01-00803.
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It is assumed that the coefficients of the operator satisfy the selfadjointness and periodicity condi-
tions a(n; ζ) = a(n+ ζ;−ζ) and a(n+ Tiei; ζ) = a(n; ζ), Ti ∈ Z, i = 1, . . . , N .

We note that the diagonal elements of the operator L are zero. In the one-dimensional case, the
algebro-geometric analysis of the spectral theory of “diagonal-free” operators (Lψ)n = cnψn−1 +
cn+1ψn+1 was carried out by Novikov (see [17]). In this situation, the spectral data were a curve
with a symmetry and a divisor on this curve. In [18], the relationship between these operators and
the Heisenberg chain was found and the distinction between the even and odd cases was revealed.

In the case we deal with, the spectral data are sets of hypersurfaces (spectral varieties) equipped
with a set of divisors satisfying some conditions. A part of these conditions generalizes the Veselov–
Novikov relations [3, 4], and the other part ensures the existence of multidimensional analogs of the
Baker–Akhiezer function [6]. The spectral data possess a remarkable property, which we refer to as
the existence of inductive structure. Namely, the components added under the compactification of
the spectral variety together with the restrictions of the set of divisors to these components are the
spectral data for the restriction of the original difference operator to some sublattice. This permits
reducing the problem of reconstruction of an operator from the spectral data to the one-dimensional
case and deriving formulas expressed in terms of theta functions. We shall describe these spectral
data and the corresponding relations. The affine part of the spectral variety of an operator L is
the hypersurface Y = YL = {λ ∈ (C∗)N | V (λ) ∩ kerL �= 0}, where V (λ) = {ψ ∈ V | ψ(n+ Tiei) =
λiψ(n)} is the space of Bloch functions. For simplicity, we shall assume that all Ti ’s are odd. (This
constraint is absent in the main part of this paper.) In this case, the hypersurface YL for the generic
operator L is irreducible and invariant with respect to the action of the group Z

N
2 that changes

the signs of the components of the vector λ. We denote by X = XL the quotient of YL by this
group and call it the modified spectral variety. The embedding (C∗)N ⊂ (CP

1)N gives the natural
compactification of X . The varieties added under the compactification have a similar structure;
namely, Xγ

[
i
k

]
= XLγ[ik]

, where the operator Lγ
[
i
k

]
, k ∈ Z, 1 � i � N , γ = ±1, is the “reduction”

of L to the (N − 1)–dimensional sublattice Γ
[
i
k

]
= {ξ ∈ Γ | ξi = k}. (For precise definitions, see

the main body of the text.) The involution σ : λ → λ−1 acts on X in a natural way. It interchanges
the “infinities” Xγ

[
i
k

]
in a special manner.

To the generic point λ ∈ Y , there corresponds a vector ψ(λ, n) ∈ kerL∩V (λ), which is unique
up to the multiplication by a constant. In this case, ψ(λ, 2n + ε)/ψ(λ, ε), ε ∈ {0, 1}N , is a well-
defined function on X . Thus, the vector ψ(λ, 2n+ε), n ∈ Γ, normalized by the condition ψ(λ, ε) ≡ 1
is well defined on X . To simplify the statements, we set ε = 0. Then there is an effective divisor D0

without irreducible components at infinity (divisors with this property will be termed finite) that
satisfies the conditions

D0 + σ(D0) +
N∑
s=1

(Ts−1)/2∑
p=0

(X1
[

s
2p+1

] −X−1
[

s
2p+1

]
)−

N∑
s=1

X+1
[
s
0

] ∼ KX , (1)

D2n := (ψ( · , 2n))− D0 +Q
[

0
2n

] −Q
[
2n
0

]
> 0 ∀n ∈ Γ, (2)

X±1
[

r
p+Tr

]
= X±1

[
r
p

]
, Q

[
2n+2Trer

2n

] ∼ 0, r = 1, . . . , N. (3)

Here KX is the canonical divisor and Q
[
2n1

2n0

]
=

∑N
s=1

∑n1
s

p=n0
s
(X1

[
s

2p+1

] − X−1
[

s
2p+1

]
), where the

summation is assumed to be performed only if n0
s � n1

s . Relation (1) is the multidimensional discrete
generalization of the Veselov–Novikov relation, formula (2) generalizes the standard requirements
for the Baker–Akhiezer function (the presence of a fixed singularity in the finite part and the
existence of poles (zeros) at infinity with multiplicities depending on n), and condition (3) ensures
the quasiperiodicity of the function ψ. For N = 2, formula (2) was written out by Krichever in [6],
and relation (1) was given in our paper [8].

The variety X , together with the divisor D0 , is the spectral data for the problem. The fact that
{Xγ

[
i
k

]
,D∩Xγ

[
i
k

]} is the set of spectral data in the direct problem for the operators Lγ
[
i
k

]
is the key
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point here. It permits reducing the solution of the inverse spectral problem for an N -dimensional
operator to the solution of spectral problems for two-dimensional operators. Finally, in the two-
dimensional case, this problem was solved in [7] (also see [8]), and there are explicit θ-functional
formulas in this case.

On the space of operators L, the gauge group acts according to the formula a′(n; ζ) =
g(n)g(n + ζ)a(n; ζ), where g is an arbitrary periodic function on the lattice. It can be seen easily
that this group preserves the spectral data corresponding to the zero energy level. The main result
in this paper is the assertion that the spectral data {XL,D0} uniquely define the gauge class of the
operator L. The operator L can be reconstructed in terms of the theta functions of some curves
lying at “infinity” in XL . For example, if N = 3, then the inverse spectral problem can be solved
as follows. We find D2n from D0 using formula (2) and then reconstruct the two-dimensional oper-
ator Lγ

[
i

2ni

]
from the spectral data {Xγ

[
i

2ni−γ

]
,D2n ∩Xγ

[
i

2ni−γ

]} following the scheme in [6]. The
expressions Lγ

[
i
2s

]
, i, s ∈ Z, γ = ±1, give all coefficients of the operator L.

The author is grateful to Professor A. P. Veselov for the statement of the problem in the
two-dimensional case, valuable discussion, and suggestions for improving the original text.

1. Geometry of the N -Dimensional Cubic Lattice.
Reduced Operators and their Spectral Varieties

Here and henceforth, we use the following convention: let µ = (µ1, . . . , µN ), k = (k1, . . . , kN )
∈ Z

N , l=(l1, . . . , lr) ∈ Z
r , and li � N ; then µl = (µl1 , . . . , µlr) and µk = µk1

1 · · ·µkN
N .

To describe the algebraic structure of spectral data for an operator L, we need the related
operators Lγ

j

[
i
k

]
acting in the space V M of functions on the lattice ΓM = Z

N , M � N . From now
on, i ∈ Z

N−M and j ∈ Z
M define a decomposition of the set {1, . . . , N} into two disjoint subsets

by the formula {i1, . . . , iN−M} ∪ {j1, . . . , jM} = {1, . . . , N}, k ∈ Z
N−M , γ ∈ {+1,−1}N−M . The

action of Lγ
j

[
i
k

]
is determined by the formula

(Lγ
j

[
i
k

]
ψ)(m) =

∑
ζ,ζi=γ

a(n; ζ)ψ
(
m+

M∑
r=1

ζjrer

)
,

where ζ = (±1, . . . ,±1), m ∈ ΓM = Z
M , ni = k, and nj = m. The vector j specifies the order of

the variables, and the subscript j will be omitted whenever this order is unessential. Note that the
operator L is the special case of the operator Lγ

j

[
i
k

]
for M = N , γ, i = ∅, and j = (1, . . . , N).

We elucidate the informal meaning of the operator Lγ
[
i
k

]
. Let M = N −1, γ = ±1, and i = N .

Then (Lψ)(n) = (L+1
[
N
nN

]
ϕ+1)(ñ) + (L−1

[
N
nN

]
ϕ−1)(ñ), where ñ = (n1, . . . , nN−1) and ϕγ(m) =

ψ(m1, . . . ,mN−1, nN + γ). This means that the operator L is represented “locally” as the sum
L+1

[
N
nN

] ⊕ L−1
[
N
nN

]
. The operator Lγ

[
i
k

]
can be regarded as the reduction of L to the sublat-

tice Γ
[
i
k

]
= {ξ ∈ ΓN |ξi = k} in the direction γ . The points n+ ζ , ζ = (±1, . . . ,±1) are the vertices

of the N -dimensional cube. Furthermore, Lγ
[
i
k

]
can be interpreted as an operator acting on the

space {ψ ∈ V N | suppψ ⊂ Γ
[

i
k+γ

]} ∼= V M . Following the ideology of [14], we shall assume that
the edges joining each vertex n to the vertices n + ζ enter this vertex and are marked by the
numbers a(n; ζ). To calculate (Lγ

[
i
k

]
ψ)(nj), it is necessary to take the corresponding face of the

cube, i.e., the vertices n+ ζ such that ni = k and ζi = γ , and perform the summation of the values
of ψ over the vertices of this face with the weights a(n; ξ) assigned to the corresponding edges.

We say that V M (λ) = {ψ ∈ V M | ψ(n + Trer) = λrψ(n), r = 1, . . . ,M} is the space of Bloch
functions with Floquet multipliers λ. Consider the restriction of Lγ

[
i
k

]
to the subspace V M (λ) and

denote it by the symbol Lγ
[
i
k

]
λ
. The set of points Y aff,γ

[
i
k

]
= {λ ∈ (C∗)M | kerLγ

[
i
k

]
λ
�= 0} will be

called the affine part of the spectral variety of the operator Lγ
[
i
k

]
. Choosing the compactification
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(C∗)M ⊂ (CP
1)M , which is natural in this case, we obtain the compactification Y γ

[
i
k

]
of the variety

Y aff,γ
[
i
k

]
. The set Y γ

[
i
k

] \ Y aff,γ
[
i
k

]
will be denoted by the symbol Y ∞,γ

[
i
k

]
.

Generally speaking, the resulting variety Y γ
[
i
k

]
is reducible, and to describe its irreducible

components, we need the following construction. The space V M naturally decomposes into the
sum V M =

⊕
ε V

M
ε , V M

ε = {ψ ∈ V M | suppψ ⊂ ΓM
ε }, where ε ∈ Z

M
2 and ΓM

ε = {ξ ∈ ΓM | ξ =
ε (mod 2)}. This decomposition cannot be transferred to the space of Bloch functions, since the
shift by a vector having at least one odd component mixes lattice sites of different types. But this
complication can be overcome using the construction below. Let T ′

r = Tr/2 if Tr is even let T ′
r = Tr

otherwise. We introduce the space WM
ε (µ) = {ψ ∈ V M

ε | ψ(m+ 2T ′
jr
er) = µrψ(m), r = 1, . . . ,M}

and the maps Φ: C
M → C

M and Φ(λ) = µ, where µr = λ2
r if Tjr is odd and µr = λr otherwise. The

even and odd periods will be denoted by l ∈ Z
S , h ∈ Z

M−S , S � M , {l1, . . . , lS}∪{h1, . . . , hM−S} =
{1, . . . ,M}. Let r ∈ {l1, . . . , lS} if Tjr is even and r ∈ {h1, . . . , hM−S} otherwise. We define a map
F λ
ε : W

M
ε (µ) → V M (λ), where µ = Φ(λ), in the following way: F λ

ε (ϕ) = ψ, and if ml = εl (mod 2),
then ψ(m) = ϕ(m−∑M

r=1 ρrTrer)µρ , where ρr = 1 if Tjr is odd and mr �= εr (mod 2) and ρr = 0
otherwise, and if ml �= εl (mod 2), then ψ(m) = 0.

The symbol Lγ
ε

[
i
k

]
µ
will denote the restriction of the operator Lγ

[
i
k

]
to the space WM

1−ε(µ),

Lγ
ε

[
i
k

]
µ
: WM

1−ε(µ) → WM
ε (µ). It can be seen easily that F λ

ε is a well-defined injective map. In

this case, we have F λ
1−ε(kerL

γ
ε

[
i
k

]
µ
) ⊂ kerLγ

[
i
k

]
λ
, µ = Φ(λ). Let Xaff,γ

ε

[
i
k

]
= {µ ∈ (C∗)M |

kerLγ
ε

[
i
k

]
µ
�= 0}, Xγ

ε

[
i
k

]
= Xaff,γ

ε

[
i
k

] ⊂ (CP
1)M , and Y γ

ε

[
i
k

]
= Φ−1(Xγ

ε

[
i
k

]
) ⊂ Y γ

[
i
k

]
. The infinite

part of Xγ
ε

[
i
k

]
added under the compactification will be denoted by X∞,γ

ε

[
i
k

]
= Xγ

ε

[
i
k

] \ Xaff,γ
ε

[
i
k

]
.

By the symbol V M
ε (λ) ⊂ V M (λ), we denote F λ

ε (W
M
ε (µ)). Since the shift by the vector Tjhr

ehr ,
r = 1, . . . ,M − S , transforms W1−ε(µ) to the space W1−ε′(µ), ε′ = ε + ehr (mod 2) and pre-
serves the invariance of the operator Lγ

[
i
k

]
, we have V1−ε(λ) = V1−ε′(λ) and F λ

1−ε(kerL
γ
ε

[
i
k

]
µ
) =

F λ
1−ε′(kerL

γ
ε′
[
i
k

]
µ
). Consequently, Y γ

ε

[
i
k

]
= Y γ

ε′
[
i
k

]
if εl = ε′l . Dimensional calculations permits

showing that the decomposition V (λ) =
⊕

ε,εh=0 Vε(λ) holds. Since F λ
1−ε(kerL

γ
ε

[
i
k

]
µ
) = V M

ε (λ) ∩
kerLγ

[
i
k

]
, we have Y γ

[
i
k

]
=

⋃
ε,εh=0 Y γ

ε

[
i
k

]
. Let Xγ

[
i
k

]
= Φ(Y γ

[
i
k

]
) =

⋃
ε,εh=0 Xγ

ε

[
i
k

]
. The variety

Xγ
[
i
k

]
(Xγ

ε

[
i
k

]
) will be called the modified spectral variety of the operator Lγ

[
i
k

]
(Lγ

ε

[
i
k

]
).

The above construction has the simplest form if all Tjr are even. In this situation, µ = λ,
Wε(µ) = Vε(λ), V (λ) =

⊕
ε Vε(λ), and Xγ

ε

[
i
k

]
= Y γ

ε

[
i
k

]
, and the problem of finding kerLγ

[
i
k

]
λ

is equivalent to finding kerLγ
ε

[
i
k

]
λ
for all ε. As to the generic period Tj , in this case the above

construction is the reduction to the even case. Namely, we regard Lγ
[
i
k

]
as a 2T ′

j -periodic operator
rather than a Tj -periodic operator. Accordingly, the Floquet multipliers λ are replaced by µ.
However, one should bear in mind that the coefficients of the operator Lγ

[
i
k

]
are in fact Tj -periodic,

whence it follows that

Xγ
ε

[
i
k

]
= Xγ

ε′
[
i
k

]
= Xγ

ε

[
i

k+Tirer

]
, r = 1, . . . , N −M, (4)

where εl = ε′l . The necessity of this reduction is motivated by the fact that detLγ
[
i
k

]
λ
is a rational

function of λ2
hr
, r = 1, . . . ,M − S , and the transition from Y γ

[
i
k

]
to Xγ

[
i
k

]
corresponds to the

factorization of the variety Y γ
[
i
k

]
with respect to the involutions λhr → −λhr , r = 1, . . . ,M − S .

The Zariski open set of operators L such that Xγ
ε

[
i
k

]
are irreducible for all ε will be denoted

by the symbol Uγ
ir

[
i
k

]
. The nonemptiness of this set will be proved in Lemma 4.

2. Spectral Data. Inductive Structure

The existence of the inductive structure means the possibility of reducing the study of one
operator L acting in dimension N to the study of a large number of operators Lγ

j

[
i
k

]
, which

however already act in dimension M < N .



124

Let us take a basis {eMε,j(µ)} of WM
ε (µ) in which the matrix of Lγ

[
i
k

]
has a block struc-

ture reflecting the inductive structure of the operator Lγ
[
i
k

]
. Let 0 � m′

r < T ′
jr

and a = 1 +∑M
b=1 m′

b

∏M
r=b+1 T ′

jr
. Then eMε,j,a(µ) is uniquely determined by the conditions eε,j,a(µ) ∈ WM

ε (µ)
and eε,j,a(µ,m) =

∏M
b=1 δmb

εb+2m′
b
for 0 � m − ε < 2T ′

j . The matrix of Lγ
ε

[
i
k

]
µ
written in the bases

{e1−ε,j(µ)} and {eε,j(µ)} will be denoted by the symbol Mγ
ε,j

[
i
k

]
(µ). It has a block bidiagonal

structure with blocks of the form Mγ,±1

ε̃,j̃

[
i,t
k,u

]
; namely,

Mγ
ε,j

[
i

k

]
=

∣∣∣∣∣∣∣∣∣∣∣∣

Mγ′

ε̃,j̃

[
i,j1
k,0

]
0 . . . Mγ′′

ε̃,j̃

[
i,j1
k,0

]
µ−1

1

Mγ′′

ε̃,j̃

[
i,j1
k,2

]
Mγ′

ε̃,j̃

[
i,j1
k,2

]
. . . 0

...
...

. . .
...

0 0 . . . Mγ′

ε̃,j̃

[ i,j1
k,2(T ′

j1
−1)

]

∣∣∣∣∣∣∣∣∣∣∣∣
for εj1 = 1 and

Mγ
ε,j

[
i

k

]
=

∣∣∣∣∣∣∣∣∣∣∣∣

Mγ′′

ε̃,j̃

[
i,j1
k,1

]
Mγ′

ε̃,j̃

[
i,j1
k,1

]
. . . 0

0 Mγ′′

ε̃,j̃

[
i,j1
k,3

]
. . . 0

...
...

. . .
...

Mγ′

ε̃,j̃

[ i,j1
k,2T ′

j1
−1

]
µ1 0 . . . Mγ′′

ε̃,j̃

[ i,j1
k,2T ′

j1
−1

]

∣∣∣∣∣∣∣∣∣∣∣∣
for εj1 = 0. Here the notation j̃ = (j2, . . . , jM ), ε̃ = (ε2, . . . , εM ), γ′ = (γ, 1), and γ′′ = (γ,−1) has
been used. Induction on M permits showing that

(Mγ
ε,j

[
i
k

]
(µ))t =M−γ

1−ε,j

[
i

k+γ

]
(µ−1), (5)

where µ−1 = (µ−1
1 , . . . , µ−1

M ) and t symbolizes transposition.
The equation Rγ

ε,j

[
i
k

]
(µ) = det(Mγ

ε,j

[
i
k

]
(µ)) = 0 defines the variety Xγ

ε

[
i
k

]
. It can be seen easily

that Rγ
ε,j

[
i
k

]
(µ) = CRγ

ε,τ(j)

[
i
k

]
(τ(µ)), where C �= 0 is a constant, τ ∈ SM is a permutation, τ(j) =

(jτ(1), . . . , jτ(M)), and τ(µ) = (µτ(1), . . . , µτ(M)). Therefore, we shall omit j in the notation Rγ
ε,j

[
i
k

]
.

The form of the matrix Mγ
ε,j

[
i
k

]
implies that Rγ

ε,j

[
i
k

]
is a polynomial in µ

(1−2εj1
)

1 of degree
∏M

t=2 T ′
jt
,

and it also follows from the preceding argument that Rγ
ε

[
i
k

]
is a polynomial in µ

(1−2εjr )
r of degree

(T ′
jr
)−1

∏M
p=1 T ′

jp
, r = 1, . . . ,M . Summarizing the above observations, we arrive at the lemma

below.

Lemma 1. The following assertions hold for the generic operator L: Rγ
ε

[
i
k

]
(µ) is a polynomial

in µ
(1−2εjr)
r and deg

µ
(1−2εjr)
r

Rγ
ε

[
i
k

]
= (T ′

jr
)−1

∏M
t=1 T ′

jt
.

Rγ
ε

[
i
k

]
= Rγ

ε′
[

i
k+T ′

ir

]
,

where r = 1, . . . , N −M , εl = ε′l .

Rγ
ε

[
i
k

]
(µ) = R−γ

1−ε

[
i

k+γ

]
(µ−1). (6)

Rγ
ε

[
i
k

]
(µ)µ

T ′
jp

δw
2εp−1

p

∣∣
µ−w

p =0
=

T ′
jp
−1∏

r=0

Rγ′
ε̃

[
i,jr

k,1−εp+2r

]
(µ̃), (7)

where p = 1, . . . ,M , w = ±1, γ′ = (γ,w), µ̃ = (µ1, . . . , µp−1, µp+1, . . . , µM ), and ε̃ = (ε1, . . . , εp−1,
εp+1, . . . , εM ).
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Formula (7) is an immediate consequence of the block bidiagonal structure of the matrixMγ
ε

[
i
k

]
.

It follows from relation (6) that the natural involution σ on (CP
1)N , σ(µ) = µ−1 , acts on Xγ

ε

[
t
u

]
according to the following rule:

σ(Xγ
ε

[
i
k

]
) = X−γ

1−ε

[
i

k+γ

]
. (8)

The existence of this involution is a consequence of the selfadjointness of the operator Lγ
[
i
k

]
.

The symbol (CP
1)Mµ will be used to denote the variety (CP

1)M with a fixed set of coordinates µ

in which µr is the coordinate on the rth variety CP
1 . We now state the definition of a set of varieties

which is compatible with the group of periods T . The set {Xε ⊂ (CP
1)Nµ }, where Xε ⊂ (CP

1)N are
irreducible smooth hypersurfaces, is called a set of varieties compatible with the group of periods T
if

• Xε is a variety of degree ((T ′
1)

−1, . . . , (T ′
N )

−1)
∏N

u=1 T ′
u ,

• Xε ∩ {µ−γ1
i1

= 0, . . . , µ−γN−M

iN−M
= 0} =

⋃
0�k<T ′

i
Xγ

εj

[
i

2k+εi

]
, where Xγ

εj

[
i
·
]
is an irreducible

smooth variety of degree ((T ′
j1
)−1, . . . , (T ′

jM
)−1)

∏N−M
u=1 T ′

ju
,

• relations (4) and (8) hold.
We use the symbol Uγ

sm

[
i
k

]
to denote the set of operators L such that Xγ

ε

[
i
k

]
is nonsingular for

all ε. This set is Zariski open and, as will be shown in Lemma 4, nonempty. Lemma 1 implies that,
for L ∈ ⋂

i,k,γ Uγ
sm

[
i
k

] ∩ Uγ
ir

[
i
k

]
, the set {Xε} is compatible with the set of periods T , where Xε is

the set of spectral varieties for the operator L, i.e., X∅

ε

[
∅

∅

]
.

We note that it follows from this definition that {Xγ
εj

[
i
k

]} is a variety compatible with the set
of the periods Tj and that

Xγ
εj

[
i
k

] ∩Xγ′
εj′

[
i′
k′

]
= Xγ,γ′

εj̃

[
i,i′
k,k′

]
, (9)

where {i1, . . . , iM} ∩ {i′1, . . . , i′M ′} = ∅, j̃ = {j1, . . . , jM} ∩ {j′1, . . . , j′M ′}, ε ∈ Z
N
2 , k = εi (mod 2),

and k′ = εi′ (mod 2).
We proceed to studying the properties of Bloch functions in the kernel of Lγ

ε

[
i
k

]
µ
. In what

follows, for the generic µ ∈ Xγ
ε

[
i
k

]
, the symbol ψγ

ε

[
i
k

]
(µ,m) will be used to denote a vector in WM

ε (µ)
such that the relation kerLγ

ε

[
i
k

]
µ
= 〈ψγ

ε

[
i
k

]
(µ, ·)〉 holds and m in ψγ

ε

[
i
k

]
(m) always belongs to ΓM

1−ε .

Note that ψγ
ε

[
i
γ

] ∈ kerLγ
ε

[
i
k

]
µ
is defined up to the multiplication by a constant, but the ratio

ψγ
ε

[
i
k

]
(m)/ψγ

ε

[
i
k

]
(m′) is a well-defined meromorphic function on Xγ

ε

[
i
k

]
. We investigate the behavior

of this function in a neighborhood of Xγ
ε

[
i,r
k,p

]
. For this, we need the following formula:

∂Rγ
ε

[
i
k

]
∂a(ζ;n)

/
∂Rγ

ε

[
i
k

]
∂a(ξ;n)

=
ψγ
ε

[
i
k

]
(nj + ζj)

ψγ
ε

[
i
k

]
(nj + ξj)

, (10)

where ni = k, ζi = ξi = γ , and nj ∈ ΓM
ε . This formula is a direct consequence of the structure of

the matrix Mγ
ε

[
i
k

]
. Let W γ

R

[
i
k

]
denote the set of operators L such that

∂Rγ,γ′
ε

[
i,r
k,p

]
∂a(ξ;n)

∣∣∣∣
Xγ,γ′

ε [i,rk,p]
�≡ 0

for any ε ∈ Z
N
2 , r, p, γ′ ∈ Z, ξi = γ , ξr = γ′ , ni = k, and nj ∈ ΓM

ε , let Uγ
R

[
i
k

]
denote the set of

operators L such that
∂Rγ

ε

[
i
k

]
(j)

∂a(ξ;n)
µ
γ̄+δγ̄

1−2εr
T ′

i,r
q

∣∣∣∣
Xγ,γ̄

ε [i,zk,p]
�≡ 0,

where jq = r, T ′
i,r = (T ′

r)
−1

∏M
a=1 T ′

ja
, ξr = −γ̄ , ξi = γ , ni = k, nj ∈ ΓM

ε for any ε ∈ Z
N
2 ,

z, r, p, γ̄ ∈ Z, such that either z = r or p �= mr , and let Uγ
tr

[
i
k

]
denote the set of operators L

such that the following condition holds for any ε ∈ Z
N
2 and r ∈ Z : Xγ

ε

[
i,r
k,p

]
= Xγ

ε

[
i,r
k,p′

]
if and
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only if p = p′ (mod 2T ′
r). The above sets Uγ

R

[
i
k

]
, W γ

R

[
i
k

]
, and Uγ

tr

[
i
k

]
are Zariski open, and their

nonemptiness will be proved in Lemma 4.

Proposition 1. The following relations hold for L ∈ Uγ
sm

[
i
k

] ∩ Uγ
R

[
i
k

] ∩W γ
R

[
i
k

] ∩ Uγ
tr

[
i
k

]
:(

ψγ
ε

[
i
k

]
(m1)

ψγ
ε

[
i
k

]
(m0)

)
= D

γ
m1

[
i
k

] − D
γ
m0

[
i
k

] −Qγ
[
i
k

][
m1

m0

]
+Qγ

[
i
k

][
m0

m1

]
, (11)

Qγ
[
i
k

][
m1

m0

]
=

M∑
r=1

(m1
r−ε′r)/2−1∑

p=(m0
r−ε′r)/2

(Xγ,1
ε̃

[
i,jr

k,2p+εr

] −Xγ,−1
ε̃

[
i,jr

k,2p+εr

]
), (12)

where m,m0,m1 ∈ ΓM
ε′ ,

Dγ
m

[
i
k

]
=

∑
C

C max
0�p<T ′

j

ordC

(
ψγ
ε

[
i
k

]
(m)

ψγ
ε

[
i
k

]
(ε′ + 2p)

)
,

the summation extends over all finite divisors C ⊂ Xγ
ε

[
i
k

]
, ε̃ = (ε1, . . . , εr−1, εr+1, . . . , εM ), and

ε′ = 1− ε.

Recall that a divisor C is finite if and only if it has no irreducible components at infinity, i.e.,
dimXγ∞,ε

[
i
k

] ∩ C < M − 1.
Proof. It is now easy to see that the assertion of the proposition is equivalent to the validity

of the formula

ord
Xγ′

ε̃ [i,rk,p]
ψγ
ε

[
i
k

]
(m+ 2γ̄ed)

ψγ
ε

[
i
k

]
(m)

= −δrjd
δpmr+γ̄ ,

where ε̃ = (ε1, . . . , εs−1, εs+1, . . . , εM ) and js = r for arbitrary γ̄, r, p, d ∈ Z and γ′ = (γ, γ̄).
Let ζ = ξ + 2γ̄ed , ξd = −γ̄ , ni = k, ξi = γ , and nj = m− ξ .
We first consider the case jd �= t. Let us rewrite formula (10) using (7) with regard to the fact

that L ∈ Uγ
tr

[
i
k

]
,

ψγ
ε

[
i
k

]
(m+ 2γ̄ed)

ψγ
ε

[
i
k

]
(m)

∣∣∣∣
Xγ′

ε̃ [i,rk,p]
=

∂Rγ
ε

[
i
k

]
∂a(ζ;n)

/
∂Rγ

ε

[
i
k

]
∂a(ξ;n)

∣∣∣∣
Xγ′

ε̃ [i,rk,p]
=

∂Rγ′
ε̃

[
i,r
k,p

]
∂a(ζ;n)

/
∂Rγ′

ε̃

[
i,r
k,p

]
∂a(ξ;n)

∣∣∣∣
Xγ′

ε̃ [i,rk,p]
(13)

for ξr = ζr = γ̄ . The desired assertion now obviously follows from the definition of W γ
R

[
i
k

]
.

Next, we consider the case r = jd . Let us prove the assertion for εr = 1, γ̄ = −1, and j1 = r.
(In the remaining cases, the proof is carried out in a similar way.) Since L ∈ Uγ

tr

[
i
k

]
, there is a q �= 1

such that ∂Rγ
ε

[
i
k

]
/∂µq �≡ 0. Consequently, µ1, . . . , µq−1, µq+1, . . . , µM are coordinates on Xγ

ε

[
i
k

]
in

a neighborhood of Xγ′
ε̃

[
i,r
k,p

]
, and Xγ′

ε̃

[
i,r
k,p

]
is defined in these coordinates by the equation µ1 = 0.

We write out the expansion in terms of these coordinates using formulas (10) and (7),

ψγ
ε

[
i
k

]
(m+ 2γ̄ed)

ψγ
ε

[
i
k

]
(m)

=
∂Rγ

ε

[
i
k

]
∂a(ζ;n)

/
∂Rγ

ε

[
i
k

]
∂a(ξ;n)

=
(

∂Rγ
ε

[
i
k

]
∂a(ξ;n)

µ−1
1

)−1

µ−1
1

(
∂Rγ′

ε̃

[
i,r

k,nr−1

]
∂a(ζ;n)

(
Rγ′

ε̃

[
i,r

k,nr−1

])−1
T ′

r−1∏
s=0

Rγ′
ε̃

[
i,r
k,s

]
+ µ1Q(µ)

)
,

where

ord
Xγ′

ε̃ [i,rk,p]
Q(µ) = ordXγ

ε̃ [i,rk,p]
∂Rγ

ε̃

[
i
k

]
∂a(ζ;n)

µ−1
1 = 0.

An elementary analysis of the resulting formula in a neighborhood of µ1 = 0 leads to the assertion
of the proposition.
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Note that formula (13) implies the relation

ψγ
εj

[
i
k

]
(n′

j)

ψγ
εj

[
i
k

]
(nj)

=
ψε(n′)
ψε(n)

∣∣∣∣
Xγ

εj [
i
k]
, (14)

and it follows from (12), (9), and (11) that

Qγ
[
i
k

][
n′

j
nj

]
= Q

[
n′
n

]
Xγ

εj

[
i
k

]
, (15)

Dγ
nj

[
i
k

]
= DnX

γ
εj

[
i
k

]
, (16)

where ni = k + γ and n, n′ ∈ ΓN
1−ε . The existence of the inductive structure of spectral data

consists in fact in the above three formulas relating the spectral data and the eigenfunction of the
operator L to those of the operator Lγ

[
i
k

]
.

We introduce the additional notation ∆γ
ε

[
i
k

]
(m,m′) for the algebraic adjunction of Mγ

ε

[
i
k

]
u,w

,

where u = 1+
∑M

b=1 mb
∏M

t=b+1 T ′
jt
and w = 1+

∑M
b=1 m′

b

∏M
t=b+1 T ′

jt
, 0 � m,m′ < T ′

j . Let us define
the following divisor on Xγ

ε

[
i
k

]
:

E γ
ε

[
i
k

]
=

∑
C

C min
0�m,m′<T ′

j

(ordC ∆γ
ε

[
i
k

]
(m,m′)),

where the summation extends over all finite divisors C ⊂ Xγ
ε

[
i
k

]
.

We now define the following important differential on Xγ
ε

[
i
k

]
:

Ωγ
ε;n;ζ

[
i

k

]
=

(
∂Rγ

ε

[
i
k

]
∂µ̂r

)−1 ∂Rγ
ε

[
i
k

]
∂a(ζ;n)

∧
p �=r dµ̂p∏M
p=1 µ̂p

,

where γ = ζi , ni = k, nj ∈ ΓM
ε , and µ̂r = µ

1−2εjr
r .

Proposition 2. The relation

(Ωγ
ε;n;ζ

[
i
k

]
) = E γ

ε

[
i
k

]
+ D

γ
nj+ζj

[
i
k

]
+ σ(D−γ

nj

[
i

k+γ

]
)−

M∑
r=1

X
γ,ζjr
ε̃

[
i,jr

k,njf

]
,

where ε̃ = (ε1, . . . , εr−1, εr+1, . . . , εM ), holds for any L ∈ Uγ
R

[
i
k

]∩W γ
R

[
i
k

]∩Uγ
ir

[
i
k

]∩Uγ
sm

[
i
k

]∩Uγ
tr

[
i
k

]
.

Proof.An elementary manipulation with Laurent series expansions in a neighborhood of X∞,γ
ε

[
i
k

]
(by analogy with Proposition 1) gives

(Ωγ
ε;n;ζ

[
i
k

]
) ∼ −

M∑
r=1

X
γ,ζjr
ε̃

[
i,jr

k,njr

]
+ D̃,

where D̃ > 0 is the effective finite divisor.
Let us calculate ordC(D̃ − D

γ
nj+ζj

[
i
k

] − σ(D−γ
nj

[
i

k+γ

]
)), where C ⊂ Xγ

ε

[
i
k

]
is a finite divisor. We

carry out the argument for ε = 0 and ζ = 1. (The consideration is similar in the remaining cases.)
In view of the Tj -periodicity, it can be assumed without loss of generality that 0 � nj < 2T ′

j .
The structure of the matrix Mγ

ε

[
i
k

]
implies the relation ∂Rγ

ε

[
i
k

]
/∂a(ζ;n) = µκ∆(nj/2, nj/2), where

κ ∈ Z
M . Thus, by the holomorphy of the differential (∂Rγ

ε

[
i
k

]
/∂µ̂)−1

∏
p �=r dµ̂p on Xaff,γ

ε

[
i
k

]
and

formula (5), we have

ordC D̃ = min
m′,m′′ ordC

(
ψγ

[
i
k

]
(2m′ + 1)

ψγ
[
i
k

]
(2m+ 1)

ψγ
[
i
k

]
(2m′′ + 1)

ψγ
[
i
k

]
(2m+ 1)

∆γ
ε

[
i
k

]
(m,m)

)

= min
m′′,m′ ordC

(
∆γ

ε

[
i
k

]
(m′′,m′)

∆γ
ε

[
i
k

]
(m′′,m)

∆γ
ε

[
i
k

]
(m′′,m)

∆γ
ε

[
i
k

]
(m,m)

∆γ
ε

[
i
k

]
(m,m)

)
= ordC E γ

ε

[
i
k

]
,

where 2m = nj .
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We shall use the symbol Uγ
E

[
i
k

]
to denote the Zariski open set of operators L ∈ Uγ

sm

[
i
k

]∩Uγ
ir

[
i
k

]∩
W γ

R

[
i
k

]
satisfying the condition E

γ
ε

[
i
k

]
= 0 for all ε.

Remark. A formula similar to (14) holds for the above differential,

P.R.
X

γ,ζjr
ε̃ [ i,jr

k,njr
]
Ωγ

ε;n;ζ

[
i
k

]
= Ωγ,ζjr

ε̃;n;ζ

[
i,jr

k,njr

]
,

where P.R. denotes the Poincaré residue. (See [19].) This formula reflects the presence of the
inductive structure in the spectral problem under study.

We state the definition of a set of data that are compatible with the set of periods T . Let
{Xε ⊂ (CP

1)Nµ } be a set of varieties compatible with the set of periods T and let there be a set of
divisors Dn , n ∈ Z

N , on {Xε ⊂ (CP
1)Nµ } satisfying the conditions

Dn = Dn+Trer , (17)

KXε ∼ Dn+ζ + σ(Dn)−
N∑
r=1

Xζr

ε̃

[
r
nr

]
, (18)

Dn1 − Dn0 −Q
[
n1

n0

]
+Q

[
n0

n1

] ∼ 0 (19)

(where ε̃ = (ε1, . . . , εr−1, εr+1, . . . , εN )) for all n0, n1 ∈ ΓN
ε , n, ζ, ε ∈ Z

N , and r = 1, . . . , N . (Here
formula (12) with j = (1, . . . , N) has been used.) This set {Xε ⊂ (CP

1)Nµ ,Dn} will be called a set
of data compatible with the set of periods T . Let MT denote the family of sets of data compatible
with the set of periods T .

If the system of equations (17)–(19) is regarded as a set of relations between the divisors, then it
is obvious that this system is redundant, since equation (19) can be eliminated from it and all Dn ’s
can be expressed via the divisors Dε , εh = 0, which, in turn, satisfy the relations

KXε ∼ Dε′ + σ(Dε)−
N∑
r=1

X1
ε̃

[
r
εr

]
+

N−S∑
r=1

(Thr−1)/2∑
p=0

(X1
ε̃′
[

hr

2p+1

] −X−1
ε̃′

[
hr

2p+1

]
), (20)

Dε −Q
[

ε
ε+2n

]
+Q

[
ε+2n

ε

]
> 0, 0 � n < T ′, (21)

where εl+ε′l = 1, εh = ε′h = 0, and ε̃′ = 1− ε̃, and it is assumed that j = (1, . . . , N). Consequently,
if we wish to treat MT as the space of spectral data for the direct spectral problem, then the elements
m ∈ MT should be interpreted as the sets {Xε ⊂ (CP

1)Nµ ,Dε}, εh = 0, where {Xε ⊂ (CP
1)Nµ } is

compatible with the set of periods T , while Dε satisfies relations (20) and (21). We note that the
description of the space of spectral data for a multidimensional problem is similar to that of the
spectral data for two-dimensional problems [6, 8]. The only distinction consists in condition (21),
which holds automatically in the two-dimensional case in view of the Riemann–Roch theorem, but
is a strong constraint on Dε and on Xε in the multidimensional case.

The proposition below formalizes the assertion about the existence of the inductive structure
on the spectral data.

Proposition 3. If {Xε ⊂ (CP
1)Nµ ,Dε} ∈ MT , then {Xγ

ε

[
i
k

] ⊂ (CP
1)Mµj

,Dγ
εj

[
i
k

]} ∈ MTj , where
D

γ
nj

[
i
k

]
is given by formula (16). (This means that {Xγ

ε

[
i
k

]⊂ (CP
1)Mµj

,Dγ
εj

[
i
k

]} are spectral data for
the Tj -periodic spectral problem.)

Proof. It suffices to show that {X γ̄
ε

[
r
p

] ⊂ (CP
1)N−1

µ̄ ,Dγ̄
ε,m

[
r
p

]} ∈ MT̄ , T̄ = (T1, . . . , Tr−1,

Tr+1, . . . , TN ). To prove this, we note that, by the adjunction formula (see [19]), we have KX γ̄
ε [rp]

∼
(KXε +X γ̄

ε

[
r
p

]
)X γ̄

ε

[
r
p

]
. Substituting (18) corresponding to the T -periodic problem with nr = p+ γ̄

and ζr = −γ̄ into this formula and using (16) and (9), we conclude that condition (18) holds for
the T ′-periodic problem. The validity of condition (19) is a trivial consequence of (15) and (9).
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There is a gauge group acting of the space of operators L. For any T -periodic function g ∈ V (1)
such that g(n) �= 0 for all n ∈ Z

N , the map Fg : Fg(L) = L′ , a′(n, ζ) = g(n)g(n+ζ)a(n, ζ) is defined.
The quotient space of the space of operators L by the action of the gauge group will be denoted
by LT . The images of the open sets Usm , Uir , WR , UR , UE , and Utr under this factorization will
be denoted by the same symbols. Let U =

⋂
i,k,γ(U

γ
sm

[
i
k

]∩Uγ
ir

[
i
k

]∩W γ
R

[
i
k

]∩Uγ
R

[
i
k

]∩Uγ
E

[
i
k

]∩Uγ
tr

[
i
k

]
).

Then, as follows from the above sequence of lemmas, the map D : LT → MT corresponding to the
direct scattering problem is defined on the set U. In the next section, the density of the set U in LT

will be proved and the inverse map I of D will be found.

3. Inverse Problem

A solution method for the two-dimensional inverse scattering problem was suggested by Krichever
in [6]. (In the case considered in the present paper, the solution of the inverse scattering problem is
equivalent to the construction of the map I.) We shall use the results in [6] to show that the set U

is dense in LT and also to prove the invertibility of the map D.
Lemma 2. Let N = 2 and let hε

[
n
n′

]
= H0(Xε,O(Q

[
n
n′

]
+ Dn′)). Then MT �= ∅, and we have

dimhε

[
n
n′

]
= 1 (22)

for a generic representative m ∈ MT .

Proof. Let us consider the situation in which T1 and T2 are even. In this case, the spectral
data consist of the curves X0,0 , X0,1 , σ(X0,0), σ(X0,1) and the divisors Dε . Here X0,0 and X0,1 are
curves of degree (T ′

1, T
′
2) that are defined by equations with generic coefficients, and therefore X0,0

and X0,1 are smooth curves of genus (T ′
1−1)(T ′

2−1). It follows from (18) that |Dn| = (T ′
1−1)(T ′

2−1).
We choose me ∈ Γ2

1,1−e , e = 0, 1. Then relations (18) and (19) permit expressing all Dn ’s via Dme .
Moreover, if two generic positive divisors Dme of degree (T ′

1 − 1)(T ′
2 − 1) are taken, then, in view

of the relation |Qε

[
n1

n0

]| = |Qε

[
n1

n0

]| = 0 and the Riemann–Roch theorem, we have dimh0,e

[
n
me

]
= 1,

and, by the Jacobi theorem (see [19]), for Dme , there are unique positive divisors Dn for which
conditions (18) and (19) hold. Since the chosen Dme ’s are generic, the Riemann–Roch theorem
implies that relation (22) holds. The remaining cases are considered in a similar way.

Theorem 1. Let N = 2. Then the set U is dense in LT and the map D : LT → MT is invertible
on an everywhere dense set. The map I = D−1 can be described using the theta functions of the
curves Xε.

Proof. We begin with the case of even T1 and T2 . Let us choose me ∈ Γ1,1−e , e = 0, 1,
and take T -Bloch functions ψ(n) such that (11) holds. Using the method presented in [6], we
construct an operator L̃0,e from the functions ϕ0,e = ψ0,e(n)/ψ0,e(me) ∈ h0,e

[
n
me

]
which acts

on V1,1−e , L̃0,eϕ0,e =
∑

(ζ1,ζ2) ã(n, ζ)ϕ0,e(n + ζ), and satisfies the condition L̃0,eϕ0,e = 0. The

operator L̃0,e is not uniquely determined by the functions ϕ0,e . Indeed, the operator L̃′
0,e with

coefficients ã′(n, ζ) = ã(n, ζ)C(n), where C(n) are arbitrary constants, also satisfies the condition
L̃′

0,eϕ0,e = 0. If we now set ã(n, ζ) = ã(n + ζ,−ζ) for n ∈ Γ2
1,1−e , e = 0, 1, this results in an

operator L̃ acting on V . Let us fix ne ∈ Γ2
0,e , e = 0, 1. By proposition 1 and Lemma 2, the

eigenfunction ϕ1,1−e , e = 0, 1, L̃ϕ1,1−e = 0, satisfies the relation

ϕ1,1−e(n)
ϕ1,1−e(ne)

= Ĉ(n)
ψ1,1−e(n)
ψ1,1−e(ne)

,

where Ĉ(n) are some constants. Setting a(n, ζ) = ã(n, ζ)Ĉ(n), n ∈ Γ2
0,e , we obtain an operator L

such that Lψ = 0. The arbitrariness in the choice of the functions ψ(n) in constructing the
operator L possessing the property Lψ = 0 corresponds to the action of the gauge group. We have
thus obtained a well-defined map I : MT → LT . In this case, the foregoing argument shows that
there is a unique operator L which satisfies the normalization condition a(m0; 1, 1) = a(m1; 1, 1) = 1
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and the relation Lψ = 0. Hence, ID = DI = id. Since the generic m ∈ MT satisfies the relation
I(m) ∈ U, we have U �= ∅.

The construction of I in the remaining cases is quite similar. The only distinction from the
above situation is that if T1 is odd and T2 is even, then ψ satisfies relation (11) and we have
ψ0,ε(n) = ψ1,ε(n+T1e1), ε = 0, 1, and if both T1 and T2 are odd, then ψ satisfies (11) and we have
π0,0(n) = ψ0,1(n+ T2e2) = ψ1,0(n+ T1e1) = ψ1,1(n+ T1e1 + T2e2).

We now prove that the set U is dense in the case of an arbitrary dimension N . The proof will be
carried out by induction on N . It can be assumed that the spectral varieties of all operators L lie
in the same space (CP

1)N . In this case, if the spectral variety of L is denoted by the symbol Xε(L),
then the lemma stated below is true.

Lemma 3. The relation
⋂

LXε(L)=∅ holds for an arbitrary ε∈Z
N.

Proof. We shall use induction on N .
Let us fix some arbitrary numbers 1 � r � N , k ∈ Z, and κ ∈ C

∗ . Note that if two operators L
and L′ such that a(n; ζ) = a′(n; ζ) for nr �= k (mod Tr) and a(n; ζ) = κa(n; ζ) for nr = k (mod Tr)
are given, then

(µ1, . . . , µr, . . . , µN ) ∈ Xaff
ε (L′) ⇐⇒ (µ1, . . . , κµr, . . . , µN ) ∈ Xaff

ε (L).

Therefore, if µ ∈ ⋂
L Xε(L), then µ̃ = (µ1, . . . , κµr, . . . , µN ) ∈

⋂
L Xaff

ε (L) for arbitrary r and κ.
Thus, we conclude that if µ ∈ ⋂

L Xε(L), then µ ∈ ⋂
L X∞

ε (L). Furthermore, we can use the
induction hypothesis, since X∞

ε (L) is the union of the spectral varieties of the operators Lγ
ε

[
r
p

]
.

Lemma 4. The set U is dense in LT for any N .

Proof. Since the set under consideration is the intersection of Zariski open sets, it suffices to
show that the sets Usm , Uir , WR , UE , and Utr are nonempty.

The fact that Utr �= ∅ immediately follows from Lemma 3.
Let us prove that UR �= ∅. The proof will be carried out by induction on N . Suppose that the

desired assertion is not true, i.e., there are r, γ̄ ∈ Z, ε ∈ Z
N
2 , and ζ such that

F =
∂Rε

∂a(n; ζ)
µ
γ̄+δγ̄

1−2εjr
Qjr

r , F |Xγ
ε [ r

nr
] ≡ 0, (23)

where Qjr = (T ′
jr
)−1

∏N
a=1 T ′

a . Let s �= r. Then

F |
Xγ′

ε̃ [ s
ns
] =

∂Rγ′
ε̃

[
s
ns

]
∂a(n; ζ)

µγ̄+v
r =

∂Rγ′
ε̃

[
s
ns

]
∂a(n; ζ)

µv′+γ̄
r

∏
p �=ns

(Rγ′
ε̃

[
s
p

]
µv′
r ), (24)

where ε̃ = (ε1, . . . , εs−1, εs+1, . . . , εN ), γ′ = ζs , v = δγ̄1−2εjr
Qjr , v′ = δγ̄1−2εjr

Qjr,js , and Qjr,js =
Qjr/T

′
js
. Since the relation L ∈ Utr holds for the generic L, it follows from (23) and (24) that

∂Rγ′
ε′

[
s
ns

]
∂a(n; ζ)

µv′+γ̄
r

∣∣
Xγ′,γ̄

ε′ [ s,r
ns,nr

] ≡ 0,

where ε′ = (ε1, . . . , εr−1, εr+1, . . . , εs−1, εs+1, . . . , εN ), which contradicts the induction hypothesis.
The fact that WR �= ∅ can be proved in a similar way.

Let us prove that Usm �= ∅. Indeed, the polynomials Rε depend linearly on the coefficients a(n, ζ),
i.e., the Xε form a linear system of divisors on (CP

1)N . The Bertini theorem on linear systems of
divisors asserts that the generic term of the linear system has no singular points outside the base
set, i.e., if z ∈ SingXε for the generic L, then z ∈ Xε(L) for all L. Thus, Lemma 3 completes the
proof of the fact that Usm �= ∅.

We shall prove that UE �= ∅ by induction on N . Suppose that UE = ∅. (This means that
Eε �= 0 for the generic operator Lε .) Then it follows from elementary intersection theory that there
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are γ, t, u ∈ Z such that E
γ
ε

[
t
u

]
= E ∩Xγ

ε

[
t
u

] �= 0. Consequently, Uγ
E

[
t
u

]
= ∅, which contradicts the

induction hypothesis.
If the variety Xε ⊂ (CP

1)N is reducible and nonsingular, then Xε = X ′
ε∪X ′′

ε and X ′
ε∩X ′′

ε = ∅,
and hence X ′

ε and X ′′
ε have degrees (a′1, . . . , a′N ) and (a′′1, . . . , a′′N ) such that a′ra′′r = 0, r = 1, . . . , N .

In exactly the same way as before, it can be proved by induction on the dimension that this
decomposition is impossible for the components of the modified spectral variety of the generic
operator L.

We have thus shown that D is defined on an open subset in the space LT . Let us introduce the
notation D(LT ) = M′

T ⊂ MT .

Theorem 2. The map D : LT → M′
T is invertible on some dense set. The map I = D−1 can

be described using the theta functions of the curves Xε

[
i
k

]
, i, k ∈ Z

N−2.

Proof. By Proposition 3, the map I can be constructed by induction. So, we suppose that I has
already been constructed for dimensions lower than N and then construct I in the dimension N .

We note that the eigenfunction ψ, Lψ = 0, satisfies the equation

a(n;−1, γ)ψγ
[

2,3,...,N
k1,k2,...,kN−1

]
(n1 − 1) + a(n; 1, γ)ψγ

[
2,3,...,N

k1,k2,...,kN−1

]
(n1 + 1) = 0.

The validity of this equation for all n ∈ Z
N is equivalent to the following relations for all n ∈ Z

N :

a(n; 1, γ)
a(n1 + 2, ñ; 1, γ)

=
ψ−γ

[
2,...,N

k1,...,kN−1

]
(n1 + 2)

ψ−γ
[

2,...,N
k1,...,kN−1

]
(n1)

ψγ
[

2,...,N
k1,...,kN−1

]
(n1 + 3)

ψγ
[

2,...,N
k1,...,kN−1

]
(n1 + 1)

, (25)

a(n;−1, γ)
a(n1 + 2, ñ;−1, γ) =

ψγ
[

2,...,N
k1,...,kN−1

]
(n1 + 1)

ψγ
[

2,...,N
k1,...,kN−1

]
(n1 − 1)

ψ−γ
[

2,...,N
k1,...,kN−1

]
(n1 + 2)

ψ−γ
[

2,...,N
k1,...,kN−1

]
(n1)

, (26)

where ñ = (n2, . . . , nN ).
We now choose meromorphic functions ψε(n) on Xε such that relations (11) and ψε(n) =

ψε+ehr
(n + T ′

hr
er) hold, where εh = 0, r = 1, . . . , N − S , n ∈ ΓN

1−ε , and ψ(n) are T ′-Bloch
functions with Floquet multipliers µ. By the induction hypothesis, we can construct the opera-
tors M0ψ

−1
[
1
0

]
= 0 and M1ψ

−1
[
1
1

]
= 0 using the functions ψ−1

[
1
0

]
and ψ−1

[
1
1

]
defined by for-

mula (14). Let the coefficients of the operator Me , e = 0, 1, be ae(k, ζ), ζ, k ∈ Z
N−1 , ζr = ±1,

r = 1, . . . , N − 1. Formulas (25) and (26) permit expressing the coefficients a(2s+1, ñ; γ) in terms
of a(1, ñ; γ). Thus, formulas (25) and (26) together with the relation a(1, k; 1 − 2e, γ̃) = ae(k; γ̃),
e = 0, 1, give the map I, and the arbitrariness in the choice of ψ corresponds to the action of the
gauge group. Consequently, I is a well-defined map from MT intoLT , and, by construction, we
have ID = id.

We note that the fractions involved in formulas (25) and (26) can be expressed via the theta
functions of the curves Xε

[
3,4,...,N

k1,k2,...,kN−2

]
. (See [6].)

It should be noted that the proof of Theorem 2 provides an inductive method for constructing I.
In particular, the procedure of solving the inverse spectral problem for N = 3 and h = ∅ (i.e.,
S = 3) is as follows. First, it is necessary to consider the intersection of Dε ,d εi = 0, 1, i = 1, 2, 3,
with the curves X−1

ε̃

[
3

2−ε3+2t

]
, 1 � t � Ti/2. This results in the divisors Fε̃(t) = X−1

ε̃

[
3

2−ε3+2t

]∩Dε .
In view of (16) and (15), the intersection of the left-hand side of (19) with X−1

ε̃

[
3

2−ε3+2t

]
for

n0 = 1− ε+2te3 and n1 = 1− ε gives a relationship between F
γ
ε̃ (t) and D−1

1−ε̃

[
3

2−ε3+2t

]
, which has

the form D−1
1−ε̃

[
3

2−ε3+2t

] ∼ Fε̃(t)− t(T1
∑T2

i=1 X−1,1
ε1

[
3,2

2−ε3+2t,ε2+2i

]
+ T2

∑T1
i=1 X−1,1

ε2

[
3,1

2−ε−3+2t,ε1+2i

]
).

The divisors D1
ε̃

[
3

1−ε3+2t

]
are constructed from D−1

1−ε̃

[
3

2−ε3+2t

]
using formula (16).

As a consequence of Lemma 2, the relation dimH0(Xγ
ε̃

[
3

ε3+2t

]
,O(Dγ

1−ε + Qγ
[

3
ε3+2t

][
m1

m0

]
)) = 1,

m0,m1 ∈ Γ2
1−ε̃ , holds. Let us take the functions ψγ

ε̃

[
3

ε3+2t

] ∈ H0(Xγ
ε̃

[
3

ε3+2t

]
,O(Dγ

1−ε+Qγ
[

3
ε3+2t

][
m1

m0

]
)).

The arbitrariness in the choice of these functions is related to the action of the gauge group. By
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definition, Lγ
ε̃

[
3

ε3+2t

]
is an operator from V 2

1−ε̃ into V 2
ε̃ , the operator L−γ

1−ε̃

[
3

ε3+γ+2t

]
acts from V 2

ε̃

into V 2
1−ε̃ , and, by formula (5), these operators are mutually conjugate. These two operators should

be regarded as two parts of one selfadjoint operator L̂γ
ε̃

[
3

ε3+2t

]
acting on the space V 2

ε̃ ⊕ V 2
1−ε̃

according to the formula (L̂γ
ε̃

[
3

ε3+2t

]
ψ)(m) = (Lγ

ε̃

[
3

ε3+2t

]
ψ)(m) if m ∈ Γ1−ε̃ and according to

(L̂γ
ε̃

[
3

ε3+2t

]
ψ)(m) = (L−γ

1−ε̃

[
3

ε3+2t+γ

]
ψ)(m) if m ∈ Γε̃ . We also note that L̂γ

ε̃

[
3

ε3+2t

]
= L̂−γ

1−ε̃

[
3

ε3+2t+γ

]
and that the involution σ identifies the curves Xγ

ε̃

[
3

ε3+2t

]
and X−γ

1−ε̃

[
3

ε3+2t+γ

]
. It follows from the

results in [6] that there is a unique operator L̂γ
ε̃

[
3

ε3+2t

]
such that L̂γ

ε̃

[
3

ε3+2t

]
ψ̂γ
ε̃

[
3

ε3+2t

]
= 0, where

ψ̂γ
ε̃

[
3

ε3+2t

]
(m) = ψγ

ε̃

[
3

ε3+2t

]
(m) if m ∈ Γ2

1−ε̃ and ψ̂γ
ε̃

[
3

ε3+2t

]
(m) = ψ−γ

1−ε̃

[
3

ε3+2t+γ

]
(m) if m ∈ Γ2

ε̃ .

The coefficients of the operator L̂γ
ε̃

[
3

ε3+2t

]
can be written down in terms of the theta functions of

the curve Xγ
ε̃

[
3

ε3+2t

]
. It now remains to remove the arbitrariness in the choice of the constant up

to which L̂γ
ε̃

[
3

ε3+2t

]
is defined. This can be done if we require that relations (25) and (26) hold.

(For N = 3.) After that the operator L is uniquely determined by the functions ψγ
ε̃

[
3

ε3+2t

]
up to

the multiplication by a constant. Consequently, we have reconstructed the operator L from the
spectral data {Xε,Dε}.
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