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Abstract. We describe the construction of extension operators with minimal possible norm τm

from the half-line to the entire real line for the spaces Wm
2 and derive the asymptotic estimate

ln τm ≈ K0m (as m → ∞), where

K0 :=
4
π

∫ π/4

0

ln(cotx) dx = 1.166243 . . . = ln 3.209912 . . . .

The proof is based on the investigation of the maximum and minimum eigenvalues and the
corresponding eigenvectors of some special matrices related to Vandermonde matrices and their
inverses, which can be of interest in themselves.
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1. Notation and Statement of the Main Result

Let Wm
2 (I) be the Sobolev space of all functions f(x) defined on the interval I := (α, β) ⊂ R

1 ,
having absolutely continuous derivatives f (m−1)(x), and satisfying the inequality

‖f‖W m
2 (I) :=

( ∫
I
(|f(x)|2 + |f (m)(x)|2) dx

)1/2

< ∞. (1)

Certain extension operators Tm : Wm
2 (R1−) → Wm

2 (R1) whose norms do not exceed 8m were
constructed in [1]. On the other hand, it was shown in [2] that Wm

2 (R1−) contains a function fm(x)
such that the norm in Wm

2 (R1) of any function g(x) defined on the entire real line and coinciding
with fm(x) for all x < 0 is greater than 0.08m−1/42m‖fm‖W m

2 (R1
−) . Our aim is to bridge the gap

between the upper and lower bounds and establish the asymptotic formula given below (which is
sharp in the logarithmic scale) for the expression

τm := min ‖Tm‖W m
2 (R1

−)→W m
2 (R1). (2)

By G we denote the Catalan constant (e.g., see [3], 865.03 and 48.32),

G :=
∫ π/4

0
ln(cotx) dx =

∞∑
k=0

(−1)k

(2k + 1)2
= 0.91596559 . . . . (3)

Theorem. One has ln τm ≈ K0m as m → ∞, where

K0 :=
4
π
G = 1.166243 . . . = ln 3.209912 . . . . (4)

It will be established in the course of the proof that the minimum norm extension operator
is linear and is closely related to the best extrapolation operator (i.e., extension from a “single
point”), whose investigation was initiated by L. D. Kudryavtsev. It will also be shown that τm can
be expressed explicitly in terms of the maximum and minimum eigenvalues of a matrix related to
some special Vandermonde matrices.

The author expresses his deep gratitude to V. I. Burenkov and L. D. Kudryavtsev for the
statement of the problem and attention as well as to S. I. Pokhozhaev and other participants of the

∗Supported by RFBR grant No. 99-01-00868.
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Seminar on Function Theory supervised by S. M. Nikol’skii, L. D. Kudryavtsev, and O. V. Besov
for valuable remarks.

2. Preliminaries

Consider the quadratic functional

Jm[y] :=
∫ ∞

0
(|y(m)(x)|2 + |y(x)|2) dx = ‖y(x)‖2

W m
2 (R1

+). (5)

The minimum of the squared Wm
2 -norm over all possible extrapolations with given initial data will

be denoted by
ψm(a) := min{Jm[y] : y(s−1)(0) = as, s ∈ {1, . . . ,m}}, (6)

where a := (a1, . . . , am) is an arbitrary vector.
The extremals of Jm[y] are solutions of the Euler equation

(−1)my(2m) + y = 0 (7)

tending to 0 as x → +∞ and hence representable as linear combinations of exponentials (the set
of all these linear combinations will be denoted by Ym)

y(x) =
m∑

k=1

bke
µkx, (8)

where µk = µk,m := eiπ(2k+m−1)/(2m) , k ∈ {1, . . . ,m}, are the 2mth roots of (−1)m+1 lying in the
left half-plane. We note that these roots satisfy the identities µm

k = im−1(−1)k and µ−1
k = µk =

µm+1−k , which are important in what follows.
For an arbitrary function f ∈ Wm

2 (R1−), by y := y(f ;x) we denote the function in Wm
2 (R1

+)
having the same initial values as f and providing the minimum of the functional Jm[y]. Then (by
virtue of the definitions) the extension of f to the positive half-line by y(f ;x) is just the desired
extension operator of minimum norm. Since the map taking each function f ∈ Wm

2 (R1−) to the set
of its limit values Am := {{as}} = {{f (s−1)(0−)}} and the map of the space Am into the set Ym

of the corresponding extremals are linear (this is the case because the Euler equation (7) is linear),
it follows that the best approximation operator described here is also linear.

The value Jm[y] for the functions (8) can be rewritten as a quadratic form in the coefficients bj :

Jm[y] =
∫ ∞

0

(( m∑
j=1

bje
µjx

)( m∑
k=1

bkeµkx

)
+

( m∑
j=1

bjµ
m
j eµjx

)( m∑
k=1

µm
k bkeµkx

))
dx

=
m∑

j=1

m∑
k=1

q
(m)
j,k bjbk, q

(m)
j,k := −1+µm

j µm
k

µj+µk

= −1+(−1)j+k

µj+µk

, j, k ∈ {1, . . . ,m}.
(9)

This expression can also be rewritten via the initial values y(s−1)(0) = as , since the coefficients
bj are uniquely determined from the linear algebraic system

m∑
k=1

µj−1
k bk = aj , j ∈ {1, . . . ,m}, (10)

whose coefficient matrix is the classical Vandermonde matrix

Vm = ‖v(m)
j,k ‖ := ‖µj−1

k ‖. (11)

(The matrix (11) is nonsingular, since all numbers µk are distinct.) We denote the inverse matrix
of Vm (explicit formulas for its entries can be found, say, in [4]) by Φm = ‖ϕ(m)

j,k ‖, j, k ∈ {1, . . . ,m};
then Vmb = a or b = Φma in vector notation. Consequently,

ψm(a) = (Qmb, b) = (QmΦma,Φma) = (Gma, a), Gm := Φ∗
mQmΦm, (12)
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where Qm is the matrix with entries q
(m)
j,k defined in (9) and parentheses stand for the ordinary

inner product in the m-dimensional unitary space of complex vectors.
On the other hand, integration by parts readily shows that two arbitrary functions f(x) and

g(x) in C2m[0,+∞) that tend to 0 together with their derivatives of order � 2m− 1 as x → +∞
satisfy the identity∫ ∞

0
f (m)(x)g(m)(x) dx = −f (m)(0)g(m−1)(0) + f (m+1)(0)g(m−2)(0)− · · ·

+ (−1)mf (2m−1)(0)g(0) + (−1)m
∫ ∞

0
f (2m)(x)g(x) dx. (13)

Choosing an arbitrary function y(x) of the form (8) as f(x) and the complex conjugate function
as g(x) in (13) and taking account of the fact that, by (7), the last term on the right-hand side
in (13) is equal to minus the integral of |y(x)|2 over [0,+∞], we arrive at the relation

Jm[y] =
m∑

j=1

(−1)jy(m+j−1)(0)y(m−j)(0) = im−1
m∑

j=1

( m∑
k=1

bk(−1)kµj−1
k

)
(−1)jy(m−j)(0). (14)

Now let a vector of initial data a = (a1, . . . , am) be given. Then, as was already noted, the
coefficient vector b = (b1, . . . , bm) is equal to a multiplied on the left by the matrix Φm , b = Φma,
and the transition from the vector b to the vector b̃ := (−b1, b2, . . . , (−1)mbm) is carried out by
multiplying b on the left by the matrix Pm whose main diagonal entries are (Pm)kk = (−1)k

and the offdiagonal entries are zero: b̃ = Pmb. As to the transition from b̃ to the vector with
coordinates equal to the sums with respect to k in the rightmost term in (14), it corresponds to
the multiplication of b̃ by the matrix Vm . Finally, the vector with the coordinates y(m−j)(0) results
from the multiplication of a on the left by the matrix Sm with units on the secondary diagonal
and zeros in all other positions. We have thus derived an alternative formula for the quadratic
form ψm(a) and the corresponding matrix Gm (see (5), (6), and (14)),

ψm(a) = Jm[y] = (im−1VmPmΦma, PmSma) = (Gma, a),

Gm = im−1SmPmVmPmΦm.
(15)

3. The Symmetry Properties of the Matrices Gm

Lemma 1. The matrix Gm is real and symmetric.
Proof. We first note that, by definition (see (12)), the matrix Gm is Hermitian and positive

definite. Let us prove that it is real. Indeed, the set of solutions of equation (7) that tend to 0
as x → +∞ exactly coincides with the set of all solutions of the mth-order differential equation
(D − µ1) · · · (D − µm)y(x) = 0, where D := d/dx. For even and odd m, it has the forms

m/2∏
k=1

(D2 − 2ReµkD + 1)y = 0, (D + 1)
(m−1)/2∏

k=1

(D2 − 2ReµkD + 1)y = 0, (16)

respectively; i.e., Dmy+B1D
m−1y+B2D

m−2y+ · · ·+Bm−1Dy+ y = 0, where all coefficients are
real (and even positive). Therefore, if all numbers y(0), y′(0), . . . , y(m−1)(0) are real, then the func-
tion y(x) is also real for all x > 0, and consequently, the numbers y(m)(0), y(m+1)(0), . . . , y(2m−1)(0)
are also real, which, by the first relation in (14), implies that all entries of the matrix Gm are real;
thus, it also follows that Gm is symmetric.

The proof of Lemma 1 is complete.
Lemma 2. The matrix Gm is also symmetric with respect to the secondary diagonal: Gm =

SmGmSm.
Proof. We start from the relation G = im−1SPV PΦ (see (15)), where the subscript m on the

matrices is omitted for brevity. We introduce the diagonal matrix H := diag(µm−1
k ). Recall that the
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multiplication of a square matrix by S on the left (right) is equivalent to the reflection with respect
to the middle horizontal (vertical), and the multiplication on the left (right) by a diagonal matrix
implies the multiplication of each row (column) by the corresponding diagonal entry. Therefore,
the matrices V S and SV satisfy the relations (see (11) and the definition of µk after formula (8))

V S = ‖µj−1
m+1−k‖ = ‖µ1−j

k ‖, SV = ‖µm−j
k ‖ = V SH ⇐⇒ ΦS = H−1SΦ. (17)

Furthermore, we have the chain of identities

SGS = (−i)m−1SP (SV )P (ΦS) = (−i)m−1SP (V SH)P (H−1SΦ)

= (−i)m−1SPV (SPS)Φ = im−1SPV PΦ = G,

where we have used the fact that the diagonal matrices H and P commute and the simple matrix
identities SP = (−1)m−1PS and SS = PP = E := idm .

The proof of Lemma 2 is complete.
However, the following property, containing, in particular, the assertion about the similarity of

the matrix Gm and its inverse, is most unexpected and very essential.
Lemma 3. G−1

m = PmGmPm.
Proof. It readily follows from formula (15), Lemma 2, and the identity used in its proof that

the desired chain of relations holds:

G−1 = (−i)m−1(SPV PΦ)−1 = (−i)m−1V PΦPS = im−1PS(SPV PΦ)SP = P (SGS)P = PGP.

The following assertions are an immediate consequence of related definitions and Lemma 3.
Corollary 1. The spectra of the matrices Gm and G−1

m coincide. In particular, the minimum
and maximum eigenvalues of the matrix Gm satisfy the relation λmin(Gm) = λ−1

max(Gm), and if
ξ = (ξ1, . . . , ξm) is an eigenvector that corresponds to λmax(Gm), then Pmξ = (−ξ1, ξ2, . . . , (−1)mξm)
is also an eigenvector and corresponds to λ−1

max(Gm).
Corollary 2. The maximum Ωm and the minimum ωm of the quadratic form ψm(a) on the

unit sphere
∑ |as|2 = 1 are related by the formula Ωm = ω−1

m = λmax(Gm).
Next, using the even extension from the left half-line to the right half-line and taking the

definitions of the expression ψm(a) (see (5) and (6)) and the matrix Pm into account, we conclude
that the identity

min{‖y(x)‖2
W m

2 (R1
−) : y

(s−1)(0) = as, s ∈ {1, . . . ,m}} = ψm(−Pma), (18)

holds, which, in turn, implies the following assertion in view of Corollary 1.
Corollary 3. The norm of the best approximation operator Tm : Wm

2 (R1−) → Wm
2 (R1) is given

by the formula

τm =
√
1 +

Ωm

ωm
=

√
1 + λ2

max(Gm) . (19)

Remark. Clearly, the expression Ω1/2
m is the minimum possible norm of the extrapolation opera-

tors A(2)
m → Wm

2 (R1
+), where A

(2)
m is the space of vectors of initial values (f(0), f ′(0), . . . , f (m−1)(0))

equipped with the Euclidean norm. Gabushin [5] (see also [6], 2.4.5) obtained explicit (but inef-
fective) formulas for the maximum possible values of the intermediate derivatives at zero, i.e., the
numbers

Γ+
s,m := max{|y(s)(0)| : ‖y‖W m

2 (R1
+) = 1}, s ∈ {0, 1, . . . ,m− 1}. (20)

As can be shown with regard to Lemma 3, these constants can be expressed via the diagonal
entries of the matrix Gm : Γ+

s,m = (g(m)
s+1,s+1)

1/2 . Taikov (see [7] and [6], 2.4.4) proved that the
numbers differing from those in (20) in that the norm is taken in Wm

2 (R1) rather than Wm
2 (R1

+)
can be expressed by the simple constructive formulas Γs,m = (2m sin((2s+ 1)π/(2m)))−1/2 .
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4. Upper Bounds for the Matrices Φm

Lemma 4. The relations lnmax |ϕ(m)
j,k | = (K0 + εm)m hold, where K0 is the constant defined

in (4) and εm → 0 as m → ∞.
Proof. The matrix relation ΦV = E (the subscript m is omitted) can be rewritten in coordi-

nates (see (11)) as follows:
m∑

s=1

ϕj,sµ
s−1
k = δj,k, where δj,k := 0 (j �= k), δk,k := 1, (21)

which implies that the entries in each row {ϕj,s} of the matrix Φ are the coefficients of the (m−1)st-
order Lagrange algebraic interpolation polynomials

Lm−1,j(z) :=
m∑

s=1

ϕj,sz
s−1 such that Lm−1,j(µk) = 0, k �= j, Lm−1,j(µj) = 1, (22)

and hence these polynomials can be represented as

Lm−1,j(z) =
∏
k �=j

z − µk

µj − µk
=

( ∏
k �=j

1
µj − µk

) ∏
k �=j

(z − µk). (23)

As follows from geometrical considerations, the modulus of the first factor in (23), which depends
only on m and j and does not depend on z , tends to its maximum value for a given m as µj

maximally approaches the point −1. Consequently, since µr+1 = −1, the following inequality holds
for odd m = 2r + 1 and any j ∈ {1, . . . ,m}:

Am,j :=
∏
k �=j

∣∣∣∣ 1
µj − µk

∣∣∣∣ � A2r+1,r+1 =
r∏

s=1

1
|µs + 1|2 =

r∏
s=1

(
2 sin

πs

2m

)−2
. (24)

Likewise, for even m = 2r we have

Am,j � A2r,r = A2r,r+1 =
1√
2

r−1∏
s=1

(
2 sin

πs

2m

)−2
(25)

for all j ∈ {1, . . . ,m}.
Thus, the relation

Am := max
j

Am,j = Am,[m/2]+1 �
[m/2]∏
s=1

(
2 sin

πs

2m

)−2
(26)

has been derived for all m.
For the case in which m = 2r + 1 and k = r + 1, by grouping the pairs of parentheses

corresponding to complex conjugate roots in the second factor in (23), we find

∏
k �=r+1

(z − µk) =
r∏

s=1

(z2 − (2Reµs)z + 1) =: L̃2r,r+1(z) =
2r∑

s=0

ϕ̃r,sz
s. (27)

All coefficients of the polynomial (27) are positive, and hence their sum is equal to the value of
the polynomial at z = 1, i.e.,

B2r+1,r+1 :=
2r∑

s=0

|ϕ̃r,s| =
2r∑

s=0

ϕ̃r,s = L̃2r,r+1(1) =
∏

k �=r+1

(1− µk) =
r∏

s=1

(
2 cos

πs

2m

)2
. (28)

Here we have again used geometric considerations related to the location of the roots and taken
account of the fact that the vectors 1− µ and 1 + µ are orthogonal for µ lying on the unit circle.

Furthermore, if m is odd, m = 2r + 1, but j < r + 1, then

L̃2r,j(z) = (z + 1)
r∏j′

s=1

(z2 − 2(Reµs)z + 1), (29)
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where the superscript j′ implies that the factor with s = j has been discarded, and consequently

B2r+1,j = B2r+1,2r+1−j � 2
r∏j′

s=1

(
2 cos

πs

2m

)2
� B2r+1,r+1 (30)

since πj/(2m) < π/4 and hence (2 cos(πj/(2m)))2 > 2.
For even m = 2r and for j � r, in a similar way we obtain

B2r,j = B2r,2r−1−j � 2
r∏j′

s=1

(
2 cos

π(2s− 1)
4m

)2
� 4

r∏
s=1

(
2 cos

πs

2m

)2
. (31)

Combining (31), (30), and (26), we arrive at the inequality

Bm := max
j

Bm,j � 4
[m/2]∏
s=1

(
2 cos

πs

2m

)2
(32)

for all m, which, together with (23) and (26), gives an estimate for the sum of moduli of the entries
in an arbitrary row of the matrix Φm :

m∑
k=1

|ϕ(m)
j,k | � AmBm � 4

[m/2]∏
s=1

(
cot

πs

2m

)2
. (33)

Passing to logarithms in (33), we obtain the inequality

lnmax
j,k

|ϕ(m)
j,k | � ln 4 + 2

[m/2]∑
s=1

ln
(
cot

πs

2m

)
(34)

for all m and j .
Next, useing the monotone decrease of the function ln(cotx) on the interval (0,π/4), we write

out inequalities for a Riemann sum and related integrals:∫ π/4

π/(2m)
ln(cotx) dx � π

2m

[m/2]∑
s=1

ln
(
cot

πs

2m

)
�

∫ π/4

0
ln(cotx) dx. (35)

Since the integral on the left-hand side tends to that on the right-hand side, we obtain the relation
[m/2]∑
s=1

ln
(
cot

πs

2m

)
=

(2m
π

+ o(m)
) ∫ π/4

0
ln(cotx) dx. (36)

Finally, from (25) and (30) we obtain the lower bound

lnmax
j,k

|ϕ(m)
j,k | � ln

∣∣∣∣
m∑

k=1

ϕ
(m)
[m/2]+1,k

∣∣∣∣ − lnm � 2
[m/2]∑
s=1

ln cot
πs

2m
+ o(m), (37)

which, in conjunction with (32), (36), and definition (4) of the number K0 , implies the assertion of
Lemma 4.

5. Bounds for the Least Eigenvalue of the Matrix Qm

The following assertion pertaining to the matrices defined by formula (9) is also of interest in
itself.

Lemma 5. lnλmin(Qm) ≈ −K0m, m → ∞.
Proof. Let mo and me be the numbers of odd and even positive integers,respectively, not

exceeding m, i.e., mo := [(m+ 1)/2] and me := [m/2], so that mo +me = m. Since q
(m)
j,k = 0 if j

and k are of opposite parities, we conclude that the matrix Qm has a block diagonal form in the
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basis (e1, e3, . . . , e2mo−1; e2, e4, . . . , e2me) obtained from the standard basis (e1, e2, e3, . . . , em) by a
permutation:

Qm =
(
Q(o) 0
0 Q(e)

)
, q

(o)
j,k :=

−2
µ2j−1 + µ2k−1

, q
(e)
j,k :=

−2
µ2j + µ2k

, (38)

where the diagonal blocks Q(o) and Q(e) are mo ×mo and me ×me matrices, respectively.
The assertion of Lemma 5 is equivalent to the following relations for the maximum eigenvalues

of the inverse (mo ×mo and me ×me) matrices U
(o)
mo and U

(e)
me of Q(o) and Q(e) , respectively:

lnλmax(U (o)
mo

) ≈ K0m, lnλmax(U (e)
me

) ≈ K0m, m → ∞. (39)

Using the formulas for Cauchy determinants in [8], § 14, (see also [9], Sec. 2, where one should
set xr = yr = µr), we obtain the following explicit expressions for the diagonal entries of the
matrices U

(o)
mo and U

(e)
me :

u
(o)
k,k =

|µ2k−1 + µ2k−1|
2

∏
j �=k

∣∣∣∣µ2j−1 + µ2k−1

µ2j−1 − µ2k−1

∣∣∣∣2, u
(e)
k,k =

|µ2k + µ2k|
2

∏
j �=k

∣∣∣∣µ2j + µ2k

µ2j − µ2k

∣∣∣∣2. (40)

The products with respect to j in (40) can be estimated in just the same manner as those in
the proof of Lemma 4. (See the derivation of the estimates (26), (32), and (33)). Introducing the
notation ko := [mo/2] + 1 and ke := [me/2] + 1, for the products over odd indices we obtain

wk :=
∏
j �=k

∣∣∣∣µ2j−1 + µ2k−1

µ2j−1 − µ2k−1

∣∣∣∣ �
∏
j �=k

∣∣∣∣µ2j−1 − 1
µ2j−1 + 1

∣∣∣∣ �
ko∏

s=1

(
2 cot

πs

m

)2
=: p(o), (41)

and for k = ko one has wk � p(o)/4.
Likewise, for the products over even indices we have

∏
j �=k

∣∣∣∣µ2j + µ2k

µ2j − µ2k

∣∣∣∣ �
ke∏

s=1

(
2 cot

πs

m

)2
� 4

∏
j �=ke

∣∣∣∣µ2j + µ2ke

µ2j − µ2ke

∣∣∣∣. (42)

In addition, with regard to the inequality max |µk + µk| � 2, whereas both numbers |µ2ko−1 +
µ2ko−1| and |µ2ke + µ2ke

| are close to 2 for all sufficiently large m, we conclude that the maximum
of the diagonal entries of the matrices U

(o)
mo and U

(e)
me is of the order of

max
k

u
(o)
k,k � max

k
u

(e)
k,k � u

(o)
[m/4],[m/4] � u

(e)
[m/4],[m/4] �

[m/4]∏
s=1

(
cot

πs

m

)4
. (43)

The argument in the foregoing section (see (35)–(37)) implies that

lnmax
k

u
(o)
k,k ≈ max

k
u

(e)
k,k ≈ 4

[m/4]∑
s=1

ln
(
cot

πs

m

)
≈ 4

π
Gm = K0m, m → ∞, (44)

and since the inequalities lnmaxuk,k � lnλmax(Un) � ln
∑

uk,k � lnn + lnmaxuk,k hold for any
positive definite n× n matrix Un , we see that relations (44) imply (39).

The proof of Lemma 5 is complete.
Remark. We note that, according to (9), the identity Qm = Q̃m + Q̂m holds, where Q̃m is the

matrix with entries q̃j,k := −2(µj + µk)−1 , and we have Q̂m := PmQ̃mPm . The argument in the
proof of Lemma 5 implies that

lnλmin(Q̃m) = lnλmin(Q̂m) ≈ −2K0m,

whereas the logarithm of the minimum eigenvalue of the sum of Q̃m and Q̂m decreases twice as
slowly: lnλmin(Qm) ≈ −K0m.
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6. End of Proof of the Theorem

The definition of the matrix Gm (see formula (15)) implies the upper bound

(Gma, a) = (im−1VmPmΦma, PmSma) � m2
(
max
j,k

|ϕ(m)
j,k |

)
|a|2, (45)

whence, with regard to definition (19), Lemma 4 (see (36)), and formula (4), we obtain the inequality

ln τm � lnλmax(Gm) + o(1) � lnmax
j,k

ln |ϕ(m)
j,k |+ 2 lnm+O(1) � K0m+ o(m). (46)

Now it remains to verify that the opposite inequality also holds.
Formula (12) defining the matrix Gm implies the chain of inequalities

(Gma, a) = (Φ∗
mQmΦma, a) = (QmΦma,Φma) � λmin(Qm)(Φma,Φma). (47)

Let us take the unit vector ã, ‖ã‖ = 1, with equal coordinates ãj = 1/
√
m as a. By Lemma 4

(see (37)), it satisfies the inequality

‖Φmã‖ � m−1/2

∣∣∣∣
m∑

k=1

ϕ[m/2]+1,k

∣∣∣∣ � e(K0−εm)m. (48)

Therefore (47), (49), and Lemma 5 imply that

lnλmax(Gm) � ln(Gmã, ã) � lnλmin(Qm) + 2 ln ‖Φmã‖ � (K0 − ε̃m)m+ o(m), (49)

which completes the proof of the theorem.
In conclusion, we note that initial data vectors ã with equal coordinates ensure the asymptotic

growth of the order of K0m/2 for the logarithm of the norm of the extrapolation in Wm
2 (R1

+).
However, the extrapolation (for even values of m) of these initial data to the negative half-line has
the norm in Wm

2 (R1−) exactly equal to 1. Therefore, it remains unclear what sets of initial data give
the difference between the logarithms of the norms of the extrapolations in Wm

2 (R1
+) and Wm

2 (R1−)
equivalent to K0m.
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