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Abstract. Multibody systems are often modeled as constrained systems, and the constraint equations
are involved in the dynamics formulations. To make the arising governing equations more tractable,
the constraint equations are differentiated with respect to time, and this results in unstable numerical
solutions which may violate the lower-order constraint equations. In this paper we develop a method-
ology for numerically exact elimination of the constraint violations, based on appropriate corrections
of the state variables (after each integration step) without any modification in the motion equations.
While the elimination of violation of position constraints may require few iterations, the violation of
velocity constraints is removed in one step. The total energy of the system is sometimes treated as
another measure of the integration process inaccuracy. An improved scheme for one-step elimination
of the energy constraint violation is proposed as well. The conclusion of this paper is, however,
that the energy conservation is of minor importance as concerns the improvement of accuracy of
numerical simulations. Some test calculations are reported.
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1. Introduction

Multibody systems, both holonomic and nonholonomic, are often modeled as con-
strained systems. Some (or all) kinematic joints are first cut off in order to obtain
a more tractable system whose equations of motion can be derived by using auto-
mated procedures, and then the closing constraint conditions are imposed on the
system. The arising governing equations are composed of the constraint reaction-
induced equations of motion and the constraint equations. In simulations, the latter
are commonly applied in the time-differentiated forms, and this results in unstable
numerical solutions, i.e. the original constraint equations are violated by the solu-
tions burdened with the integration truncation errors. Special procedures must be
followed to avoid/minimize the phenomenon. A popular technique is Baumgarte’s
constraint violation stabilization method [3], where the second-order differential
constraint equations are used in a stabilized form. However, the method does not
provide full constraint satisfaction, and has some ambiguity in determining optimal
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feedback gains. The involvement of time integral of constraint violations improves
the constraint satisfaction [16]. A variety of suggestions have then been proposed to
eliminate the feedback gain ambiguity and extend Baumgarte’s idea, see, e.g., [1, 2,
9, 12, 14, 21]. The other developments are based on a penalty approach [17] and a
mass-orthogonal projection [4], resulting in remarkable constraint satisfaction and
accuracy in long simulations. A different solution was proposed in [5, 20] that uses
a geometric elimination of constraint violations. Improved schemes of the latter
type are developed and tested in this contribution.

Without any modification in the motion equations, the state variables are correc-
ted geometrically to eliminate the constraint violation with a numerical accuracy
after each step of integration or a sequence of steps. The corrections are performed
in the directions orthogonal to the constraint manifold [5, 6], and as such do not
affect the system motion on the manifold. While the exact elimination of viola-
tion of position constraints may require few iterations, the violation of velocity
constraints is removed in one step. Then, if the total energy of the system can be
computed from the initial energy plus the energy input rate due to the external or
dissipative forces, it can be regarded as another measure of accuracy of numerical
simulation and treated as an artificial constraint on the system [20]. Assumed the
violation of kinematic constraints is removed, an improved scheme is developed
that assures exact elimination of the energy constraint by appropriate correction of
the system velocity in one step. The conclusion of this paper is, however, that the
energy conservation may be of minor importance as concerns the improvement of
accuracy of numerical simulations. Some test calculations are reported to illustrate
the effectiveness of the constraint violation elimination schemes and to conclude
on accuracy of the numerical simulations.

2. The Governing Equations

The mathematical models for the dynamic analysis of rigid multibody systems
fall into two main categories as concerns the used governing equations. The first
group formulations are characterized by dependent state variables whose number
exceeds the system state number, i.e. the system is treated as a constrained system.
The arising equations of motion form a mixed set of differential-algebraic equa-
tions (DAEs), which results in a computationally inefficient algorithms burdened
furthermore with the constraint violation problem. The other approach is to use
a minimal number of (independent) state variables for a unique representation of
motion by means of pure ordinary differential equations (ODEs). The numerical
integration of these equations is often more efficient compared to integration of
equations expressed in terms of dependent variables, and the numerical solution
is released from the problem of constraint violation. However, the minimal-form
formulations of multibody dynamics may be quite complex, i.e. may require many
symbolic manipulations. Let us shortly review some basic formulations of the two
types.
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2.1. A CONSTRAINED SYSTEM

Consider an n-degrees-of-freedom autonomous system characterized by n gener-
alized coordinates p = [p1 . . . pn]T and n velocities (either generalized velocities,
quasi-velocities or both) v = [v1 . . . vn]T . The system equations of motion can be
written in the following matrix form [5, 6]:

ṗ = A(p)v, (1)

M(p)v̇ + d(p, v) = f(p, v, t), (2)

where, in the kinematic differential equation (1), A is an n × n transformation
matrix (frequently ṗ = v, i.e. A is an identity matrix), and, in the dynamic equation
(2), M is the n×n symmetric positive definite generalized mass matrix, d represents
the centrifugal, Coriolis and gyroscopic dynamic terms, f represents the applied
forces, and t is the time. We refer to the system as an unconstrained system, which
can be a collection of unconstrained particles/bodies, an open-loop (tree structure)
system, or a combination of such subsystems.

Let the above system be subject to mH holonomic (H) and mNH nonholonomic
(NH) constraints, m = mH + mNH, both assumed scleronomic for simplicity:

�H(p) = 0, (3)

�NH(p, v) ≡ CNH(p)v = 0, (4)

where CNH is the mNH × n NH constraint matrix. By differentiating with respect
to time the H constraints (3), m unified first-order differential constraint equations,
� = [�̇T

H �T
NH]T , are obtained

�(p, v) ≡ C(p)v = 0, (5)

where C = [CT
H CT

NH]T and CH = (∂�H/∂p)A. The second-order differential
constraint equations are then obtained as

�̇(p, v) ≡ C(p)v̇ − ξ(p, v) = 0, (6)

where ξ = −Ċv.
According to the Lagrange multiplier method, the dynamic equations (2) are

now

M(p)v̇ + d(p, v) = f(p, v, t) − CT (p)λ, (7)

where CT λ are the generalized forces due to the constraint reactions λ =
[λ1 . . . λn]T (Lagrange multipliers) related to the H and NH constraints, respect-
ively, λ = [λT

H λT
NH]T . By assuming that �H expresses prohibited translations and

rotations, and �NH denote vanishing translational and rotational velocities in the
joints, λ contains respective physical forces and moments.
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2.2. DEPENDENT VARIABLE FORMULATIONS

The state variables p and v of the above defined system are dependent. The direct
formulation of the governing equations in terms of these variables follows after
combining the kinematic differential equations (1), the constraint reaction-induced
dynamic equations (7), and the constraint equations (6), which results in 2n + m

DAEs in p, v, and λ,

ṗ = Av[
M CT

C 0

] [
v̇
λ

]
=

[
f − d

ξ

] ⇐⇒
ṗ = A(p)v

G(p)

[
v̇
λ

]
= g(p, v, t)

(8)

and the initial values of the state variables must satisfy the lower-order constraint
conditions (3) and (5), �H(p0) = 0 and �(p0, v0) ≡ C(p0)v0 = 0. Since matrix
G is invertible if only the row-rank of C is maximal, rank(C) = max (constraints
(5) are independent), DAEs (8) can be solved for p and v using standard ODE
methods.

The other popular formulation introduces an orthogonal complement matrix
D(p) (an n × r full column-rank matrix, where r = n − m is the number of
degrees of freedom of the system) to the m × n constraint matrix C, such that
DT CT = 0. As shown, e.g., in [1, 5, 6, 12], the premultiplication of Equations (7)
by DT means the projection of the dynamic equations into the tangent directions
with respect to constraints (3) and (4). The projected dynamic equations, released
from the constraint reactions due to DT CT λ = 0, combined with the constraint
equations (6), lead to the following 2n ODEs in p and v [5, 6]

ṗ = Av[
DT M

C

]
v̇ =

[
DT (f − d)

ξ

] ⇐⇒
ṗ = A(p)v

H(p)v̇ = h(p, v, t)
(9)

An explicit (by guess/inspection) choice of D for a given C, which is not unique
in general, can be done only for simple systems. For more complex systems, D is
usually determined numerically by using various techniques [1, 12, 13]. A popular
one is based on variable partitioning [18], which will be reported in Section 2.3.

Using the block-matrix inversion scheme [8][
P Q
R S

]−1

=
[

P−1 + E�−1F −E�−1

−�−1F �−1

]
, (10)

where � = S − RP−1Q, E = P−1Q, and F = RP−1, the inversion of the leading
matrix G in Equation (8) can be represented as

G−1 ≡
[

M CT

C 0

]−1

=
[

M−1 − M−1CT (CM−1CT )−1CM−1 M−1CT (CM−1CT )−1

(CM−1CT )−1CM−1 −(CM−1CT )−1

]
,(11)
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On the other hand, in [7] it is shown that

H−1 =
[

DT M
C

]−1

= [
D(DT MD)−1 M−1CT (CM−1CT )−1] (12)

and then D(DT MD)−1DT = M−1 − M−1CT (CM−1CT )−1CM−1.
Applying the schemes (11) and (12) to Equations (8) and (9), respectively, one

obtains:

ṗ = Av,

v̇ = M−1(f − d) + M−1CT (CM−1CT )−1[ξ − CM−1(f − d)]. (13)

Incidentally, the above dependent variable formulation can be obtained directly [3]
by substituting v̇ from the dynamic equation (7) into the constraint equation (6),
resolving the followed relation for λ(p, v, t) = (CM−1CT )−1[CM−1(f − d) − ξ ],
and then using the result back in the dynamic equation.

All the three dependent variable formulations, (8), (9) and (13), involve the
second-order differential constraint equations (6). Thus, in simulation, the exact
realization of only these constraint equations is assured by assumption. The lower-
order constraint equations (3) and (5) may be violated by the numerical solutions
p̃(t) and ṽ(t) burdened with the numerical error of integration, �̃H = �H(p̃) �= 0
and �̃ = �(p̃, ṽ) �= 0. The situation differs when independent state variables are
used.

2.3. INDEPENDENT VARIABLE FORMULATIONS

Let us first recall a general methodology [5, 6, 12] of converting the dynamic equa-
tions of motion to a minimal set in independent virtual speeds u = [u1 . . . ur ]T ,
r = n − m, called also independent kinematic parameters in Maggi’s and Gibbs–
Appell methods [15], and generalized speeds in Kane’s method [13]. Using u, the
implicit first-order and second-order differential constraint equations (5) and (6)
can be replaced by their explicit forms

v = D(p)u, (14)

v̇ = D(p)u̇ + γ (p, u), (15)

where γ = Ḋu, and the implicit constraint equations (5) and (6) are satisfied
identically when their explicit forms (14) and (15) are substituted [5, 6]. This means
also that D is an orthogonal complement matrix to C, CD = 0 ⇔ DT CT = 0, and
Cγ = ξ .

The components of u may be a subset of v, a set of new velocities, and/or
a set of kinematic parameters which may have no physical meaning [5, 6], and
the choice of u is closely related to the determination of D. While an analytical,
by guess or inspection, formulation of Equations (14) and (15) is usually feasible
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only for simple systems, an automatic computer-oriented code for obtaining the
relations is provided by the variable partitioning method [6, 7, 19]. Using v =
[uT wT ]T , where r independent u and m dependent w velocities are chosen so that
the respective constraint matrix factorization C = [U ... W] is characterized by
det(W) �= 0, from the factorized constraint equations (5) and (6), � ≡ Uu+Ww =
0 and �̇ ≡ Uu̇ + Wẇ − ξ = 0, one receives after simple manipulations:

v =
[

I
−W−1U

]
u ≡ Du,

v̇ =
[

I
−W−1U

]
u̇ +

[
0

W−1ξ

]
≡ Du̇ + γ . (16)

Applying the explicit constraint equations (14) and (15), the governing equations
(9) transform to n + r ODEs in p and u (see [5, 6] for more details),

ṗ = ADu

DT MDu̇ + DT (Mγ + d) = DT f
⇐⇒

ṗ = Au(p)u

Mu(p)u̇ + du(p, u) = fu(p, v, t)
(17)

The above procedure is valid for both H and NH systems. By virtue of the
formulation, the unified first-order differential constraint equations (5) are satis-
fied. The original H constraints (3) may however still be violated by the numerical
solution p̃(t), �̃H = �H(p̃) �= 0. This can be removed by expressing the mo-
tion equations in terms k independent generalized coordinates q = [q1 . . . qk]T ,
k = n − mH. The H constraints (3) and their differentiated forms can then be given
explicitly by

p = g(q) ⇒ v = D′
H(q)q̇ ⇒ v̇ = D′

H(q)q̈ + γ ′
H(q, q̇), (18)

where D′
H = A−1(∂g/∂q) is now of dimension n × k, and γ ′

H = D′
Hq̇. Using

these relations and the above described procedure, the dynamic equations (2) can
be transformed to

Mq(q)q̈ + dq(q, q̇) = fq(q, q̇, t), (19)

where Mq = D′T
H MD′

H, dq = D′T
H (Mγ ′

H + d), and fq = D′
Hf. The number of these

equations is equal to k = n − mH, and the system described in this way is subject
to only mNH NH constraints, which, given implicitly and explicitly, are now:

� ′
NH ≡ C′

NH(q)q̇ = 0,

�̇
′
NH ≡ C′

NH ≡ C′
NH(q)q̈ − ξ ′

NH(q, q̇) = 0, (20)

q̇ = D′
NH(q)u′,

q̈ = D′
NH(q)u̇′ + γ ′

NH(q, u′). (21)

The minimal-form governing equations are then the following k+r ODEs in q and
u′
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q̇ = D′
NHu′

D′T
NHMqD′

NHu̇′ + D′T
NH(Mqγ ′

NH + dq ) = D′T
NHfq

⇐⇒
q̇ = D′

NH(q)u′

M′
u(q)u̇′ + d′

u(q, u′) = f′u(p, v, t)
(22)

Summarizing, the different governing equations introduced above can be
grouped as follows:

(a) The dependent variable formulations (8), (9) and (13) in which both the po-
sition p and velocity v variables are dependent. The formulations are valid
for systems with H and/or NH constraints, and the numerical solution of the
governing equations tends to violate the original H constraint equations (3) as
well as the unified first-order differential constraint equations (5).

(b) The mixed dependent-independent formulation (17) in which the dependent
position p and independent velocity u variables are used. The formulation is
valid for systems with H and/or NH constraints, and the numerical solution
of the governing equations tends to violate only the original H constraint
equations (3).

(c) The independent variable formulations (19) (for H systems) and (22) (for NH
systems) in which the independent state variables: q and q̇, and q and u′,
respectively, are used. The numerical solutions of these equations are released
from the kinematic constraint violation problem.

3. State and Energy Stabilization

The numerical solution of equations of motion is always burdened with the in-
tegration truncation errors. For a constrained system modeled in dependent state
variables, when the governing equations involve the second-order differential con-
straint equations, one consequence of the numerical inaccuracy is violation of
the lower-order constraint equations, measured in the directions orthogonal to the
respective constraints [5, 6]. The independent variable formulations assure the
constraint consistency by assumption. The other consequence of truncation errors,
relevant to both dependent and independent variable formulations, is possible dif-
ference from the ‘exact’ solution on the constraint manifold. For a system with
H constraints these concepts are illustrated in Figure 1. The interpretation for a
NH constraint case is more intuitive. The state inaccuracy tends to increase with
simulation time and, not controlled, may make the numerical analysis unreliable or
even worthless.

3.1. ELIMINATION OF KINEMATIC CONSTRAINT VIOLATIONS

A legitimate technique for stabilizing the kinematic constraint violations is Baum-
garte’s method [3], in which the second-order differential constraint equations (6)
are replaced by their stabilized form (see also [1, 2, 9, 12, 14, 16, 20, 21])
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Figure 1. Illustration of state inaccuracy for a system with holonomic constraints; (a) depend-
ent variable formulation, (b) independent coordinate formulation.

Figure 2. Two-step elimination of kinematic constraint violations.

�̇ + α� + β

[
�H

0

]
= 0 ⇔ ξ stab = ξ − α� − β

[
�H

0

]
, (23)

where � = [�̇T

H �T
NH]T , and α and β are diagonal matrices of feedback gains. The

governing equations (8), (9) and (13) are then modified by applying ξ stab instead of
only ξ . The method does not work well for relatively complicated systems, how-
ever. It does not provide full constraint satisfaction either, and has some ambiguity
in determining the optimal feedback gains [2, 9, 14, 16, 21].

The other approach [5] is to correct directly the state variables so that to elim-
inate the constraint violations after each integration step or a sequence of steps,
without any modification in the motion equations. The schemes proposed there use
an advanced geometrical formalism, and an important feature of the state correc-
tions is that they are performed in the orthogonal-to-constraint directions, and as
such do not affect the system kinetic motion (see Figure 2). Improved schemes of
this type are developed and tested in this contribution.

For a current numerical position p̃(t), �̃H = �H(p̃) �= 0 is a measure of
deflection of p̃(t) from the virtual H constraint manifold, and the components of
�̃(t) denote distances from p̃(t) to the manifold measured along the constraint
gradients. Then, � = �(p̃, ṽ) �= 0 indicates that the numerical velocity ṽ(t) is
not pointed in a constraint allowed direction (for H constraints, is not tangent to
the constraint manifold). The components of �̃ are measures of projections of ṽ(t)

onto the constrained directions; see [5, 6] for more details. The problem at hand is
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then to find formulae for ‘translating’ the violations into appropriate position and
velocity corrections,

�p = p(t) − p̃(t) and �v = v(t) − ṽ(t), (24)

where q(t) and v(t) are the corrected, constraint consistent position and velocity
of the system, �H(p) = 0 and �(p, v) = 0.

According to the geometrical interpretation [5, 6], ξ are constraint induced ac-
celerations of the system, and are pointed in the constrained directions (in the basis
of constrained subspace defined by constraint vectors contained in C as rows).
The governing equations (8), (9) and (13) involve then variant formulae for trans-
formation of ξ from the constrained directions to the directions related to v. As
previously said, the constraint violations �̃H and �̃ are also represented in the
constrained directions. This yields the following correction schemes:

[
M CT

C 0

] [
A−1�p

0

]
= −


 0

�̃H

0


 , (25a)

[
M CT

C 0

] [
�v
0

]
= −

[
0
�̃

]
, (25b)

[
DT M

C

]
A−1�p = −


 0

�̃H

0


 , (26a)

[
DT M

C

]
�v = −

[
0
�̃

]
, (26b)

�p = −AM−1CT (CM−1CT )−1

[
�̃H

0

]
, (27a)

�v = −M−1CT (CM−1CT )−1�̃, (27b)

which correspond to the governing equations (8), (9) and (13), respectively. The
equivalence of the schemes can be shown by using Equations (11) and (12). As
shown in [5], the position correction in Equations (27) can also be stated as �p =
−AM−1CT

H(CHM−1CT
H)−1�̃H, and similar modifications are possible for schemes

(25) and (26) as well. The present schemes are more convenient, however, since
they use the same matrices as in the respective governing equations. Moreover, as
compared to [5], the new schemes (25) and (26) seem to be of special importance
when the formulations (8) or (9) are used.

In computations, the position correction p = p̃+�p (Figure 2a) should be done
first. Since the coefficient matrices in schemes (25), (26) and (27) are estimated
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using the deflected position p̃, the correction precision may be diminished. The
exact correction may thus be an iterative process. Nevertheless, usually two or at
most three iterations are needed to achieve �H(p) = 0 with a numerical accuracy.
Then, having the system position revised, the velocity correction v = ṽ + �v
(Figure 2b) can be done in one step, where now �̃ = �(p, ṽ) ≡ C(p)ṽ.

In the case of the governing equations (17) expressed in dependent coordinates
p and independent velocities u, the violations of only the original H constraints (3)
may occur, which may be eliminated according to the position corrections of the
above schemes.

It might be worth noting that resembling schemes for elimination of kinematic
constraint violations were developed in [20]. For a system modeled in generalized
coordinates p (ṗ = v) and subject to H constraints, the correction schemes were
�p = −CT (CCT )−1�̃ and �v = −CT (CCT )−1�̃. Such schemes are some-
what inconsistent, however. As p may in general be translational and/or rotational
coordinates, the entries of constraint gradients (rows of C) may have different
dimensions. Consequently, the entries of the m×m matrix CCT may be calculated
by summing up addends of different dimensions. By using CM−1CT , the correct
dot products of constraint gradients [5, 6], the inconsistency is removed. Moreover,
only the present schemes (25–27) assure that the corrections are performed in the
virtually orthogonal directions. The schemes proposed in [20] do not satisfy this
condition in a general case.

3.2. ASPECTS OF ACCURACY OF CONSTRAINT-CONSISTENT SOLUTIONS

The numerical integration errors continuously disturb also the system kinetic mo-
tion, i.e. the motion consistent with the constraint conditions (on the constraint
manifold), and the problem relates both the dependent and independent variable
formulations. By inaccuracy of numerical integration in this sense we mean the
difference between the ‘exact’ and the numerical (constraint-consistent) solution
to the equations of motion. Since an analytical (exact by assumption) solution to
the equations is usually unattainable, one must resort to their numerical solutions.
The reference solution can then be obtained using a very small step size, and a
difference between the solutions obtained for moderate step sizes and the reference
solution are always observed irrespective of the method chosen to integrate the
equations of motion.

A popular measure of the integration process inaccuracy is also the total energy
of the system, computed from the initial energy plus the energy input rate due
to external and dissipative forces [10, 21] (reflected also in the developments of
energy preserving integrators, see, e.g., [11, 12, 18]). The total energy can then be
treated as an artificial constraint on the system

�E = E − E0 −
t∫

t0

Ė dt = 0, (28)



NUMERICAL SIMULATION OF MULTIBODY SYSTEMS 275

where E = T + V is the sum of the kinetic T and potential V energies,
and Ė denotes the energy input rate to the system (for conservative systems
Ė = 0). For the dependent variable formulations (8), (9) and (13), and the mixed
dependent-independent formulation (17), the kinetic energy functions are, respect-
ively, T (p, v) = vT M(p)v/2 and T (p, u) = uT Mu(p)u/2, while V (p). For the
independent variable formulations (19) ( for H systems) and (22) (for NH systems)
we have, respectively, T (q, q̇) = q̇T Mq(q)q̇/2 and T (q, u′) = u′T M′

u(q)u′/2,
and in both cases V (q). At a given instant of time we can then write respect-
ively: �E(p, v), �E(p, u), �E(q, q̇) and �E(q, u′), and treat condition (28) as an
additional nonlinear nonholonomic constraint on the system.

Let us focus for a while on the dependent variable formulations (in terms
of p and v), and assume that the system’s degree of freedom is equal to one,
r = n − m = 1. Having the kinematic constraint violations removed, �(p) = 0
and �(p, v) = 0, the energy constraint violation �E = �E(p, v) �= 0 means
that, compared to the ‘exact’ solution, either the calculated position of the system
on the constraint manifold is somewhat advanced/backward, the system velocity
is a little increased/decreased, or both. The simplest way of elimination of the
energy constraint violation is to correct the system velocity v = v + �v so that
�E(p, v) = 0. The correction suggested in [20] is �v = −CT

E(CECT
E)−1�E ,

where CE = ∂�E/∂v can be interpreted as an energy constraint vector. As mo-
tivated before, and by analogy to Equation (27), the scheme should rather be
�v = −M−1CT

E(CEM−1CT
E)−1�E. Then, since CE = vT M, the correction sim-

plifies to �v = −(�E/2T )v, where 2T = vT M(p)v. However, the consequent
corrected velocity v = (1 − �E/2T )v does not assure exact elimination of the
energy constraint violation. Namely, using v, after some manipulations, one arrives

at �E(p, v) = �
2
E/4T �= 0. The exact satisfaction of the energy constraint can then

be achieved recursively [20].
In order to develop the above scheme to one-step elimination scheme of the

energy constraint violation, let us introduce a modified corrected velocity v =
(1 − �E/2T − ε)v. Substituting v into �E(p, v) = 0, one obtains T ε2 + (� −
2T )ε + (�

2
/4T ) = 0, and then ε = 1 − �/2T − (1 − �E/T )1/2. The improved

velocity correction scheme is finally

v =
√

1 − �E/T v. (29a)

Using formula (29a), one can easily check that �E(p, v) = 0. By analogy, for the
mixed dependent-independent formulation (17), and the independent formulations
(19) and (22), the correction schemes are respectively:

u =
√

1 − �E/T u; (29b)

q̇ =
√

1 − �E/T q̇; (29c)



276 W. BLAJER

Figure 3. Illustration of velocity correction for elimination of energy constraint violation (a
holonomic system case).

u
′ =

√
1 − �E/T u′, (29d)

where �E and T are respective functions as described in Equation (28).
The geometrical interpretation of the energy constraint violation elimination,

for a system with H constraints, is illustrated in Figure 3. Note that the correction
affects only the velocity of the system, the position on the constraint manifold is not
directly corrected. An evident drawback of the energy constraint control schemes
is the precision of evaluation of �E for nonconservative systems (Ė �= 0). The
accurate determination of the current energy input due to the external forces, pos-
sibly velocity, position and time dependent, may be a cumbersome task [11]. There
are, however, two more essential objections raised against the energy correction as
a means to improve accuracy of the numerical solution:

1. For many-degrees-of-freedom systems we deal with one condition (28) on
r independent velocities, and the ‘proportional’ correction (29)/(30) of the
velocities may not secure the ‘exact’ motion satisfaction.

2. At a given instant of time, the current total energy E is the sum of the kinetic
T and potential V energies, the former depending on both the current system
velocity and position, the latter on the position only. It may then happen that
inaccuracies in T and V for the current numerical state of motion, compared
to their exact values, will be of opposite signs and very similar in values. The
resulting energy constraint violation may thus be very small compared to the
inaccuracies in T and V . The velocity correction required to eliminate the
energy constraint violation may therefore be insignificant for improving the
accuracy of the numerical solution in the abovementioned sense.

In sum, the violation of energy constraint (28), which is caused by the inaccuracy
of numerical integration process, may be a deficient measure of inaccuracy of the
numerical solution. Consequently, the elimination of the violation may not improve
the accuracy considerably. In the author’s opinion, the conclusion can also be ex-
tended to the energy preserving integrators of equations of motion, including the
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Figure 4. The four-bar mechanism (a) and its open-loop representation (b).

popular non-dissipative implicit trapezoidal rule of Newmark method [11, 12, 18].
We will come back to this problem and illustrate it with test experiments in the
following.

4. Test Simulations

Results of numerical simulation of two simple systems are examined. The first sys-
tem is a constrained system to illustrate the effectiveness of the proposed schemes
for elimination of geometric and energy constraints. The other example is to illus-
trate a possible deficiency of energy constraint violation as a measure of inaccuracy
of the numerical solution.

4.1. EXAMPLE 1

A four-bar mechanism shown in Figure 4a is governed by gravity force, i.e. it
is a conservative system. The open-loop mechanism representation (Figure 4b) is
characterized by three joint coordinates p = [α1 α2 α3]T , and the kinematic and
dynamic equations of the interim system, (1) and (2), are ṗ = v and M(p)v̇ +
d(p, v) = f(p), where

M1,1 = J1 + (0.25m1 + m2 + m3)l
2
1 , M2,2 = J2 + (0.25m2 + m3)l

2
2,

M1,2 = (0.5m2 + m3)l1l2 cos(α2 − α1), M2,3 = 0.5m3l2l3 cos(α3 − α2),

M1,3 = 0.5m3l1l3 cos(α3 − α1), M3,3 = J3 + 0.25m3l
2
3 ,

d1 = −(0.5m2 + m3)l1l2α̇
2
2 sin(α2 − α1) − 0.5m3l1l3α̇

2
3 sin(α3 − α1),

d2 = (0.5m2 + m3)l1l2α̇
2
1 sin(α2 − α1) − 0.5m3l2l3α̇

2
3 sin(α3 − α2),

d3 = 0.5m3l1l3α̇
2
1 sin(α3 − α1) + 0.5m3l2l3α̇

2
2 sin(α3 − α2),

f1 = −(0.5m1 + m2 + m3)gl1 cos α1,

f1 = −(0.5m2 + m3)gl2 cos α2,

f1 = −0.5m3gl3 cos α3.
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Figure 5. Evolution of the position and velocity of link 1.

The closing constraint equations (1) are

�H =
[

l1 cos α1 + l2 cos α2 + l3 cos α3 − l0
l1 sin α1 + l2 sin α2 + l3 sin α

]
= 0

and the differential constraint equations (5) and (6) are defined by

C =
[ −l1 sin α1 −l2 sin α2 −l3 sin α3

l1 cos α1 l2 cos α2 l3 cos α3

]
,

ξ =
[

l1α̇
2
1 cos α1 + l2α̇

2
2 cos α2 + l3α̇

2
3 cos α3

l1α̇
2
1 sin α1 + l2α̇

2
2 sin α2 + l3α̇362 sin α3

]
.

In this way, the governing equations (8) are completed.
The mechanism parameters used in calculations were:

l0 = 1 m l1 = 0.3 m, l2 = 1 m, l3 = 0.6 m,

m1 = 1.5 kg, m2 = 5 kg, m3 = 3 kg,

while the moments of inertia were JCi
= mil

2
1/12, with Ci at the link midpoints

(i = 1, 2, 3).
With the initial conditions defined by α10 = π/2 and α̇10 = 1 sec−1, us-

ing Runge–Kutta fourth-order algorithm with a very small step size (�tr =
0.0005 sec), first we obtained a reference (‘numerically exact’) solution shown
in Figure 5, with negligible geometric and energy constraint violation for the sim-
ulation time period from 0 to 8 sec. Then applying the time step �t = 0.05 sec,
test simulations have been carried out for:

(a) no constraint control,
(b) Baumgarte’s stabilization (23) with α = 10 and β = 25 (β = α2/4),
(c) the projective elimination (25)/(27) of geometric constraints violation,
(d) the projective elimination (25)/(27) of geometric constraints violation as

above plus the energy constraint elimination (28).

The time-variations of kinematic constraint violations are shown in Figure 6. As
seen, the simulation of motion with no constraint control, case (a), leads to abrupt
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Figure 6. Violations of kinematic constraints.

Figure 7. Violation of energy constraint and inaccuracy in position of link 1.

constraint violation. Baumgarte’s stabilization, case (b), confines the violations
to some limits. The projective method, cases (c) and (d), assures no constraint
violation (the violations are less than 10−15). During the whole simulation period
the number of evaluation for the position constraint satisfaction was at most two,
and the elimination of velocity constraint violations were then achieved in one
evaluation.

The violation of energy constraint and the difference between the calculated and
the reference solutions for link 1 position are shown in Figure 7. As seen, only the
combination of both kinematic and energy constraint elimination, case (d), assures
an accurate numerical integration. The author wants to bring out into strong relief,
however, that one should not be very enthusiastic about the result. The case studied
above is very specific, let us say: favorable. Namely, according to the author’s
experience, the numerical solution of equations of motion (for both position and ve-
locity) is ‘delayed’ as compared to the exact solution, which yields that the current
numerical values of the kinetic and potential energies differ from their exact values.
In the case at hand, in that parts of motion when the mechanism raises up (when
the link 1 moves from approximately −π/2 to π/2) the inaccuracies in T and V

are both negative. The elimination (29) of energy constraint violation ‘accelerate’
then the numerical solution, and the accuracy of the corrected numerical solution
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can be achieved. The situation is different when the mechanism goes down. A
delayed numerical solution causes a negative inaccuracy in T while the inaccuracy
in V is positive. In these conditions the velocity correction (29) eliminates only
the difference between the inaccuracies in T and V , and the solution accuracy (the
difference between the exact and the numerical solutions) may not be improved.
Thus, the simulated motion of the mechanism is a succession of periods in which
the solution accuracy recurrently improves (owing to the velocity correction (29)
which works) and spoils due to the numerical truncation errors (when the velo-
city correction (29) is ineffective). Since the latter process in disturbing the exact
solution is rather slow (see Figure 7), and the correction (29) is very effective, the
global accuracy of numerical solution is maintained.

Above we described a privileged situation in which the use of energy constraint
violation as a means to improve accuracy of numerical integration if effective. This
does not hold in a general case, however. In the following we report a very simple
numerical experiment to show that the energy constraint violation criterion may be
defective.

4.2. EXAMPLE 2

Consider the equation of motion that governs the linear free vibration of a single
degree of freedom system

mẍ + kx = 0 ⇒ ẍ + ω2x = 0,

where ω2 = k/m. The analytical closed form solution of the equation is

x(t) = A1 cos ωt + A2 sin ωt

with A1 = x0 and A2 = ẋ0/ω. Having the exact reference solution we can estimate
accuracy of numerical integration. The state form of the equation of motion used
in numerical simulations were the following two first-order ODEs in x and v:

ẋ = v; v̇ = −ω2x.

The system data and initial state of motion were:

m = 1 kg, k = 10 N/M, x0 = 0.1 m, v0 = 0 m/s.

Using Runge–Kutta fourth-order algorithm with the time step �t = 0.1 sec,
two test simulation have been carried out:

(a) without energy constraint violation control,
(b) with the energy constraint violation elimination (29).

Then, using the time step �t = 0.025 sec, we applied

(c) the trapezoidal rule of Newmark method
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Figure 8. The energy constraint violation and inaccuracy in numerical solution.

to integrate the equation of motion. The trapezoidal rule was chosen for it is energy
preserving for linear unconstrained problems [10–12, 18]. The classical scheme of
this type, for the case at hand, yields the following system of linear equations in
xn+1 and vn+1:

xn+1 − xn = �t(vn+1 + vn)/2,

vn+1 − vn = −�tω2(xn+1 + xn)/2.

By solving the equations, the solution can be advanced from time tn to tn+1 =
tn + �t .

As seen from the plots in Figure 8, both the energy constraint violation elim-
ination scheme (29) (case b) and the trapezoidal rule (case c) assure the energy
conservation. The exact numerical solution is not assured, however. The applic-
ation of the correction scheme (29) improves the accuracy inconsiderably, while
the inaccuracy of numerical integration with the use of Newmark scheme is 100
times bigger as compared to the solution with no energy control obtained with the
Runge–Kutta method.

The simultaneous energy preservation and solution inaccuracy can be explained
following the previous comments. As said, the numerical solution, both in position
and velocity, is ‘delayed’ compared to the exact solution. This yields differences in
current numerical values of T and V as compared to the exact values, �T and �V .
The signs of �T and �V are opposite while their absolute values are close to each
other. As a consequence, the energy constraint violation, �E = �T +�V may be
relatively small compared to the absolute values of �T and �V . The situation, for
the numerical integration with no constraint control, is illustrated in the first plot
in Figure 9. The correction scheme (29) results then in vanishing �E, while �T

and �V remain almost unchanged (the second plot in Figure 9). A similar situation
is observed for the Newmark integration scheme, and the �T and �V are much
bigger in values (the third plot in Figure 9).
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Figure 9. The kinetic and potential energies violations.

Only these simple numerical experiments show that the total energy constraint
(28) may be an unreliable criterion for the inaccuracy measure of numerical integ-
ration of equations of motion. Consequently, the accuracy of numerical simulation
may not improve considerably by elimination of the energy constraint violation ac-
cording to scheme (29) (neither by application of an energy preserving integration
algorithm). The uncertainty of the energy criterion for many degree of freedom
systems is a separate problem, and an accurate determination of the energy input
rate (for nonconservative systems) may be difficult in practical applications.

5. Concluding Remarks

The simplest way to improve accuracy of numerical simulation of multibody sys-
tems is to diminish the integration time step. However, using a very small step
size may make the analysis numerically expensive. This may exclude the real-
time simulations, either, and may still be insecure for very long simulation times.
Applying larger integration steps improves the numerical integration efficiency, but
aggravates at the same time the numerical inaccuracy.

In the case of constrained systems an important measure of numerical in-
tegration inaccuracy is the kinematic constraint violation. Leaving the constraint
violation uncontrolled may impair reliability of the numerical simulation. In this
paper three virtually equivalent schemes (25), (26) and (27), associated with dif-
ferent formulations of constrained system dynamics, have been developed for
the numerically exact elimination of the constraint violations. The elimination is
achieved by appropriate correction of state of the system, and the procedures assure
that the corrections are performed in the directions orthogonal to the constraint
manifolds. In this way, the system effective (constraint consistent) motion is not
disturbed by the corrections.
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The other consequence of numerical truncation errors is inaccuracy in the con-
straint consistent solution to equations of motion, the problem related to both
constrained and unconstrained system dynamics formulations. A seemingly reas-
onable measure of the inaccuracy is the energy constraint violation (28). In this
paper we develop the projective scheme proposed in [20] for elimination of the
constraint violation. The proposed procedures (29) assure that the violation can be
removed in one step by simple velocity correction. On the other hand, we argue
the energy constraint violation to be a possibly defective measure of the numerical
solution inaccuracy. Consequently, the removal of energy constraint violation may
not remarkably improve the solution accuracy. The assertion is justified first by
theoretical considerations and then numerical experiments. It is also demonstrated
that the application of the energy preserving integration Newmark algorithm may
not improve the accuracy of numerical simulation, either.
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