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Abstract. The paper develops and discusses the generalization of modeling methods for systems
with non-holonomic constraints. The classification of constraints has been revisited and a concept
of program constraints introduced. High-order non-holonomic constraints (HONC), as presented in
examples, are the generalization of the constraint concept and may, as a constraint class, include
many of motion requirements that are put upon mechanical systems. Generalized program motion
equations (GPME) that have been derived in the paper can be applied to systems with HONC.
Concepts of virtual displacements and a generalized variational principle for high-order constraints
are presented. Classical modeling methods for non-holonomic systems based on Lagrange equations
with multipliers, Maggi, Appell–Gibbs, Boltzman–Hamel, Chaplygin and others are peculiar cases of
GPME. The theory has been illustrated with examples of high-order constraints. Motion equations
have been derived for a system subjected to a constraint that programmed a trajectory curvature
profile. Efficiency, advantages and disadvantages of GPME have been discussed.

Key words: non-holonomic high-order constraints, program constraints, generalized program mo-
tion equations.

1. Introduction

The concept of constraints in classical mechanics, i.e. mechanics based on Euler–
Lagrange or Hamiltonian approaches and their modifications, is based on an as-
sumption that constraints are given a priori and they are put upon a mechanical
system through other bodies or physical systems. These constraints, position and
kinematical ones are referred to as material constraints and are ‘known’ and ‘given’
by the nature. That understanding of the constraint concept and its nature is also
reflected in a common assumption that there are two kinds of situations when non-
holonomic constraints arise: when bodies are in contact with each other and roll
without slipping or at angular momentum conservation in a multibody system, see,
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for example, [8, 24, 33]. Material constraints constitute a significant class of motion
restrictions in engineering area but some problems may be formulated different
way. For example, in synthesis or optimal synthesis problems, before a system is
designed, we put requirement-constraints upon its performance. Constraints are
formulated first and then we look for modeling methods to describe the system
motion. Generally, these constraint sources are not in other bodies. Such non-
material constraints then may arise as performance, designing, operating or safety
requirements and be formulated analytically as algebraic or differential equations,
or inequalities. For example, a constraint on a free robot link has been shown to
be a second-order non-holonomic constraint and an underactuated manipulator is
a typical example of a second-order non-holonomic system [37]. In navigation
of wheeled mobile robots, to avoid the wheel slippage and mechanical shocks
during motion, dynamic constraints such as acceleration limits have to be taken
into account [25]. In path planning problems, for car-like robots, to secure motion
smoothness two additional constraints are added. They are put upon a trajectory
curvature and its time derivative [46] so constraints are of the second and third
orders. Similarly, a vehicle operates within a limited workspace is subjected to a
non-holonomic constraint – its path curvature cannot exceed some value [25, 46,
47]. Driving and task constraints are other examples of non-material constraints
[33, 36].

Other research areas have also reported manifestation of high-order coordinate
derivatives that are responsible for some dynamic phenomena, for example in bio-
mechanical modeling, as reported in [16], a third time position derivative has been
found to influence the smoothness of a limb motion. In what follows, maybe high-
order constraints will have to be taken into account in advanced modeling and
analysis or synthesis of physical systems.

These new ‘constraint sources’ that have been revealed were the motivation to
call constraints any analytical formulations like

Fβ(t, q1, . . . , qσ , q̇1, . . . , q̇σ ) = 0, β = 1, . . . , b, b ≤ σ. (1.1)

This extended concept of constraints is not completely new. First ideas were intro-
duced by Mieszczerski at the beginning of the XXth century. At the same time
a concept of servo-constraints was developed by Beghin. Appell [2] described
these constraints as those ‘that can be realized not through the direct contact’.
Ideas proposed by these authors were limited to first-order constraints as expressed
by Equation (1.1). In Section 3 we present an extension of the above constraint
concept.

Concluding, motivations to revisit and investigate more intensively systems
with non-holonomic non-material constraints are as follows:

1. Constraints that arise in analysis or synthesis of physical systems when some
requirements are put upon their motion characteristics may be non-material
ones and of the order higher than two.
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2. For the first and the second-order non-holonomic constraints (these second-
order constraints often come from differentiation of first-order ones) classical
methods can be tedious and cumbersome or some of those methods serve for
specific kinds of constrained systems only, see discussion in [41], so a unified
approach to the modeling of non-holonomic systems would be welcome.

The purpose of the paper is to deliver a modeling analysis tool i.e. to derive gen-
eralized program motion equations (GPME) that allow the generation of motion
equations of constrained systems to be treated in a new and uniform manner.

The paper is organized as follows: Section 2 provides classification of con-
straints and Section 3 describes and discusses a concept of program constraints.
Examples of non-holonomic high-order constraints are given in Section 4. Sec-
tion 5 is devoted to a short overview of modeling methods for non-holonomic
systems. They serve as a background to the discussion of generalized program mo-
tion equations (GPME). Section 6 provides derivation of GPME, also includes an
example of derivation of motion equations for a constrained system and discussion
of GPME. Paper ends with final conclusions and a list of references.

Problems concerning integrability conditions and other mathematical aspects of
non-holonomic systems are not discussed here. Readers interested in these prob-
lems can find some considerations in, for example, [33, 52, 53] and references
provided there.

2. Classifications of Constraints

In this section classifications of constraints that exist in classical analytical me-
chanics are revisited. We define a system as being constrained when any restriction
is put upon its motion conditions and it can be formulated in an algebraic or differ-
ential equation form, or expressed by an inequality. We follow then the more recent
concept of the constraint definition and constraints can be material or non-material
ones of arbitrary orders. One of the general classifications divides constraints into
unilateral ones represented by inequalities, and bilateral ones represented by al-
gebraic or differential equations. In the paper we deal with bilateral constraints.
Constraints can be modeled as ideal or non-ideal ones. The paper addresses ideal
constraints. Bilateral and ideal constraints are classified as follows [13, 27, 34, 42].

(a) POSITION OR GEOMETRICAL CONSTRAINTS

fα(t, q1, . . . , qn) = 0, α = 1, . . . , a, a < n, (2.1)

where {qσ }, σ = 1, . . . , n are generalized coordinates, functions fα , α = 1, . . . , a
are defined on (n + 1) manifold and have continuous derivatives up to the second
order at least. Position constraints also restrict velocities and accelerations of a
system. Differentiating Equation (2.1) once and twice with respect to time, we get
restrictions put upon velocities and accelerations.
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(b) KINEMATICAL (VELOCITY) CONSTRAINTS

fβ(t, q1, . . . , qn, q̇1, . . . , q̇n) = 0, β = 1, . . . , b, b < n. (2.2)

(c) KINEMATICAL CONSTRAINTS LINEAR WITH RESPECT TO VELOCITIES

n∑
σ=1

αβσ (t, qσ )q̇σ + aβ0(t, qσ ) = 0, β = 1, . . . , b. (2.2a)

We assume that fβ , β = 1, . . . , b are defined on (2n+1) manifold and have contin-
uous derivatives. Kinematical constraints (2.2) or (2.2a) also restrict accelerations.
Constraints (2.1) and (2.2) are referred to as material constraints. Constraints (2.2)
are in the form of first-order differential equations and we will refer to them as
first-order constraints, for example, linear first-order constraints in the case of
(2.2a). If Equation (2.2) can be integrated, constraints are called holonomic ones.
In the other case they are called non-holonomic constraints. We will consider non-
holonomic constraints only and systems with non-holonomic constraints will be
referred to as non-holonomic systems. Many discussions were conducted about a
problem of integrability conditions for kinematical constraints [33, 34]. We will
not address that problem here. Constraints of the form (2.2a) written in differential
forms are often referred to as Pfaffian constraints (see, for example, [31, 33, 41,
51]). The non-holonomic constraint definition is often formulated then, as that this
is a Pfaffian constraint, which is not integrable. It should be emphasized that the
above classifications are not the only ones listed in literature. For example, two
kinds of constrained systems referred to as Chaplygin [13, 34] and non-Chaplygin
[20] systems have been classified. Task or driving constraints [31, 34], mentioned
in Section 1, are examples of other constraint classes.

3. Program Constraints

The overview of constraint kinds may be summarized as follows:

1. When synthesis problems are formulated constraints are put upon a system
performance before it is designed and put into operation, and these constraints
may be non-material ones.

2. When modeling or analysis is extended beyond purely mechanical systems,
for example, to electromechanical or biomechanical ones, constraints different
that material ones arise; see, for example, [11, 16] and references therein.

3. Constraint equations that represent motion requirements may be of the order
higher than two.

All the above gave rise to introduce a program constraint concept.
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DEFINITION 1. A program constraint is any demand or limitation put upon a
physical system kinematic, dynamic or performance characteristics.

DEFINITION 2. A program motion is a system motion performed according to a
program constraint.

Material constraints, if present in a system, accompany program constraints and
have to be added to program ones. It is worth notifying that motion initial condi-
tions do not have to satisfy program constraint equations. A separate problem is
then how to bring a system to a program motion, i.e. how to design controllers.
This topic is not considered in the present paper.

We introduce program constraint formulations as follows:

− geometrical program constraints:

fp(t, q1, . . . , qn) = 0, p = 1, . . . , a, a < n; (3.1)

− kinematical program constraints:

gp(t, q1, . . . , qn, q̇1, . . . , q̇n) = 0, p = 1, . . . , b, b < n. (3.1a)

We can see that mathematical relations (3.1) and (3.1a) are the same as those
for material constraints, i.e. (2.1) and (2.2) but their interpretation is absolutely
different. These constraints are put upon a system in order to program its motion,
i.e. to get its desired performance. They are not constraints coming for example
from a rolling without sliding condition although a system motion can be realized
on a plane. Finally, according to Definition 1 the general formulation of bilateral
program constraints is:

Gr(t, qσ , q̇σ , . . . , q
(p)
σ ) = 0,




p = 1, 2, 3, . . . ,
r = 1, . . . , b, b < n,

σ = 1, . . . , n.
(3.2)

Constraints (3.2) can be linear or non-linear with respect to q(p)
σ .

Only very few works use the name ‘program constraints’, see [28, 57], and they
discuss trajectory tracking and problems of motion stabilization and/or optimal
trajectory seeking. However, according to Definitions 1 and 2, and (3.1), (3.2),
driving and task constraints, performance goals or other requirements put upon
a system motion to obtain its specified performance may be included into the
‘program constraint’ class. They can get the unified name as they play the same
role: they program the motion.

Remark. Throughout the paper we will consider programs referred to as partly-
specified ones, where a number of constraint equations is smaller than a number of
independent coordinates describing a system performance, i.e. b < n as indicated
in (3.2).
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4. Examples of Non-Holonomic Non-Material Constraint Equations

4.1. A CONDITION FOR A PSEUDO-REGULAR PRECESSION

According to the Grioli theorem [12], necessary and sufficient conditions for a rigid
body to perform a pseudo-regular precession are:

(pq̇ − qṗ) + r(p2 + q2) − λ(p2 + q2)3/2 = 0, (4.1)

where p = ωξ , q = ωη, r = ωζ and λ = const and

ωξ = ψ̇ sin ϑ sin ϕ + ϑ̇ cos ϕ,

ωη = ψ̇ sinϑ cos ϕ − ϑ̇ sin ϕ,

ωζ = ψ̇ cosϑ + ϕ̇, (4.1a)

and ϕ, ψ , ϑ denote Euler angles. When ϕ̇ = const, ψ̇ = const, ϑ̇ = 0 then we
have a regular precession. In the pseudo-regular precession ϕ̇ and ψ̇ are arbitrary
and ϑ̇ 	= const. The proof of the Grioli theorem can be found in [12]. Inserting
kinematical relations (4.1a) into the Grioli theorem equation, one gets the condition

ψ̈ϑ̇ sin ϑ − ϑ̈ψ̇ sinϑ + 2ψ̇ ϑ̇2 cosϑ

+ ψ̇3 sin2 ϑ cosϑ − λ(ϕ̇2 sin2 ϑ + ϑ̇2)3/2 = 0. (4.2)

Equation (4.2) is the kinematical condition and it constitutes the non-holonomic
program constraint equation of the second order. In other words, Equation (4.2)
has to be satisfied to get the specific motion, i.e. the pseudo-regular precession.

4.2. A BODY MOTION ON A TRAJECTORY WITH PRESCRIBED CURVATURE

PROFILES

In [25, 46, 47] for trajectory planning purposes, to preserve continuity of a tra-
jectory curvature, constraints are put upon the curvature and its derivative. For
a real car-like robot the orientation between directing wheels and its main axis is
bounded, which implies that a turning radius is lower bounded or that the curvature
is bounded |κ| ≤ κmax. The orientation of the directing wheels can change with
a limited speed and the derivative of the curvature has to be bounded |κ̇| ≤ κ̇max.
Within those bounds the curvature or its derivative may be prescribed functions. We
may demand a trajectory y(x) for which the curvature profile is a given function
!. Also, we demand the curvature and its derivative to be bounded functions to
make the resulting trajectory possible to perform by a real car-like robot. The cur-
vature profile constraint, for a planar motion, according to the differential geometry
formula, has the form:

κ2 = !2(t) =

∣∣∣∣ ẋ ẏ

ẍ ÿ

∣∣∣∣
2

(ẋ2 + ẏ2)3
. (4.3)
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Equation (4.3) constitutes the non-linear non-holonomic constraint equation of the
second order. To put a constraint on the change rate of the curvature profile, con-
straint (4.3) has to be differentiated and we get a linear non-holonomic constraint
equation of the third order

κ̇ = F0 + ẋ ¨ẏ − ¨ẋ ẏ
(ẋ2 + ẏ2)3/2

. (4.3a)

The function F0 does not contain third-order coordinate derivatives.
Curvature profiles and curvature derivative functions are examined in synthesis

of mechanisms so the example could have potential applications there; see [30] and
references therein.

Also, in [51] some examples are presented where a particle has to move on a
trajectory of a specified shape f (x, y) = 0. We can generalize those examples and
demand not only a trajectory but also its other characteristics like a curvature to
be prescribed. Classical modeling methods developed in [51] fail when constraints
like (4.3a) are put upon motion.

5. Modeling Methods for Non-Holonomic Systems

5.1. SOME COMMENTS ON MOTION EQUATIONS FOR NON-HOLONOMIC

SYSTEMS

Classical analytical mechanics provides modeling methods for systems with first-
order non-holonomic constraints, i.e. with material constraints, see, for example,
[1, 2, 5, 8, 9, 13–15, 17, 22–24, 27, 31, 34, 38–42, 51, 54]. Appell–Gibbs equations
can also deal with second-order constraints. These methods are not adequate to
systems constrained with high-order non-holonomic constraints. Also, at the begin-
ning of the XXth century it has been observed (see [6]) that equations of motion for
electro-mechanical systems do not have the form of Lagrange equations of the sec-
ond kind. At that time a trend of ‘leaving the Lagrange equations approach’ began
too. That trend has been accompanied by efforts to eliminate unknown reactions of
constraints from motion equations.

Historically, the problem of elimination of unknown constraint reactions from
motion equations was solved first by Chaplygin in 1897 [7]. In 1901 Voronetz [54]
obtained equations for non-holonomic systems for a more general case in which ki-
netic and potential energies and coefficients in constraint equations may depend on
all generalized coordinates as well as on time. In 1908 Volterra proposed equations
of motion in so-called kinematical characteristics (later called quasi-velocities). In
1901 Maggi derived equations of motion in a form that yields Volterra’s equations.
Appell’s equations were derived in 1899 on the basis of the principle of the least
constraint. Boltzmann in 1902 [5] and Hamel in 1904 [14, 15] derived a form
of equations in quasi-coordinates, which coincide for holonomic systems. Later
versions of the equations were developed by Tzenoff [49], Vranceanu in 1926 and
Schouten in 1929.
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Between 1910–1930 dynamics of non-linear non-holonomic systems made a
significant progress; Appell, Chetaev, Johnes and Hamel derived equations for
systems subjected to non-linear velocity constraints.

Some later papers [43–45] deal with non-linear non-holonomic constraints but
of the first order and considerations within equations of classical mechanics are
presented there.

Some other efforts to leave the Lagrange equations approach resulted in equa-
tions obtained by Nielsen [35] and Tzenoff [50]. Nielsen equations can be derived
from Lagrange equations or the Jourdain principle. They serve for systems with
first-order constraints and have the form:

∂Ṫ

∂q̇σ
− 2

∂T

∂qσ
= Qσ, σ = 1, . . . , n. (5.1)

Tzenoff derived new equations for systems with second-order constraints from the
Gauss principle. They are referred to as Tzenoff equations of the second kind and
have the form:

1

2

(
∂T̈

∂q̈σ
− 3

∂T

∂qσ

)
= Qσ, σ = 1, . . . , n. (5.2)

Other equations by Tzenoff that are referred to as Tzenoff equations of the third
kind, were derived from the postulated variational principle in the form:

N∑
v=1

(Fv − mv r̈v)δ¨ṙv = 0, δt = 0, δrv = δṙv = δr̈v = 0, δ¨ṙv 	= 0, (5.3)

and δ¨ṙv are defined as:

δ¨ṙv =
n∑

σ=1

∂rv
∂qσ

δ ¨q̇σ . (5.4)

Tzenoff equations of the third kind have the form:

1

3

(
∂ ¨˙T
∂ ¨q̇σ − 4

∂T

∂qσ

)
= Qσ , qσ = 1, . . . , n. (5.5)

They work for third-order constraints (p = 3) and variational principle (5.3)
is a peculiar case of the generalized variatonal principle that is presented in a
subsequent section.

Some papers [48, 49] deal with high-order constraints but what is suggested
there is to ‘treat non-holonomic constraints by changing them into formal holo-
nomic systems’ and apply the concept of ‘derivative space’ and ‘correspondent
kinetic energy’ in a derivative space. Equations that have been derived there were
in vector forms and no examples or applications to high-order constraints were
presented.
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5.2. VIRTUAL DISPLACEMENTS AND VARIATIONAL PRINCIPLES FOR

NON-HOLONOMIC NON-LINEAR SYSTEMS

Virtual displacement concepts for non-holonomic systems have been extended,
comparing to the classical one, to:

1. Virtual displacement in the Appell–Chetaev sense [13, 34] – it was introduced
when non-holonomic non-linear first-order constraints ϕβ(t, qσ , q̇σ ) = 0 were
revealed. Appel and Chetaev postulated to define virtual displacement that
satisfies the relation

n∑
σ=1

∂ϕβ

∂q̇σ
δqσ = 0, σ = 1, . . . , n, β < b. (5.6)

The above definition includes the definition of virtual displacement for holo-
nomic and first-order linear non-holonomic constraints. It holds for ideal
constraints.

2. The generalized virtual displacement – this is an extension of virtual displace-
ment in the Appell–Chetaev sense. For ideal, arbitrary order constraints

Gβ(t, qσ , q̇σ , . . . , q
(p)
σ ) = 0, β = 1, . . . , p, p = 1, 2, 3, . . . . (5.7)

Mangeron and Deleanu [29] postulated the generalized virtual displacement
definition as:

n∑
σ=1

∂Gβ

∂q
(p)
σ

δqσ = 0. (5.8)

We take advantage of this definition in Section 6.
The existence of three variational principles in classical mechanics –

d’Alembert, Jourdain and Gauss principles – gives rise to a question about their
equivalence from the point of view of motion equations generation. It can be
shown easily that for holonomic systems these three principles are equivalent. For
non-holonomic systems, these principles are equivalent for constraints linear in
velocities [13, 34]. When non-holonomic constraints are non-linear in velocities,
the problem of equivalency of these principles should be examined separately. It
means, for non-linear non-holonomic constraints it must be stated what it is virtual
displacement for them and when they are ideal.

Appell and Chetaev postulated to define virtual displacement that would serve
for non-holonomic non-linear systems and would be compatible with the clas-
sical definition for linear non-holonomic and holonomic systems. This way a
certain class of constraints and virtual displacements have been selected and they
are known as constraints and virtual displacements of the Appell–Chetaev type.
D’Alembert, Jourdain and Gauss principles are equivalent for Appell–Chetaev sys-
tems. In general, for systems that are not Appell–Chetaev ones these principles are
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not equivalent. We deal with Appell–Chetaev systems in this paper. More details
about the equivalency of variational principles can be found in [34]. The gener-
alized variational principle for ideal constraints has been postulated by Mangeron
and Deleanu [29]:

N∑
v=1

(F − mv r̈v)δr(p)v = 0, (5.9)

δt = 0, δrv = δṙv = . . . = δr(p−1)
v = 0, δrpv 	= 0.

For Appell–Chetaev systems principle (5.9) for p = 1, 2, 3 coincides with classical
principles and with the principle (5.3). The proof and comments to the principle can
be found in [29].

Remark. In [48] principle (5.9) is cited following [49] and it is referred to as
the universal d’Alembert principle. We refer to it as the generalized variational
principle following its original name.

6. Generalized Program Motion Equations (GPME) for Systems with
High-Order Non-Holonomic Constraints (HONC)

The purpose of this section is to present a complete and compact structure of
analytical apparatus to derive motion equations for systems with high-order non-
holonomic constraints (HONC). Equations that we derive here are referred to as
generalized program motion equations (GPME). They can replace equations of
classical mechanics that are their peculiar cases.

The background for development of motion equations for systems with HONC
was established by Mangeron and Deleanu [29]. The generalized variational prin-
ciple (5.9) was the basis for them to derive, in a vector form, motion equations for
systems with HONC. This vector form of equations can be compared to one of
‘principal forms’ of motion equations in classical mechanics, see [42] for example.
Mangeron and Deleanu have not derived motion equations for any system with
HONC but applied the method they have proposed to cases of first-order constraints
and investigated its coincidence with classical methods or examined some of its
mathematical features. Also, a few other publications [9, 41] were their work was
mentioned, did not deliver any modeling method for systems with HONC. In the
paper GPME were derived a different way, i.e. not from principle (5.9). Final equa-
tions were developed in an analytical form. An extension of the work by Mangeron
and Deleanu is presented.

6.1. DERIVATION OF GPME

Let us take the general form of bilateral non-holonomic constraints of the p-order:

Gβ(t, q1, . . . , qn, q̇1, . . . , q̇n, . . . , q
(p)

1 , . . . , q(p)
n ) = 0,
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β = 1, . . . , b, p = 1, 2, 3, . . . .

These constraint equations can be non-linear with respect to some p-derivatives
of coordinates. Differentiating constraint equations, with respect to time, we get
constraints of the higher order but linear in at least one (p + 1) or (p + a)-order
coordinate derivative. From now on, for simpler notation and without loss of
generality, we assume that our p-order constraints are linear in, at least one
p-order coordinate derivative. To develop GPME we formulate the following
theorem:

THEOREM. If the function F = F(t, q1, . . . , qn, q̇1, . . . , q̇n) is regular enough,
i.e. all derivatives up to the certain order p can be computed, then the following
identity holds:

d

dt

(
∂F

∂q̇σ

)
≡ 1

p

[
∂F (p)

∂q
(p)
σ

− ∂F

∂qσ

]
, σ = 1, . . . , n, p = 1, 2, 3, . . . . (6.1)

Proof. If we calculate total derivatives of order p = 1, 2, 3, . . . of the function
F = F(t, q1, . . . , qn, q̇1, . . . , q̇n), then one can verify that F (p) has the form:

F (p) = p

[
n∑

σ=1

∂2F

∂q̇σ ∂t
q(p)
σ +

n∑
σ=1

n∑
α=1

∂2F

∂q̇σ ∂qα
q̇αq

(p)
σ

+
n∑

σ=1

n∑
α=1

∂2F

∂q̇σ ∂qα
q̈αq

(p)
σ

]

+
n∑

σ=1

∂F

∂qσ
q(p)
σ +

n∑
σ=1

∂F

∂q̇σ
q(p+1)
σ + ), p > 2, (6.2)

where the function ) does not contain derivatives q(p)
σ and q(p+1)

σ , σ = 1, . . . , n.
Hence we have:

∂F (p)

∂q
(p)
σ

= p

(
∂2F

∂q̇σ ∂t
+

n∑
α=1

∂2F

∂q̇σ ∂qα
q̇α +

n∑
α=1

∂2F

∂q̇σ ∂q̇α
q̈α

)
+ ∂F

∂qσ
. (6.3)

Relation (6.3) holds for p = 1, 2, . . . and σ = 1, . . . , n. Indeed, for p = 1 we
have:

Ḟ = ∂F

∂t
+

n∑
α=1

∂F

∂qα
q̇α +

n∑
α=1

∂F

∂q̇α
q̈α

and hence:

∂Ḟ

∂q̇σ
= ∂2F

∂t∂q̇σ
+

n∑
α=1

∂2F

∂qα∂q̇σ
q̇α

+
n∑

α=1

∂2F

∂q̇α∂q̇σ
q̈α + ∂F

∂qσ
, σ = 1, . . . , n. (6.4)
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The same way we show that (6.2) holds for p = 2. Next, we calculate

d

dt

(
∂F

∂q̇σ

)
= ∂2F

∂t∂q̇σ
+

w∑
α=1

∂2F

∂qα∂q̇σ
q̇α +

n∑
α=1

∂2F

∂q̇α∂q̇σ
q̈α, σ = 1, . . . , n. (6.5)

From (6.3) and (6.5) we get:

d

dt

(
∂F

∂q̇σ

)
= 1

p

(
∂F (p)

∂q
(p)
σ

− ∂F

∂qσ

)
, σ = 1, . . . , n, p = 1, 2, . . . . (6.6)

Now if we replace F by T = T (t, q1, . . . , qn, q̇1, . . . , q̇n) in (6.6) and insert it into
Lagrange equations we get:

1

p

[
∂T (p)

∂q
(p)
σ

− (p + 1)
∂T

∂qσ

]
= Qσ , p = 1, 2, . . . , σ = 1, . . . , n. (6.7)

Equations (6.7) are the generalized program motion equations (GPME). Their form
to direct applications will be developed in Section 6.3. In the above derivation we
have not assumed anything about kinetic energy, for example that it was a quadratic
function of velocities. That particular form of kinetic energy has been assumed in
[29]. Derivation of Equations (6.7) without that assumption is an important im-
provement because they can be applied to systems for which kinetic energy is any
function of velocities [18, 19]. Equations (6.7) become Nielsen equations (5.1) for
p = 1 and Tzenoff equations (5.2) for p = 2.

6.2. GPME AND EQUATIONS OF CLASSICAL ANALYTICAL MECHANICS

Now we will explain and discuss Equations (6.7) in more detail. First, we consider
the case when p = 1. It gives more light to the structure of (6.7) and the case p = 1
is peculiar somehow. This is because for p = 1 a system kinetic energy depends
on first derivatives of coordinates that are also present in non-holonomic first-order
constraint equations

Gβ(t, q1, . . . , qn, q̇1, . . . , q̇n) = 0, β = 1, . . . , b. (6.8)

On the basis of the Nielsen equations (5.1), one can get motion equations for a
system with constraints (6.8) applying Lagrange equations with multipliers in the
form

∂Ṫ

∂q̇σ
− 2

∂T

∂qσ
= Qσ +

b∑
β=1

λβ
∂Gβ

∂q̇σ
, σ = 1, . . . , n. (6.9)

These equations have been derived the same way as Lagrange equations with
multipliers [18]. To eliminate multipliers from (6.9) we convert (6.8) to the form:

q̇β = g
(1)
β (t, q1, . . . , qn, q̇b+1, . . . , q̇n), β = 1, . . . , b. (6.10)
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Next, differentiating (6.10) we get:

q̈β = γ
(2)
β (t, q1, . . . , qn, q̇b+1, . . . , q̇n, q̈b+1, . . . , q̈n), β = 1, . . . , b. (6.11)

Equations (6.7) for p = 1 can be written in the form:

b∑
β=1

(
∂Ṫ

∂q̇β
− 2

∂T

∂qβ
− Qβ

)
δqβ

+
n∑

µ=b+1

(
∂Ṫ

∂q̇µ
− 2

∂T

∂qµ
− Qµ

)
δqµ = 0. (6.12)

Keeping in mind that we consider Appell–Chetaev systems (6.12) becomes:

b∑
β=1

(
∂Ṫ

∂q̇β
− 2

∂T

∂qβ
− Qβ

) n∑
µ=1

∂g
(1)
β

∂q̇µ
δqµ

+
n∑

µ=b+1

(
∂Ṫ

∂q̇µ
− 2

∂T

∂qµ
− Qµ

)
δqµ = 0. (6.13)

Variations ∂qµ, µ = b + 1, . . . , n, are independent, so we rewrite (6.13) in the
form:

∂Ṫ

∂q̇µ
− 2

∂T

∂qµ
− Qµ +

b∑
β=1

(
∂Ṫ

∂q̇β
− 2

∂T

∂qβ
− Qβ

)
∂g

(1)
β

∂q̇µ
= 0, (6.14)

µ = b + 1, . . . , n.

We refer to Equations (6.14) as the Nielsen equations in the Maggi form for
systems with constraints (6.10).

Now, consider the case when a system is constrained with HONC, i.e. when
p > 1. In this case constraint equations have the form:

Gβ(t, q1, . . . , qn, q̇1, . . . , q̇n, . . . , q
(p)

1 , . . . , q(p)
n ) = 0 (6.15)

and the generalized definition of virtual displacements δqσ , σ = 1, . . . , n, is given
by (5.8).

Assuming that first bp-order derivatives of generalized coordinates in (6.15) are
dependent ones, constraints (6.15) are transformed to the form:

q
(p)

β = g
(p)

β (t, q1, . . . , qn, q̇1, . . . , q̇n, . . . , q
(p)

b+1, . . . , q
(p)
n ),

β = 1, . . . , b. (6.16)

Differentiating (6.16) with respect to time we get:

q
(p+1)
β = γ

(p+1)
β (t, q1, . . . , qn, q̇1, . . . ,

q̇n, . . . , q
(p)

b+1, . . . , q
(p)
n , q

(p+1)
b+1 , . . . , q(p+1)

n ). (6.17)
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Now we rewrite (6.7) as
b∑

β=1

[
1

p

(
∂T (p)

∂q
(p)

β

− (p + 1)
∂T

∂qβ

)
− Qβ

]
δqβ

+
n∑

µ=b+1

[
1

p

(
∂T (p)

∂q
(p)
µ

− (p + 1)
∂T

∂qµ

)
− Qµ

]
δqµ = 0. (6.18)

Because of (5.8) and (6.16) we also have

δqβ =
n∑

µ=b+1

∂g
(p)

β

∂q
(p)
µ

δqµ, β = 1, . . . , b, (6.19)

so (6.18) takes the form:

n∑
µ=b+1


 1

p

(
∂T (p)

∂q
(p)
µ

− (p + 1)
∂T

∂qµ

)
− Qµ

+
n∑

β=1

[
1

p

(
∂T (p)

∂q
(p)

β

− (p + 1)
∂T

∂qβ

)
− Qβ

]
∂g

(p)

β

∂q
(p)
µ


 δqµ = 0. (6.20)

Because variations δqµ, µ = b+1, . . . , n, are independent we get motion equations
in the form:

1

p

[
∂T (p)

∂q
(p)
µ

− (p + 1)
∂T

∂qµ

]
− Qµ

+
b∑

β=1

{
1

p

[
∂T (p)

∂q
(p)

β

− (p + 1)
∂T

∂qβ

]
− Qβ

}
∂g

(p)

β

∂q
(p)
µ

= 0,

µ = b + 1, . . . , n. (6.21)

Equations (6.21) are motion equations for a system with HONC (6.15). They
become the Nielsen equations in the Maggi form for p = 1, so they hold for
p = 1, 2, 3, . . . .

6.3. GPME GENERATION TO DIRECT APPLICATIONS

GPME forms (6.7) or (6.21) are not suitable to direct applications. To develop
an algorithm to generate GPME easily we take advantage of considerations that
resulted in Equations (6.14) and (6.21). Let us start from the first-order constraint
equations

n∑
σ=1

hβσ q̇σ + hβ = 0, β = 1, . . . , b, (6.22)
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where hβσ = hβσ (t, q1, . . . , qn), hβ = hβ(t, q1, . . . , qn).
Partition of coordinates transforms (6.22) into:

q̇ρ =
l∑

λ=1

aρλq̇λ + aρ, ρ = l + 1, . . . , n. (6.23)

Now, l denotes the number of dof, i.e. l = (n − b).
For p = 1, we employ the Nielsen equations (5.1). First we construct the

function P1:

P1 = Ṫ − 2Ṫ0, (6.24)

where for p = 1, Ṫ0 is computed according to the relation

T
(p)

0 =
n∑

σ=1

∂T

∂qσ
q(p)
σ . (6.25)

Next we introduce the function R1:

R1 = P1 −
n∑

σ=1

q̇σQσ = R1(t, q1, . . . , qn, q̇1, . . . , q̇n, q̈1, . . . , q̈n)

= R1(t, qσ , q̇λ, q̇ρ, q̈σ ). (6.26)

Replacing q̇ρ in (6.26) by relations (6.23) we get:

R∗
1 = R1

(
t, qσ , q̇λ,

l∑
λ=1

aρλq̇λ + aρ, q̈σ

)
= R∗

1(t, qσ , q̇λ, q̈σ ). (6.27)

Assuming that ∂Qσ/∂q̇σ = 0, program motion equations have the form:

∂R∗
1

∂q̇λ
= ∂R1

∂q̇λ
+

n∑
ρ=l+1

∂R1

∂q̇ρ

∂q̇ρ

∂q̇λ
= ∂R1

∂q̇λ
+

n∑
ρ=l+1

∂R1

∂q̇ρ
aρλ = 0. (6.28)

Equations (6.28) and (6.23) constitute a set of λ + ρ = l + (n − l) = n equa-
tions with n unknown qσ ’s. In the general case of p-order constraints, as stated
earlier, non-linear constraints can be transformed to linear ones by differentiation.
We assume that p-order constraints are already in a linear form with respect to a
highest derivative of at least one of coordinates. If so, we rewrite p-order constraint
equations (6.16) in the form:

q(p)
ρ =

l∑
λ=1

aρλq
(p)

λ + aρ, (6.29)

where aρλ = aρλ(t, qσ , q̇σ , . . . , q
(p−1)
σ ), aρ = aρ(t, qσ , q̇σ , . . . , q

(p−1)
σ ).
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Next we construct following functions:

Pp = 1

p
[T (p) − (p + 1)T (p)

0 ] (6.30)

and T
(p)

0 is defined by (6.25).

Rp = Pp −
n∑

σ=1

q(p)
σ Qσ = Rp(t, qσ , q̇σ , . . . , q

(p)

λ , q(p)
ρ , q(p+1)

σ ), (6.31)

R∗
p = R∗

p

(
t, qσ , q̇σ , . . . , q

(p)

λ ,

l∑
λ=1

aρλq
(p)

λ + aρ, q
(p+1)
σ

)

= R∗
p(t, qσ , q̇σ , . . . , q

(p)

λ , q(p+1)
σ ). (6.32)

Assuming that ∂Qσ/∂q
(p)
σ = 0, GPME for a system with p-order constraints (6.29)

have the form:

∂R∗
p

∂q
(p)

λ

= ∂Rp

∂q
(p)

λ

+
n∑

ρ=l+1

∂Rp

∂q
(p)
ρ

∂q(p)
ρ

∂q
(p)

λ

= ∂Rp

∂q
(p)

λ

+
n∑

ρ=l+1

∂Rp

∂q
(p)
ρ

aρλ = 0. (6.33)

Relations (6.30–6.33) constitute the algorithm that can be applied to generate
motion equations for a system with arbitrary order constraints.

6.4. EXAMPLE

Consider a body motion according to constraints (4.3) or (4.3a). For simplicity we
assume that a particle mass m = 1. Constraint equation (4.3) after time differen-
tiation to get its linear form with respect to the highest coordinate derivative, for
example ¨ẋ, has the form:

¨ẋ = −!1(ẋ
2 + ẏ2)2[!̇1(ẋ

2 + ẏ2) + 3!1(ẋẍ + ẏÿ]
ẏ(ẋÿ − ẍẏ)

+¨ẏ ẋ
ẏ

or

¨ẋ = F1 +¨ẏ ẋ
ẏ
.

The function F1 does not contain coordinate derivatives of the third order.
Constraint equation (4.3a) is also of the third order. For illustrative purposes

we select constraint (4.3) to simulation. The reason is that results may be verified
easily with the radius of curvature rop calculated as

rop = (ẋ2
p + ẏ2

p)
3/2

|ẋpÿp − ẏpẍp| ,
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(a)

(b)

Figure 1. (a) Trajectory of the particle according to constant curvature !1. (b) Radius of the
curvature rop , xp , yp .

where the subscript p indicates that they are program coordinate functions. Assume
that the generalized forces Qx , Qy , Qz act upon the particle. On the basis of (6.30–
6.33) we have:

P3 = 1

3
( ¨˙T − 4 ¨˙T0) = 1

3
¨˙T = 1

3
(3ẍ ¨ẋ + 3ÿ ¨ẏ + ẏyIV + ẋxIV),

R3 = P3 −
2∑

σ=1

Qσ¨q̇σ = ẍ ¨ẋ + ÿ ¨ẏ + F2 − Qx¨ẋ − Qy¨ẏ

= (ẍ − Qx)¨ẋ + (ÿ − Qy)¨ẏ + F2,
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(a)

(b)

Figure 2. (a) Trajectory of the particle according to curvature changes !2 (after 50 seconds).
(b) Radius of the curvature rop , curvature !2, xp , yp .

where F2 does not contain terms with ¨ẋ, ¨ẏ. F1 and F2 will be omitted in what
follows.

R∗
3 = (ẍ − Qx)¨ẏ ẋ

ẏ
+ ¨ẏ(ÿ − Qy).

The final program motion equation of the particle has the form:

ÿ + (ẍ − Qx)
ẋ

ẏ
= Qy, (6.34a)
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(a)

(b)

Figure 3. (a) Trajectory of the particle according to constant curvature !1 (initial conditions
do not satisfy constraints). (b) Radius of curvature rop , xp , yp .

and together with the constraint equation

¨ẋ = −!1(ẋ
2 + ẏ2)2[!̇1(ẋ

2 + ẏ2) + 3!1(ẋẍ + ẏÿ)ẏÿ]
ẏ(ẋÿ − ẍẏ)

+ ¨ẏ ẋ

ẏ
(6.34b)

they are the set of equations that describe the program motion.
For simulations we assume Qx = Qy = Qz = 0 and select two functions: !1 =

5, !2 = 2 sin t + 1. Functions ! are limited and have limited derivatives. Dymola-
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Modelica [10] (DASSL solver) has been selected to simulate Equations (6.34) as it
provides a number of advanced integration methods to simulate non-linear dynamic
systems. Simulation results are shown in Figures 1, 2, and 3. Initial conditions have
to include initial values of positions, velocities and accelerations. Initial conditions
satisfy the constraint equation in cases shown in Figures 1 and 2. They do not
satisfy it in the case in Figure 3 and then, program motion is still performed, i.e. the
trajectory curvature is kept constant but its value is different than it was prescribed.
Figure 3 presents the case of non-controlled motion, i.e. none force acts on the
particle to bring it to the exact program trajectory.

The above example shows a potential power of modeling with GPME and
possibilities of motion programming.

7. Conclusions and Discussion

The generalized program motion equations (GPME) have been derived in this pa-
per. They can be applied to systems with arbitrary (finite) order non-holonomic
constraints and this way allows generation of motion equations of constrained
systems to be treated in a new and uniform manner. What follows, methods of
classical analytical mechanics are peculiar cases of GPME. Additionally, GPME
can be applied to systems for which kinetic energy is not a quadratic function of
velocities. It makes possible to apply GPME to variable mass systems [18]. GPME
result in motion equations referred to as program motion equations. A disadvantage
of GPME is the necessity of computation of higher-order kinetic energy derivatives
but it can be completed using most of commercial software. Constraint classifica-
tions have also been revisited and the class of HONC has been distinguished as
program constraints. Concepts of the generalized variational displacement and the
generalized variational principle for HONC have been introduced.

Problems of stability and stabilization of program motions, controller designs
for systems with program constraints are topics of further research. Some work
has already been done for simpler cases of non-holonomic constraints; see, for
example, [21].
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