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Abstract. We consider the question of integration of a multivalued operator T , that is the question
of finding a function f such that T ⊆ ∂f . If ∂ is the Fenchel–Moreau subdifferential, the above
problem has been completely solved by Rockafellar, who introduced cyclic monotonicity as a nec-
essary and sufficient condition. In this article we consider the case where f is quasiconvex and ∂
is the lower subdifferential ∂<. This leads to the introduction of a property that is reminiscent to
cyclic monotonicity. We also consider the question of the density of the domains of subdifferential
operators.
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1. Introduction

The integration of an operator T :X → X∗, i.e., the question of finding a differen-
tiable function f such that T = ∇f , has attracted much interest. When the operator
T is multivalued, this question is transformed into showing that for some function
f one has T ⊆ ∂f (for some notion of subdifferential). The above problem has
been solved by Rockafellar, in case one imposes that f should be convex and takes
∂ to be the Fenchel–Moreau subdifferential of convex analysis:

∂f (x) = {x∗ ∈ X∗ : f (y)− f (x) � x∗(y − x), ∀y ∈ X}. (1)

This gave rise to the class of cyclically monotone operators. Every such operator T
is included in the subdifferential ∂fT of a l.s.c. convex function fT (and coincides
with ∂fT if and only if T is maximal). In particular the function fT turns out to be
unique up to a constant [16].

The general question of integrating a non cyclically monotone multivalued op-
erator T :X → 2X

∗
has already been considered by several authors [3, 7, 15, 18],

etc. In this article we relax the convexity requirement on f to quasiconvexity, that
is convexity of its sublevel sets. The class of quasiconvex functions is much larger
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than the class of convex functions and appears naturally in concrete problems. A
first difficulty in the question of integration arises with the choice of a subdif-
ferential. One line of research consists in using a subdifferential of local nature
generalizing the derivative (see [4, 17], e.g.). In that case, characterizations of qua-
siconvexity have been established by means of the concept of quasimonotonicity
for multivalued operators [1, 6, 11], e.g., and references therein). In this line of
research, cyclic quasimonotonicity (defined in [5]) turned out to be an intrinsic
property of the subdifferentials of quasiconvex functions. Thus an analogy with the
convex case appears. However, it is far from obvious to find additional assumptions
ensuring that a cyclically quasimonotone operator is included in the subdifferential
of a quasiconvex function.

Here we depart from this track and we work with the lower subdifferential of
Plastria [14] which is an adaptation to the quasiconvex case of the Fenchel–Moreau
subdifferential (1). For any x ∈ X with f (x) < +∞, the lower subdifferential
∂<f (x) is given by:

∂<f (x) = {x∗ ∈ X∗ : f (y)− f (x) � x∗(y − x), ∀y ∈ S<f (x)}, (2)

where S<f (x) := {x′ ∈ X : f (x′) < f (x)} is the strict sublevel set. Relation (2) can
also take the following form:

∂<f (x) =
{
x∗ ∈ X∗ : f (y) � min

{
f (x)

f (x)+ x∗(y − x)
}
,∀y ∈ X

}
. (3)

One easily observes that, as with the Fenchel–Moreau subdifferential, ∂< is
not a local notion: two functions that coincide in a neighborhood of x, may not
have the same lower subdifferential at this point. We also remark that for every
x∗ ∈ ∂<f (x), we have {λx∗ : λ � 1} ⊆ ∂<f (x), which shows that ∂<f (x) is
not bounded. (In particular ∂f and ∂<f are in general different even for convex
functions.) However, under this notion, quasiconvex Lipschitz functions are char-
acterized by the existence of a bounded selection for their lower subdifferential (see
[14] for X = R

n and [8] for the general case). We extend these results in Section
4, while in Section 3 we consider the question of the density of the domain of the
Fenchel–Moreau subdifferential of an arbitrary function f . Note that if the function
f is not convex, the Fenchel–Moreau subdifferential is often empty. As we show
in Section 3, its nonemptiness in a dense subset of X implies the convexity of f .

In Section 2 we review some results concerning cyclically monotone operators
and Rockafellar’s integration technique for the Fenchel–Moreau subdifferential.
We note in particular that this integration requires a property that – a priori –
seems to be weaker than cyclic monotonicity (CM), namely what we call ‘cyclic
monotonicity with respect to a certain point x0’ (CM(x0)). However, these prop-
erties turn out to be equivalent. This alternative description of cyclic monotonic-
ity motivates the introduction, in Section 5, of a new class of operators, that is
operators fulfilling a certain property (L(x0)) with respect to some fixed point
x0. This property represents a pointwise version of cyclic monotonicity: indeed
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(L(x0)) is strictly weaker than cyclic monotonicity, while an operator T is cycli-
cally monotone if, and only if, T satisfies (L(x)) for all x ∈ dom(T ). We also
show that the lower subdifferential ∂<f of any function f restricted to the set
S<f (x0)

∪ {x0} fulfills (L(x0)). Moreover, any such operator T is included in the
lower subdifferential ∂<f of some quasiconvex l.s.c. function f .

In the last section we introduce the class of operators fulfilling another prop-
erty – that we denote by (R(x0)) – relative to a (fixed) point x0. This property is
strictly weaker than (L(x0)). It is shown that if T fulfills (R(x)) at every point of its
domain, then it is monotone. The main result of Section 6 states that the operator
T defined by T (x) = ∂<f (x), if x �= x0 and T (x0) = ∂f (x0) satisfies (R(x0)),
for any f such that ∂f (x0) �= ∅. On the other hand, any operator of this class is
always contained in the lower subdifferential of some quasiconvex l.s.c. function
f . Thus we obtain a characterization of this class, which is similar to the one given
for cyclic monotonicity by means of the Fenchel–Moreau subdifferential.

Let us point out that while lower semicontinuous convex functions are deter-
mined up to a constant by their Fenchel–Moreau subdifferentials, two continuous
(even differentiable) quasiconvex functions having the same Plastria subdifferential
may differ essentially. In fact, the Plastria subdifferential of a continuous quasi-
convex function may even be empty, as shown by the example of the function
f : R → R given by f (x) = xp, where p > 1 is an odd integer. (More generally,
∂<f is empty whenever lim inf‖x‖→∞f (x)/‖x‖ = −∞.)

Throughout this paper, we often use the following abbreviations: FM subdif-
ferential for the Fenchel–Moreau subdifferential, l.s.c. for lower semicontinuous
and CM operator for a cyclically monotone operator. Furthermore, X denotes a
Banach space with dual space X∗, f a function on X with values in R ∪ {+∞},
and T a multivalued operator defined on X and taking its values in the subsets
of X∗. For any x ∈ X and any x∗ ∈ X∗ we denote by x∗(x) the value of the
functional x∗ at the point x. We also use the standard notation: Bε(x) for the
closed ball centered at x with radius ε > 0, dom(f ) := {x ∈ X : f (x) ∈ R}
for the domain of the function f , Sf (x) := {x′ ∈ X : f (x′) � f (x)} and
S<f (x) = {x′ ∈ X : f (x′) < f (x)} for the sublevel and the strict sublevel sets
of f respectively and dom(T ) := {x ∈ X : T (x) �= ∅} for the domain of the
multivalued operator T .

2. Integration of the Subdifferential of a Nonconvex Function

The properties we introduce and discuss in this article are defined by fixing a certain
point x0 as a base point. It is natural to ask whether this choice plays any role. In this
section we shall see that this is not the case for the property of cyclic monotonicity.

DEFINITION 2.1. Let T :X → 2X
∗
be a multivalued operator. The operator T is

called
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(i) cyclically monotone with respect to a point x0 ∈ dom(T ) (or alternatively
T has the (CM(x0)) property), if for any x1, x2, . . . , xn ∈ X and any x∗

0 ∈
T (x0), x

∗
1 ∈ T (x1), . . . , x

∗
n ∈ T (xn) one has

x∗
n(x0 − xn)+

n−1∑
i=0

x∗
i (xi+1 − xi) � 0,

(ii) cyclically monotone (CM), if it satisfies (CM(x)) for every point x of its
domain.

It is clear that Definition 2.1(ii) coincides with the standard definition of cyclic
monotonicity (see Definition 2.20 in [13]), while it obviously implies Definition
2.1(i). The following proposition shows that the converse is also true.

PROPOSITION 2.2. Every operator satisfying (CM(x0)) is cyclically monotone.
Proof. Suppose that T satisfies (CM(x0)) and that for some (zi)ni=1 ⊂ dom(T )

and z∗i ∈ T (zi), i = 1, 2, . . . , n we have z∗n(z1 − zn) + ∑n−1
i=1 z

∗
i (zi+1 − zi) =

α > 0. For any k ∈ N and i = 0, 1, 2, . . . , k · n we define xi+1 = zi(modn)+1,
x∗
i+1 = z∗i(modn)+1 (where for i � 0, we have j = i (modn) iff i − j = pn, for

some p ∈ N and 0 � j < n). Let x∗
0 ∈ T (x0). Since T satisfies (CM(x0)) we have:

x∗
kn+1(x0 − xkn+1)+

kn∑
i=0

x∗
i (xi+1 − xi) � 0

which implies:

x∗
0 (z1 − x0)+ z∗1(x0 − z1)+ k

{
z∗n(z1 − zn)+

n−1∑
i=1

z∗i (zi+1 − zi)
}

� 0.

Taking the limit as k → +∞ we obtain a contradiction. ✷
Remark 2.3. An operator T can be cyclically monotone in a trivial way, if for

instance dom(T ) = ∅ or if dom(T ) = {x0}.
Let us observe that cyclic monotonicity of ∂f is tied to the very definition of the

Fenchel–Moreau subdifferential ∂f and does not depend on the convexity of the
function f . Indeed, if f is any function and T :X → 2X

∗
any operator satisfying

T ⊆ ∂f , then for any x0, x1, . . . , xn ∈ X and x∗
i ∈ T (xi) (i = 0, 1, . . . , n) relation

(1) guarantees that f (xi+1) − f (xi) � x∗
i (xi+1 − xi). Setting xn+1 := x0 and

adding the previous inequalities yields
∑n

i=0 x
∗
i (xi+1 − xi) � 0. Let us state this

observation as a lemma for further reference.

LEMMA 2.4. For any function f , any operator T satisfying T ⊆ ∂f is cyclically
monotone.
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The converse assertion dealing with the integration of cyclically monotone op-
erators is more interesting. The proof can be found in [16] and essentially requires
condition (CM(x0)).

THEOREM 2.5. Let T be a multivalued operator satisfying (CM(x0)) at some
point x0 of its domain. Then there exists a l.s.c. convex function fT such that T ⊆
∂fT .

The l.s.c. convex function fT of the above theorem has been constructed in [16]
(see also [13]) by the following formula, in which c is a fixed constant:

fT (x) = c + sup

{
x∗
n(x − xn)+

n−1∑
i=0

x∗
i (xi+1 − xi)

}
, (4)

where the supremum is taken over all n ∈ N \ {0}, all finite sequences {x1, x2, . . . ,

xn} in dom(T ) and all x∗
i ∈ T (xi), for i = 0, 1, . . . , n.

Let us note here that (CM(x0)) ensures that fT is not identically equal to +∞,
since fT (x0) = c.

Remark 2.6. Combining Theorem 2.5 with Lemma 2.4 we obtain an alternative
way to establish Proposition 2.2.

We also recall that the second conjugate f ∗∗ of a proper function f is given by:

f ∗∗(x) = sup
x∗∈X∗

[x∗(x)− f ∗(x∗)], (5)

where

f ∗(x∗) = sup
x∈X

[x∗(x)− f (x)]. (6)

Since the subdifferential of any function f is cyclically monotone, the l.s.c.
convex function fT given in (4) is well defined when one takes T = ∂f and
∂f (x0) �= ∅. If in particular f is l.s.c. convex, the uniqueness of Rockafellar’s
integration ([16]) shows that for c = f (x0) one has fT = f , so in particular
fT = f ∗∗. If now f is not convex, a natural question arises: is fT related to
f ∗∗? We provide below a positive answer in finite dimensions under a coercivity
assumption on f . Let us first observe that (for c = f (x0)) fT � f from which it
follows fT � f ∗∗, since f ∗∗ is the greatest l.s.c. convex function majorized by f .

PROPOSITION 2.7. Let f : R
n → R ∪ {+∞} be a l.s.c., 1-coercive function (i.e.,

lim‖x‖→∞ f (x)/‖x‖ = +∞), and let T = ∂f . Then for some constant c, the
functions fT and f ∗∗ (defined in (4) and (5) respectively) coincide.
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Proof. From our assumptions it follows that f attains its minimum at some point
x0, hence 0 ∈ ∂f (x0). It follows that f ∗∗(x0) = f (x0). Taking c = f (x0) in (4), we
conclude from (1) that fT � f . Since fT is convex l.s.c., it follows that fT � f ∗∗.

Let us prove the reverse inequality. Since the function f ∗∗ is l.s.c. and convex,
it follows from Theorem B in [16] that:

f ∗∗(x) = f (x0)+ sup

{
n−1∑
i=0

x∗
i (xi+1 − xi)+ x∗

n(x − xn)
}
, (7)

where the supremum is taken over all n ∈ N, all finite sequences {x1, x2, . . . , xn}
in dom(∂f ∗∗) and all choices x∗

i ∈ ∂f ∗∗(xi), for i = 0, 1, . . . , n.
Using the inequality f ∗∗ � f , for any x ∈ R

n one has:

f (x) = f ∗∗(x) ⇒ ∂f ∗∗(x) ⊆ ∂f (x). (8)

In particular, since f ∗∗(x0) = f (x0), one observes that

∂f ∗∗(x0) ⊆ ∂f (x0). (9)

Fix now x ∈ X and consider any M < f ∗∗(x). For some x1, x2, . . . , xn ∈ X and
x∗
i ∈ ∂f ∗∗(xi) one has

M − f (x0) < x
∗
0 (x1 − x0)+ x∗

1 (x2 − x1)+ · · · + x∗
n(x − xn). (10)

Since the function f is 1-coercive and is defined in a finite-dimensional space,
using Theorem 3.6 of [2] we conclude that for i ∈ {1, 2, . . . , n}, there exist (yji )

ki
j=1

in X, and (λji )
ki
j=1in (0, 1) with

∑ki
j=1 λ

j

i = 1 such that

x∗
i ∈

⋂
j=1,2,...,ki

∂f (y
j

i ) (11)

and

xi =
ki∑
j=1

λ
j

i y
j

i . (12)

CLAIM. There exists some yj11 such that

x∗
0 (y

j1
1 − x0)+ x∗

1 (x2 − yj11 ) � x∗
0 (x1 − x0)+ x∗

1 (x2 − x1). (13)

Proof. If this were not the case, then for every j we would have

x∗
0 (y

j

1 − x0)+ x∗
1 (x2 − yj1 ) < x∗

0 (x1 − x0)+ x∗
1 (x2 − x1). (14)

Multiplying both sides of (14) by λj1 and adding the resulting inequalities for j =
1, 2, . . . , k1 we get a contradiction by using (12). ✷
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Arguing in the same way as in the proof of the above claim, we can find some
y
j2
2 such that

x∗
1 (y

j2
2 − yj11 )+ x∗

2 (x3 − yj22 ) � x∗
1 (x2 − yj11 )+ x∗

2 (x3 − x2). (15)

It follows that

x∗
0 (y

j

1 − x0)+ x∗
1 (y

j2
2 − yj11 )+ x∗

2 (x3 − yj22 )

� x∗
0 (x1 − x0)+ x∗

1 (x2 − x1)+ x∗
2 (x3 − x2).

Proceeding like this, we inductively show that

M − f (x0) < x
∗
0 (y

j1
1 − x0)+ x∗

1 (y
j2
2 − yj11 )+ · · · + x∗

n(x − yjnn ).
Note that from (9) we have x∗

0 ∈ ∂f (x0), while from (11) we get x∗
i ∈ ∂f (yjii ), for

i = 1, 2, . . . , n. Now (4) guarantees that M < fT (x). Since M can be chosen to
be arbitrarily close to f ∗∗(x), we conclude that fT (x) � f ∗∗(x), hence equality
holds. ✷

Let us remark that the above proof shows that fT = f ∗∗ whenever the l.s.c.
function f satisfies the following condition:

(C) For any x ∈ dom(∂f ∗∗) and x∗ ∈ ∂f ∗∗(x), there exist (yi)ki=1 ⊆ X and (λi)ki=1

in (0, 1) with
∑k

i=1 λi = 1, such that x = ∑k
i=1 λiyi and x∗ ∈ ⋂k

j=1 ∂f (yi).

The conclusion of Proposition 2.7 can be satisfied also by noncoercive func-
tions (in infinite-dimensional spaces), as for instance by the function f (x) =
min{‖x‖, 1}.
COROLLARY 2.8 Let f and g be two l.s.c. functions satisfying condition (C). If
∂f = ∂g, then f ∗∗ = g∗∗ (up to a constant).

Proof. Let T = ∂f = ∂g. Note that condition (C) yields dom(T ) �= ∅. Let
x0 ∈ dom(T ). The proof of Proposition 2.7 shows that f ∗∗ = fT when one takes
c = f (x0) in (4) and that g∗∗ = fT + g(x0)− c. ✷

3. Functions with a Dense Domain of Subdifferentiability

In the preceding section we considered operators that are (included in) the sub-
differential of a nonconvex function. These operators are cyclically monotone, but
this may happen in a trivial way, see Remark 2.3. The example of the function
f (x) = min{‖x‖, 1} (also f (x) = √‖x‖) shows that one may have fT = f ∗∗
even if ∂f is a singleton. However this relation is more likely to be satisfied when
the domain dom(∂f ) is large. In this section, we shall consider the question of the
density of the domain of such operators. The following proposition shows that for
l.s.c. functions that do not take the value +∞, the density of ∂f is equivalent to the
convexity of the function.
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PROPOSITION 3.1. Let f :X → R (i.e., dom(f ) = X) be l.s.c. and such that
dom(∂f ) is dense in X. Then f is convex and locally Lipschitz.

In particular the operator ∂f is maximal monotone and locally bounded.
Proof. We first show that f is convex. Since dom(∂f ) is nonempty, we conclude

that f ∗∗ > −∞, which together with f � f ∗∗ shows that X = dom(f ) ⊆
dom(f ∗∗). It follows that the l.s.c. convex function f ∗∗ is continuous.

We now show that the functions f and f ∗∗ coincide. One observes that f (x) =
f ∗∗(x), for every x ∈ dom(∂f ). Take now any x in X. Our assumption implies the
existence of a sequence (xn)n in dom(∂f ) such that (xn) → x. Since f ∗∗(xn) =
f (xn), for n ∈ N, f is l.s.c. and f ∗∗ is continuous we get:

f ∗∗(x) = lim inf
n

f ∗∗(xn) = lim inf
n

f (xn) � f (x) � f ∗∗(x).

Thus f = f ∗∗. For the last assertion see Theorem 2.25 and Theorem 2.28 in [13],
e.g. ✷

We do not know if the assumption dom(f ) = X in the above proposition can
be omitted. The following corollary shows that this assumption is not necessary if
X = R

n. In this case it becomes part of the conclusions.

COROLLARY 3.2. Let f : R
n → R ∪ {+∞} be l.s.c. and such that dom(∂f ) is

dense in R
n. Then dom(f ) = R

n and the function f is convex and locally Lipschitz.
Proof. We have dom(∂f ) ⊆ dom(f ∗∗), so dom(f ∗∗) is also dense in R

n. Since
dom(f ∗∗) is convex, it follows that dom(f ∗∗) = R

n, hence f ∗∗ is continuous.
Arguing as in the last part of the proof of Proposition 3.1 we conclude again

that f is convex and continuous. ✷
However the following example shows that the lower semicontinuity assump-

tion cannot be dropped, even in the case X = R.

EXAMPLE. Consider the indicator function iD of any dense subset D of R:

iD(x) =
{

0 if x ∈ D,
+∞ if x /∈ D.

We note that this function is l.s.c. on its domain, without being l.s.c. in the whole
space (unless D = R). Moreover, for every x ∈ D, we have ∂iD(x) = {0}, hence
D ⊆ dom(∂iD). However, the function iD is not convex.

Let us now give an infinite-dimensional version of Corollary 3.2 by means of an
additional assumption on the operator ∂f . We shall say that an operator T :X →
2X

∗
has a (locally) bounded selection on its domain, if for every x0 ∈ X there exists

M > 0 and ρ > 0 such that:

∀z ∈ dom(T ) ∩ Bρ(x0), ∃z∗ ∈ T (z) : ‖z∗‖ � M. (16)
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LEMMA 3.3. Let f :X → R ∪ {+∞} be a l.s.c. function such that dom(∂f ) is
dense inX. If ∂f has a (locally) bounded selection on dom(∂f ), then dom(f ) = X

and f is (locally) Lipschitz.
Proof. Let us first assume that ∂f has a locally bounded selection on dom(∂f )

and let ρ > 0 andM > 0 be as in (16). We show that the function f is Lipschitzian
on the interior intBρ(x0) of Bρ(x0) with constant at most M. Indeed take any
x, y ∈ intBρ(x0). Since dom(∂f ) is dense on X, there exists a sequence (xn)n∈N
in dom(∂f )∩Bρ(x0) and x∗

n ∈ ∂f (xn), with ‖x∗
n‖ � M, such that (xn) → x. From

(1) we conclude that f (xn) � f (y)+ x∗
n(xn − y). Since f is l.s.c., taking the limit

as n → +∞ we get

f (x) � f (y)+M‖x − y‖. (17)

Since (17) holds for all y in intBρ(x0), choosing y in dom(f ) we conclude that
f is finite at x. Since x is arbitrary in intBρ(x0), we conclude that intBρ(x0) ⊆
dom(f ). It now follows easily that f is Lipschitz on intBρ(x0).

If now ∂f has a bounded selection on dom(∂f ), taking ρ = +∞ we conclude
that f is Lipschitz. ✷

We now state the following corollary.

COROLLARY 3.4. Let f :X → R ∪ {+∞} be a l.s.c. function. The following
statements are equivalent:

(i) dom(∂f ) is dense inX and ∂f has a (locally) bounded selection on dom(∂f ).
(ii) dom(∂f ) = X and ∂f is (locally) bounded.
(iii) dom(f ) = X and f is convex and (locally) Lipschitz.

Proof. The implications (iii) ⇒ (ii) ⇒ (i) are obvious. The implication (i) ⇒
(iii) follows from Lemma 3.3 and Proposition 3.1. ✷

4. Lower Subdifferentials with a Dense Domain

In this section we endeavor to complete results of the literature concerning quasi-
convex functions and their lower subdifferentials, in order to reveal analogies with
the characterization of Corollary 3.4. We recall that a function f :X → R ∪ {+∞}
is called quasiconvex, if its sublevel sets Sλ(f ) := {x ∈ X : f (x) � λ} are
convex for λ ∈ R, or equivalently, if for any x, y ∈ X and t ∈ [0, 1] the following
inequality holds:

f (tx + (1 − t)y) � max{f (x), f (y)}.
We first state the following lemma concerning the lower subdifferential ∂< (defined
in (2) or (3)). We omit its proof, since it is similar to the proof of Lemma 3.3.
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LEMMA 4.1. Let f :X → R ∪ {+∞} be a l.s.c. function such that dom(∂<f ) is
dense on X. If the operator ∂<f has a (locally) bounded selection on dom(∂<f ),
then dom(f ) = X and f is (locally) Lipschitz.

The theorem that follows is analogous to Corollary 3.4.

THEOREM 4.2. Let f :X → R ∪ {+∞} be a l.s.c. function. The following asser-
tions are equivalent:

(i) dom(∂<f ) is dense on X and ∂<f has a bounded selection on dom(∂<f ).
(ii) ∂<f has a bounded selection on X.
(iii) f is quasiconvex, Lipschitz and dom(f ) = X.

Proof. The equivalence (ii) ⇔ (iii) was proved in [9] (see Corollary 3.3).
Implication (ii) ⇒ (i) is obvious. For (i) ⇒ (iii) we first apply Lemma 4.1 to
conclude that f is Lipschitz. In particular the sublevel sets Sλ of f have nonempty
interior, whenever λ > inf f . It now follows from Proposition 3.1(i) of [10] that f
is quasiconvex. ✷

The following result extends Theorem 4.2 in a non-Lipschitzian case and is
comparable to Corollary 3.4. However the implication (iii) ⇒ (ii) does not hold in
general, as shown by the example below.

PROPOSITION 4.3. Let f :X → R ∪ {+∞} be a l.s.c. function. Among the
following statements one has (ii) ⇒ (i) ⇒ (iii).

(i) dom(∂<f ) is dense and ∂<f has a locally bounded selection on dom(∂<f ).
(ii) ∂<f has a locally bounded selection on X.
(iii) dom(f ) = X and f is quasiconvex and locally Lipschitz.

If the restrictions of f to its sublevel sets are Lipschitzian, then the above
statements are equivalent.

Proof. Implication (ii) ⇒ (i) is obvious. If (i) holds, then using Lemma 4.1 we
conclude that domf = X and f is locally Lipschitz. From Proposition 3.1(i) of
[10] it now follows that f is quasiconvex, hence (iii) holds.

Let us now assume that f is quasiconvex, continuous, dom(f ) = X and for any
λ ∈ R the restriction of f to Sλ := {x ∈ X : f (x) � λ} is a Lipschitz function of
constant k, for some k > 0. We show that ∂<f has a bounded selection on Sλ.

Indeed, consider any x0 ∈ Sλ. If f (x0) = inf f , then 0 ∈ ∂<f (x0). Hence we
may suppose that f (x0) > inf f . Since f is continuous, the closed convex set Sf (x0)

has a nonempty interior. Separating int Sf (x0) from {x0}, we obtain a functional
z∗ ∈ X∗, with ‖z∗‖ = 1 such that z∗(x) < z∗(x0), for all x ∈ int Sf (x0). It is easily
seen that x0 is minimizer of f on the half space {y ∈ X : z∗(y) � z∗(x0)}. Set
x∗

0 = k′z∗ with k′ > k.

CLAIM. x∗
0 ∈ ∂<f (x0).



LOWER SUBDIFFERENTIABILITY AND INTEGRATION 99

Proof. Suppose that x∗
0 /∈ ∂<f (x0). It follows from (2) that for some x ∈ S<f (x0)

we have f (x0)− f (x) > x∗
0 (x0 − x). Given any ε > 0, we may find y ∈ X such

that x∗
0 (y) = x∗

0 (x0) and x∗
0 (y − x) + ε � ‖x∗

0 ‖‖y − x‖ = k′‖y − x‖. Since
f is continuous, we can find some x′ in the segment [x, y] such that f (x′) =
f (x0). We easily get that x∗

0 (x
′ − x) + ε � k′‖x′ − x‖. Since f (x0) − f (x) >

x∗
0 (x0−x) = x∗

0 (y−x) > x∗
0 (x

′−x), it follows that f (x′)−f (x) > k′‖x′−x‖−ε.
Since ε is arbitrary, we have contradicted the fact that f is Lipschitz on Sf (x0) with
constant k. ✷

Since x0 is arbitrary in Sλ (and since λ is arbitrary), we have shown that
dom(∂<f ) = X. Moreover, the continuity assumption of (iii) ensures that for any
x ∈ X and λ > f (x) there exists ε > 0 such that Bε(x) ⊂ Sλ. If k is the Lipschitz
constant of f on Sλ, the previous claim asserts that ∂<f has a selection on Bε(x)
which is (norm) bounded by any k′ > k. ✷

Remark. The claim of the preceding proof relies heavily on techniques em-
ployed in [14] (see also Corollary 4.20 in [8] or Proposition 6.2 in [12]) in order to
prove the equivalence (ii) ⇔ (iii) in Theorem 4.2 if X = R

n. In finite dimensions
it has been shown in Corollary 4.20 of [8] that, if condition (iii) of Proposition 4.3
holds and f is inf-compact (that is for all λ ∈ R, the set Sλ is compact), then
f is everywhere lower subdifferentiable, that is dom(∂<f ) = R

n. Note that the
assumptions f is inf-compact and dom(f ) = X imply that the space X can be
written as a countable union of compact sets, hence it is finite-dimensional. On
the other hand, an easy compactness argument shows that if condition (iii) holds
and f is inf-compact, then the restriction of f to the sublevel sets is a Lipschitz
function. Hence Proposition 4.3 can be seen as an extension of Corollary 4.20 in
[8] to infinite dimensions, which also establishes the existence of a locally bounded
selection.

One cannot expect a characterization similar to Theorem 4.2. The following ex-
ample shows that, without additional assumptions, a locally Lipschitz quasiconvex
function f may have its subdifferential ∂<f everywhere empty.

EXAMPLE. Let X = R and consider the quasiconvex function f : R → R, with

f (x) =
{ −x2 if x < 0,
x if x � 0.

It is easy to see that f is locally Lipschitz, but ∂<f (x) = ∅, for all x ∈ R.

5. Integration by Means of the Lower Subdifferential

In this section we consider again the problem of integrating a multivalued operator,
by relaxing this time the assumption on f (to be quasiconvex instead of being
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convex) and by taking ∂ to be the lower subdifferential ∂<. We replace accord-
ingly cyclic monotonicity with a certain point-based property that we call (L(x0)).
This property yields the construction of a l.s.c. quasiconvex function gT in a way
reminiscent to the construction of the l.s.c. convex function fT in (4) by means of
Definition 2.1(i). We show that a cyclically monotone operator fulfills (L(x)) at
any point x ∈ dom(T ). Conversely, if an operator satisfies (L(x)) at every point of
its domain, then it is cyclically monotone (see Proposition 5.2). Roughly speaking,
property (L(x0)) is to be understood as a pointwise version of cyclic monotonicity.

DEFINITION 5.1. An operator T :X → 2X
∗

is said to have property (L(x0)) with
respect to some x0 ∈ dom(T ), if for any n � 1, any x1, x2, . . . , xn ∈ dom(T ) and
any x∗

i ∈ T (xi) for i = 0, 1, . . . , n, one has:

min




x∗
0 (x1 − x0)

x∗
1 (x2 − x1)+ x∗

0 (x1 − x0)

· · ·
x∗
n(x0 − xn)+ ∑n−1

i=0 x
∗
i (xi+1 − xi)


 � 0.

It follows easily that if T is cyclically monotone (see Definition 2.1(ii)), then it
satisfies (L(x)) at every point of its domain. The following proposition shows that
the converse is also true:

PROPOSITION 5.2. If T satisfies (L(x)) for every x ∈ dom(T ), then T is cycli-
cally monotone.

Proof. Suppose that T is not cyclically monotone. Then there exist n � 2 and
x0, x1, . . . , xn−1 in X and x∗

0 ∈ T (x0), x∗
1 ∈ T (x1),. . . , x∗

n−1 ∈ T (xn−1) such that
(setting xn = x0)

n−1∑
i=0

x∗
i (xi+1 − xi) > 0. (18)

For i = 0, 1, . . . , n− 1 and for j = i (mod n) (i.e., j = nm+ i for some m ∈ N)
we set βj = x∗

i (xi+1 − xi), so that (18) can be rewritten:

n−1∑
j=0

βj > 0. (19)

Thus, there exists some h1 ∈ {0, 1, . . . , n−1} such that βh1 > 0. Since the operator
T satisfies L(xh1), there exists some k ∈ {h1 + 1, h1 + 2, . . . , h1 + n} such that

k∑
j=h1

βj � 0. (20)

Note that the fact that k �= h1 + n is ensured by (18). Taking now k to be the
largest integer in {h1 + 1, h1 + 2, . . . , h1 + n − 1} such that (20) is satisfied, we
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conclude that βk+1 > 0. Setting now h2 = k+1 and proceeding like this, we define
inductively a strictly increasing sequence (hq)∞q=1 such that for any q � 1 we have
βhq > 0 and

hq+1−1∑
i=hq

βi � 0. (21)

Since the sequence (hq (mod n))q∈N has an accumulating point, we can find
p > q � 1 such that hp = hq +mn, for some m ∈ N (i.e., hp = hq (mod n)). We
thus obtain the following equality:

hq+1−1∑
i=hq

βi +
hq+2−1∑
i=hq+1

βi + · · · +
hp−1∑
i=hp−1

βi =
hp−1∑
i=hq

βi = m

n−1∑
i=0

βi

which is not possible in view of (19) and (21). ✷
Remark. Considering for instance the operator T : R → 2R given by T (0) = {0}

and T (x) = [−1, 1], if x �= 0, it is easy to see that T satisfies property (L(x0)) for
x0 = 0, without being CM.

Motivated by (4) we consider the following function gT :X → R ∪ {+∞}:

gT (x) = c + sup min




x∗
0 (x1 − x0)

x∗
1 (x2 − x1)+ x∗

0 (x1 − x0)

· · ·
x∗
n(x − xn)+ ∑n−1

i=0 x
∗
i (xi+1 − xi)


 , (22)

where c is an arbitrary constant and the supremum is taken over all n ∈ N, all finite
sequences (xi)ni=1 ∈ dom(T ) and all x∗

i ∈ T (x∗
i ), for i = 0, 1, . . . , n. Note that the

choice n = 0 in the above supremum yields gT (x) � supx∗
0∈T (x0)

{x∗
0 (x − x0)} + c.

In particular gT (x) > −∞, for all x ∈ X.
Since gT is represented as a supremum of a family of subaffine continuous

functions (i.e., of functions of the form x → min {c, x∗(x)+ b}, where b, c ∈ R),
it follows that it is quasiconvex and lower semicontinuous. Comparing (4) and (22)
one notes that gT (x) � fT (x), for every x ∈ X.

The following theorem is analogous to Theorem 2.5:

THEOREM 5.3. If T fulfills (L(x0)) then there exists a l.s.c. quasiconvex function
g such that T (x0) ⊆ ∂g(x0) and for all x ∈ X, T (x) ⊆ ∂<g(x).

Proof. Set g = gT . Since T fulfills (L(x0)), it follows (by taking n = 1 and
x1 = x0) that gT (x0) = c, hence as observed before, for any x ∈ X and any
x∗

0 ∈ T (x0) we have

x∗
0 (x − x0)+ gT (x0) � gT (x)
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which shows that x∗
0 ∈ ∂gT (x0).

Let x∗ ∈ T (x). For any M < gT (x), there exist n � 0 and (for n > 0)
x1, x2, . . . , xn ∈ X, x∗

0 ∈ T (x0), x
∗
1 ∈ T (x1), . . . , x

∗
n ∈ T (xn) such that

M < c + min




x∗
0 (x1 − x0)

x∗
1 (x2 − x1)+ x∗

0 (x1 − x0)

· · ·
x∗
n(x − xn)+ ∑n−1

i=0 x
∗
i (xi+1 − xi)


 . (23)

In particular, setting xn+1 := x (and considering separately the cases n = 0 and
n > 0), one gets M <

∑n
i=0 x

∗
i (xi+1 − xi)+ c. For any y ∈ X, and adding to both

sides of this inequality the quantity x∗(y − x) we obtain:

M + x∗(y − x) <
n∑
i=0

x∗
i (xi+1 − xi)+ x∗(y − x)+ c. (24)

Combining (23) and (24) and taking the minimum we obtain:

min{M,M + x∗(y − x)} � c + min




x∗
0 (x1 − x0)

x∗
1 (x2 − x1)+ x∗

0 (x1 − x0)

· · ·
x∗
n(x − xn)+ ∑n−1

i=0 x
∗
i (xi+1 − xi)

x∗(y − x)+ ∑n
i=0 x

∗
i (xi+1 − xi)




(with the convention xn+1 := x). As the right-hand side of the preceding inequality
is always less than or equal to gT (y) and since M can be arbitrarily close to gT (x),
using (3) we conclude that x∗ ∈ ∂<gT (x). This finishes the proof. ✷

Remarks. (1) If one omits the inclusion T (x0) ⊆ ∂g(x0) in the above state-
ment (i.e., replaces it by T (x0) ⊆ ∂<g(x0)), then the remaining conclusion holds
trivially, since one can take for g the constant function.

(2) If the operator T of Theorem 5.3 has a (locally) bounded selection at least
in a dense subset of X, then the function g (of Theorem 5.3) will be (locally)
Lipschitz. This is an immediate consequence of Theorem 4.2 (resp. Proposition
4.3).

We finally state the following ‘converse’ to Theorem 5.3.

PROPOSITION 5.4. For any function f and any x0 ∈ dom(f ), the operator T :
S<f (x0)

∪ {x0} → 2X
∗

given by T (x) = ∂<f (x) fulfills (L(x0)).
Proof. The result follows from the fact that for any x ∈ S<f (x0)

and any x∗
0 ∈

T (x0) one has x∗
0 (x − x0) � 0. ✷

Note that Proposition 5.4 is similar to Lemma 2.4, the difference being the
domain of the operator (S<f (x0)

∪ {x0} instead of the whole space X).
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Property (L(x0)), introduced in the present section, is a logical step from cyclic
monotonicity and the FM subdifferential to the lower subdifferential. Theorem 5.3
and Proposition 5.4 almost characterizes this property. However, given a function
f with ∂f (x0) �= ∅, Proposition 5.4 (unlike Lemma 2.4) does not describe the
behavior of the operator

T (x) =
{
∂<f (x) if x �= x0,

∂f (x0) if x = x0,
(25)

on the whole space, but only on the strict level set S<f (x0)
. This is clearly shown by

the following example:

EXAMPLE. Let f : R → R be given by:

f (x) =
{ −1 if x � −1,
x if x > −1.

Then the operator T defined in (25) with x0 = 0 is given as follows:

T (x) =



{1} if x = 0,
[1,+∞) if x ∈ (−1, 0) ∪ (0,+∞),

R if x � −1.

It is easy to see – considering the points x0 = 0, x1 = 1 and x2 = 3/2 – that T fails
to satisfy L(0).

6. Characterization of Operators which are contained in the Lower
Subdifferential of a Function

In this section we introduce the property (R(x0)) aiming at describing the above
operator T (see (25)) in the whole space. Although this property is weaker than
(L(x0)), we show that operators fulfilling (R(x0)) can still be ‘integrated’ (in the
sense of Theorem 5.3). This leads to a situation similar to Lemma 2.4 and The-
orem 2.5. We also show that any operator satisfying (R(x)) at every point of its
domain, is monotone.

DEFINITION 6.1. An operator T :X → 2X
∗

is said to have property (R(x0)) with
respect to some x0 ∈ dom(T ), if for any n � 1, for any x1, x2, . . . , xn ∈ dom(T )
and any x∗

i ∈ T (x∗
i ) for i = 0, 1, . . . , n, one has:

x∗
0 (x1 − x0)+

n−1∑
i=1

{x∗
i (xi+1 − xi)}− + {x∗

n(x0 − xn)}− � 0, (26)

where {x∗
i (xi+1 − xi)}− := min{x∗

i (xi+1 − xi), 0}.
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Definition 6.1 is in the same spirit as Definition 5.1 and Definition 2.1(i). In
particular every operator that satisfies (L(x0)) also satisfies (R(x0)). The following
example shows that the converse is not true:

EXAMPLE. Let T : R → 2R be such that T (0) = {1}, T (1) = {2}, T (2) = {1}
and T (x) = ∅ elsewhere. One can verify that T has property (R(x0)) for x0 = 0,
without satisfying (L(x0)).

In this example one may observe that the operator T does not satisfy (R(x)) at
every point of its domain (it fails at the point x0 = 1). The following proposition
(together with the fact that for one-dimensional spaces cyclic monotonicity and
monotonicity coincide ([5], e.g.)) gives an explanation for this.

PROPOSITION 6.2. If an operator T fulfills (R(x)) at every point of its domain,
then T is monotone.

Proof. Take any x, y ∈ X, x∗ ∈ T (x), y∗ ∈ T (y) and assume that

x∗(y − x)+ y∗(x − y) > 0. (27)

Interchanging the roles of x and y, we may suppose that y∗(x − y) > 0. Then
taking n = 1, x0 = x and xn = y, relation (26) yields that x∗(y − x) � 0. Taking
now n = 1, x0 = y and xn = x, relation (26) leads to a contradiction with (27). ✷
COROLLARY 6.3. If X = R, then T fulfills (R(x)) for all x ∈ dom(T ) if, and
only if, T is cyclically monotone.

The following theorem characterizes the class of operators that satisfy property
(R(x0)).

THEOREM 6.4. The operator T satisfies (R(x0)) for some x0 ∈ dom(T ) if, and
only if, there exists a l.s.c. quasiconvex function hT such that T (x0) ⊆ ∂hT (x0) and
T (x) ⊆ ∂<hT (x), for all x ∈ X.

Proof. (a) Let us first assume that T satisfies (R(x0)) at some point x0 of its
domain. We consider the following function hT :X → R ∪ {+∞} given by

hT (x) = c + sup

{
x∗

0 (x1 − x0)+
n∑
i=1

{x∗
i (xi+1 − xi)}−

}
, (28)

where xn+1 := x, c is an arbitrary constant and the supremun is taken over all
n ∈ N, all choices x1, x2, . . . , xn ∈ dom(T ) and all x∗

i ∈ T (x∗
i ) for i = 0, 1, . . . , n.

We make here the convention that the choice n = 0 in the above supremum is
acceptable and corresponds to the term supx∗

0 ∈T (x0)
x∗

0 (x − x0) + c.
It is easy to see that hT is l.s.c. and quasiconvex. From Definition 6.1 above, we

conclude that hT (x0) � c, and in fact hT (x0) = c. It follows directly from (28) that
for every x ∈ X we have

hT (x) � sup
x∗

0∈T (x0)

x∗
0 (x − x0)+ c = sup

x∗
0∈T (x0)

x∗
0 (x − x0)+ hT (x0)
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which in view of (1) ensures that T (x0) ⊆ ∂hT (x0).
Let now x ∈ X and x∗ ∈ T (x). For M < hT (x), (28) shows that there exist

n ∈ N, x1, x2, . . . , xn+1 := x ∈ X and x∗
0 ∈ T (x0), x∗

1 ∈ T (x1), . . . , x∗
n ∈ T (xn)

such that

c + x∗
0 (x1 − x0)+

n−1∑
i=1

{x∗
i (xi+1 − xi)}− + {x∗

n(x − xn)}− > M. (29)

(If n = 0, then we have c + x∗
0 (x − x0) > M.) For any y ∈ X, setting xn+1 := x,

adding to both sides of (29) the quantity {x∗(y−x)}− (and considering successively
the cases n = 0 and n > 0), we obtain

c + x∗
0 (x1 − x0)+

n∑
i=1

{x∗
i (xi+1 − xi)}− + {x∗(y − x)}−

> M + {x∗(y − x)}−. (30)

We note that the left side of (30) is always less than or equal to hT (y). Since M
can be chosen arbitrarily close to hT (x), we conclude from (30) that:

hT (y) � min

{
hT (x)

x∗(y − x)+ hT (x)
}
. (31)

It now follows from (3) that x∗ ∈ ∂<hT (x). We conclude that for every x ∈ X,
T (x) ⊆ ∂<hT (x).

(b) Given any function f with ∂f (x0) �= ∅ we consider the multivalued operator

T (x) =
{
∂<f (x), x �= x0,

∂f (x0), x = x0.
(32)

For any x∗
0 ∈ T (x0) and any x1 ∈ dom(T ) we have:

f (x1)− f (x0) � x∗
0 (x1 − x0). (33)

Furthermore, for any xi ∈ dom(T ), x∗
i ∈ T (xi) and any xi+1 ∈ X, we conclude

from (32) and (3) that

f (xi+1)− f (xi) � min{x∗
i (xi+1 − xi), 0}. (34)

Considering any finite cycle {x0, x1, . . . , xn, xn+1 := x0} in dom(T ) and any choice
x∗
i ∈ T (xi), for i = 0, 1, . . . , n, we conclude from (33) and (34) that:

x∗
0 (x1 − x0)+

n∑
i=1

{x∗
i (xi+1 − xi)}− � 0 (35)

which shows (see Definition 6.1) that T satisfies (R(x0)).
The observation that property (R(x0)) is inherited by smaller operators (in the

sense of the inclusion of graphs) finishes the proof. ✷
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The above theorem gives a characterization of the class of operators that sat-
isfy (R(x0)). The situation is analogous to the one corresponding to the class of
cyclically monotone operators as described by Lemma 2.4 and Theorem 2.5.

Remarks. (1) Since property (L(x0)) entails (R(x0)), Theorem 5.3 can be de-
duced as a consequence of the ‘only if’ part of Theorem 6.4. Let us also note that,
as was the case in Theorem 5.3, the inclusion T (x0) ⊆ ∂hT (x0) is an essential part
of Theorem 6.4.

(2) Using Theorem 4.2 or Proposition 4.3, we may conclude that the quasicon-
vex function hT constructed in the above proof is (locally) Lipschitz whenever the
operator T has a (locally) bounded selection in a dense subset of X.

(3) If there exists x0 ∈ dom(T ) such that T (x0) = {0}, then the above construc-
tion leads to the constant function hT = c. Let us observe that this situation cannot
occur if T is given by (32) unless ∂f (x0) = {0}.

(4) One may wonder whether the analogy between (CM(x0)) (cyclically mono-
tone) and (R(x0)) operators can go any further. Namely, starting from an arbitrary
function f with ∂f (x0) �= ∅, one may define an operator T of the class (R(x0))
(resp. of the class (CM(x0))) via relation (25) (resp. T = ∂f ) and subsequently
consider the l.s.c. quasiconvex function hT (resp. the l.s.c. convex function fT )
given by the formula (28) (resp. (4)). In both cases we have:

x∗
0 (x − x0) � hT (x) � fT (x) � f (x). (36)

It is easily seen that if f is affine, then the functions hT , fT and f coincide (modulo
the constant f (x0)). It is also known that if f is convex and l.s.c., then fT and
f coincide [16]. However in general the function hT does not coincide with f
and in particular – unlike the convex case – the operator T defined in (25) does
not uniquely determine the function f . A comparison of (4), (22) and (28) yields
hT � gT � fT . In the following example we show that if T is defined by (25), the
functions hT and gT are in general strictly majorized by f .

EXAMPLE. Consider the function f : R → R given by f (x) = |x + 1| − 1. Then
for x0 = 0, the operator T in (32) is given as follows:

T (x) =




[1,+∞) if x ∈ (−1, 0) ∪ (0,+∞),

{1} if x = 0,
R if x = −1,
(−∞,−1] if x < −1,

hence the constructions (22) and (28) lead to functions gT and hT :

gT (x) = hT (x) =
{
x if x > −1,
−1 if x � −1.

Remark. As pointed out by the referee, the results of this paragraph and the
integration procedure of Rockafellar ([16]) can both be seen as particular cases of
the following scheme:
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Consider a general function b:X×X×X∗ → R. Then for any function f :X →
R ∪ {+∞} let us define the b-subdifferential ∂bf :X → 2X

∗
by

∂bf (x) = {x∗ ∈ X∗ : f (y) � f (x)+ b(x, y, x∗), for all y ∈ X}. (37)

Further, given an operator T :X → 2X
∗

and a point x0 in dom(T ), define the
b(x0)-property as follows: For any x1, x2, . . . , xn ∈ X and any x∗

0 ∈ T (x0), x
∗
1 ∈

T (x1), . . . , x
∗
n ∈ T (xn)

n∑
i=0

b(xi, xi+1, x
∗
i ) � 0, (38)

where the convention xn+1 = x0 is used. Then if T has this property, adapting
the procedure of Rockafellar (in [16]) we can construct a function fT in such
a way that T ⊆ ∂bfT . The function fT , being a supremum of functions of the
form b(x, y, x∗), will enjoy a certain property based on b(·, ·, ·), that we call b-
convexity. In the light of this general scheme, the conclusions of Theorem 2.5 and
Theorem 6.4 may read in a unified way as follows:

T has b(x0) ⇔ T ⊆ ∂b fT , for some b-convex function fT .

Note that Theorem 2.5 corresponds to the case b(x, y, x∗) = x∗(y − x), where
one recovers in (37) the definition of the Fenchel–Moreau subdifferential and in
(38) the definition of cyclic monotonicity (see Definition 2.1(i)). In this case, b-
convexity is equivalent to convexity plus lower semicontinuity. On the other hand,
Theorem 6.4 corresponds to the choice

b(x, y, x∗) =
{
x∗(y − x) if x = x0,

min{x∗(y − x), 0} if x �= x0,

where (38) is the considered R(x0) property, and b-convexity is nothing else than
lower semicontinuity and quasiconvexity.

QUESTION. The class of operators fulfilling (R(x)) at every point of their domain
is located between monotone and cyclically monotone operators (see Proposi-
tions 5.2, 6.2 and comments after Definition 6.1). However we do not know which
of these inclusions is strict.
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