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Abstract

A great number of recent papers have investigated the possibility of introducing more effective and efficient
algorithms for search engines. In traditional search engines the resulting ranking is carried out using textual
information only and, as showed by several works, they are not very useful for extracting relevant information.
Present research, instead, takes a new approach, called Topic Distillation, whose main task is finding relevant
documents using a different similarity criterion: retrieved documents are those related to the query topic, but
which do not necessarily contain the query string. Current algorithms for topic distillation first compute a base
set containing all the relevant pages and then, by applying an iterative procedure, obtain the authoritative pages.
In this paper, we present a different approach which computes the authoritative pages by analyzing the structure
of the base set. The technique applies a statistical approach to the co-citation matrix (of the base set) to find the
most co-cited pages and combines a link analysis approach with the content page evaluation. Several experiments
have shown the validity of our approach.
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1. Introduction

The increasing popularity of the Web has significantly broaden the possibility of sharing
ideas and human knowledge on a scale never seen before. Search services on the WWW are
becoming increasing popular among users because of the huge amount of data available [3].
Despite its success, as it appears from the results supplied by traditional term-based search
engines, retrieving and filtering information on the Web is actually quite a difficult task. In
traditional search engines the resulting ranking is carried out by using textual information
only and thus they are not very useful for extracting relevant information. Indeed the
retrieved result is affected by the users’ precision in expressing the query and is strictly
related to the query string, i.e., documents are ranked just according to a degree of textual
similarity with respect to the user query [10,14,21,23,25,27]. However, usually, users are
unclear about the information they need and so they do not give much thought to query
formulation. Moreover, if the query pertains to topics which are abundant on the Web,
search services become unusable because of the huge number of pages obtained (often
millions of pages). For instance, at the time of this work, the search engine AltaVista [13]
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returned more than 29,000,000 pages in reply to the query asking for the documents related
to the word “java”.

Current research, instead, takes a different approach, which goes under the name of
Topic Distillation on the Web [9,10,21,24]. It basically consists in finding documents re-
lated to the query topic, but which do not necessarily contain the query string. The fol-
lowing classical example shows the advantage of this [21]. If we want to find Web pages
associated with the query string “search engine,” a Term-Based search engine is not use-
ful because it does not return pages like www.yahoo.com, www.altavista.com or
www.excite.com. This happens since none of the really interesting pages contains the
query string. The purpose of Topic Distillation is to increase the precision of the search
algorithm in order to return the most relevant pages, even if there is no trace of the query
string in them.

In order to achieve this, Kleinberg [21] observed that there is an additional source of in-
formation that can be used for searching the Web: its structure made of nodes (Web pages)
connected through arcs (links among pages). Using this idea, he proposed a connectivity
analysis algorithm, called mutual reinforcement approach. In fact, a link which is not made
for a navigational purpose, encapsulates a human judgment on the page relevance with re-
spect to a certain topic. As a consequence, all pages can be divided into two groups: hubs
and authorities. An authority is a relevant page pointed to by many hubs; while a hub is a
page that points to many relevant ones. Kleinberg’s algorithm computes an authority score
for each page as an indicator of relevance.

In searching the Web a second important aspect must also be considered: the automatic
discovery of communities connected to a given topic, known as topic enumeration. Topic
search and enumeration are tightly related since in the searching of documents on a given
topic it is useful to compute the most authoritative documents, but also to identify the
different communities.

In this paper, we present a technique which, by exploiting the graph structure of the
Web, improves the quality of both topic search and enumeration. Our technique is based
on the application of a statistical approach to the co-citation matrix [28] (associated with
the base set obtained in the first step of Kleinberg’s algorithm or some other algorithm
based on the mutual reinforcement approach) to find the most co-cited pages. The different
communities are then derived directly from the co-citation matrix (also called similarity-
matrix) and the most relevant pages are those which are the “most similar” to all the other
pages in the same community. Our technique is more general and efficient than previous
techniques proposed in the literature since it is able to identify the different communities
and the most authoritative pages without using any iterative procedure. Techniques for
topic distillation can be applied to Web data (e.g., HTML data) and, generally, to data
which can be modelled by graphs such as XML and semistructured data [1,2,16,22].

To show the validity of our approach, we have developed a system prototype for topic
distillation and enumeration of Web documents, called ST ED. Several experiments have
demonstrated the effectiveness and efficiency of our technique.

The rest of this paper is organized as follows. Section 2 contains a descriptions of the
current techniques used for page ranking and topic distillation. Section 3 presents our prob-
abilistic approach for topic distillation; this section also contains the theoretical results
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useful for its implementation and a comparison of our technique with other approaches.
Section 4 describes a prototype developed at the University of Calabria. Section 5 shows
some experimental results comparing our algorithm with Kleinberg’s algorithm. Finally,
Section 6 contains our conclusions.

2. Page ranking and authoritative Web pages

This section describes some techniques and algorithms for the ranking of Web pages.
These techniques can be divided into two distinct groups: techniques based on a statis-
tical approach for ranking (e.g., the PageRank Algorithm [7,8]) and techniques for topic
distillation based on Kleinberg’s algorithm [6,21]. Since the two basic approaches have
some limitations, several works have proposed extensions of the basic algorithms avoid-
ing some drawbacks in the computation of relevant pages [23]. Before reviewing current
techniques for page ranking, let us present the formal definition of the (Web) graph and its
representation.

Let � be a set of node identifiers and � the alphabet of edge labels. A graph G over �
and � is a pair (V ,E), where V ⊆ � is the set of nodes and E ⊆ {(u, σ, v) | u, v ∈ V,

σ ∈ �} is the set of labeled edges. A graph over � and � is said to be weighted if � = R+
or � = Z , i.e., the alphabet of edge labels is the set of positive reals or the set of rational
numbers.1

A weighted graph G = (V ,E) is stored by means of a (|V | × |V |) matrix A, called
adjacency matrix. The value of Ai,j denotes the weight (label) of the arc i → j and
Ai,j = 0 means that there is no arc from i to j . Let A be a matrix, an eigenvalue of A is
a number λ such that Aw = λw, for some w called eigenvector. The number of linearly
independent eigenvectors defines the multiplicity of the eigenvalue λ.

2.1. PageRank algorithm

Techniques for ranking Web pages have been successfully used in search engines such as
Google [17]. Google is a system that, for the first time, implements an algorithm which
uses the link structure of the Web to calculate a quality ranking for each page: the Page-
Rank algorithm. Mathematically the PageRank measure can be expressed by the following
formula [8].

Definition 2.1. Let p be a Web page, out(p) the set of links starting from p. The PageRank
of p is:

PR(p) = d + (1− d)
∑

pi∈L(p)

PR(pi)

|out(pi)| ,

where d is a real number such that 0 < d < 1.
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PageRank simulates the behaviour of a surfer randomly navigating the Web, who jumps
with probability d to a page selected randomly and, consequently, he follows a link se-
lected randomly with probability 1− d . The value of d is fixed and a typical value is in the
range [0.1, 0.15]. It follows that PR(p) can be calculated by initially assigning the value 1
to every page and then by using a simple iterative algorithm. The retrieved solution cor-
responds to the principal eigenvector of the normalized link matrix of the Web. Note that
PR(p) can be scaled so that

∑
∀p PR(p) = 1; in such a case PR(p) can be thought of as a

probability distribution over pages and hence a weight function. Therefore, PageRank has
a simple interpretation: it gives the probability that a random surfer reaches the given page
starting from a random page. Such a probability is a natural candidate for capturing the
intuitive notion of page relevance, that is, the value of PR(p) is a measure of the relevance
of page p.

In any case, it is easy to see that PageRank is just a mechanism for ranking pages and
not a system for topic distillation; that is, the rank is calculated a priori, just on the basis of
the link structure: the ranking of a page p is not affected by the query string. In some way
it encapsulates a concept of generic popularity, but not of relevance for a particular topic.
Moreover, we observe that:

• PageRank is based on the hypothesis that from each page the probability of following
an outgoing link is the same (as a consequence of not considering the query string).
• It does not make any assumptions about the length of the random-walks, because it only

calculates the asymptotical distribution of the random walk.
• It does not consider the possibility that a Web-surfer would remain on a certain page (if

it is relevant in itself).

2.2. Kleinberg’s algorithm

Kleinberg proposed an innovative approach based on the observation that each page has an
authority rating (based on its incoming links) and a hub rating (based on its outgoing links).
Kleinberg’s algorithm, called mutual reinforcement approach2, consists of two phases:

• Creation of the base set. A root set of documents matching the query is obtained by
taking the first t documents given by a traditional search engine. Then, the root set is
augmented by adding the pages that point to or are pointed to by documents in root (for
a maximum of c pages). The process can be repeated several times and the resulting set,
called base set, is used for the successive step. Kleinberg suggests the values t = 200
and c = 50.
• Computation of hub and authorities scores. Let n be the number of pages in the base

set B, the data structure used by the algorithm is an n × n adjacency matrix, A, where
Ai,j = 1 if there are one or more hyperlinks from page i to page j , otherwise Ai,j = 0.
Let k be the iteration number and let X and Y two vectors of size n representing the
authority and hub scores for each page in B. The algorithm applies the following steps
to the base set:

1. X = Y = [1, . . . , 1] ∈ R
n.
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2. For all the k iterations needed

(a) X′ ← ATY , Y ′ ← AX,

(b) X = X′

|X′| , Y = Y ′

|Y ′| .

At the end of the iteration process, the vectors X and Y contain, respectively, the author-
ity and hub scores assigned to all pages in the base set. Kleinberg proved that after a suffi-
cient number of iterations k (generally, not larger than 20), the vectors X and Y converge
to the principal eigenvectors of the matrices ATA and AAT, respectively. The principal
eigenvector of the transition matrix corresponds to the largest eigenvalue and identifies the
largest “community” of Web pages; consequently, pages outside this community are not
considered.

An important technical assumption made for the convergence of Kleinberg’s algorithm
is that the principal eigenvalue should have unitary multiplicity, so that just one eigenvector
is associated to it. Although the convergence is not affected by this assumption, we note
that the algorithm can produce unexpected results.

Consider Figure 1 where we report a graph in which this problem is emphasized; we
can see the two communities {2,3} and {5,6}, but the algorithm ranks the nodes 2, 3,
5 and 6 at the same position3 causing a user to think that these nodes belong to the same
community. Instead, what a user would actually obtain are two groups of nodes identifying
the two different communities. This could be carried out by assigning different weights to
the arcs and by computing two distinct eigenvalues. However, generally, it is difficult to
assign “a priori” weights to links so that pages in the same community are ranked in some
identifiable range.

Another problem arises because Kleinberg’s algorithm finds the most relevant pages in
the hypothesis of working on a connected similarity graph, associated to the co-citation
matrix ATA, where A is the adjacency matrix of the base set. However, since there could
be more than one community, we must consider not only the principal eigenvector, but at
least one other to obtain the two most relevant sets of authorities. Such an approach is
expensive because it requires k applications of the iterative procedure to obtain the ranking
of k different communities. So, a desirable property of a ranking algorithm should be the
possibility of obtaining the correct result by executing the procedure just once, even in the
case of unconnected graphs.

Figure 1. Example of a graph with λ1 = λ2.
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2.3. The SALSA algorithm

The SALSA algorithm, proposed by Lempel and Moran [23], computes first the base set
and then a random walk by alternatively (i) going randomly to a page which links to the
current page, and (ii) going randomly to a page linked to by the current page. The au-
thority (respectively hub) weights are defined by the stationary distribution of the two-step
process, doing first step (i) and next step (ii) (respectively first step (ii) and next step (i)).

A nice property of the SALSA algorithm is that it is less affected than Kleinberg’s algo-
rithm of the TCK effect. A Tightly-Knit Community (TCK) is a small but highly intercon-
nected set of pages. Consider two different communities, one Cs with a small number of
hubs and authorities, in which every hub points to all of the authorities and a much larger
community Cl, in which the hubs point only to a subset of the authorities. In situations like
this, the mutual reinforcement approach fails, giving a high rank to the pages of Cs and a
lower rank to the pages of Cl.

2.4. Other approaches and implementations

A different approach for computing authorities and hubs has been recently defined by Cohn
and Chang [11]. They proposed a technique for the maximization of a likehood function
based on a probabilistic model in which conditional distributions are considered. In par-
ticular, they postulate that there is a conditional distribution P(c|z) of a citation c given a
topic z and a conditional distribution P(z|d) of a topic z given a document d .

The use of random walks for ranking Web pages is also used in the PageRank algorithm.
Indeed, the PageRank algorithm examines a single random walk on the global Web ranking
the pages independently of the search query. With respect to Kleinberg’s algorithm, the
coupling between authorities and hubs is less tight and, consequently, the method is less
vulnerable to the TCK effect.

The PageRank approach is the basis of the system Google which is currently the most
successful search engine [17]. Several projects have implemented (variations of) Klein-
berg’s algorithm. We mention here the HITS technique [15] and ARC system [10]; the
latter, besides the link structure analysis, also considers the text surrounding the hyperlinks
in the pointing page (anchor text). The approaches considered in these projects, have been
extended in the project Clever [20]. Further improvements of Kleinberg’s algorithm have
been proposed in [5].

A hybrid of the SALSA and PageRank algorithms, computing page reputations, has
been presented in [27]. The algorithm works as follows: at each step, with probability d ,
the surfer jumps to a page of the collection chosen randomly, and with probability 1 − d

he performs a SALSA step.
Moreover, the random walk approach was also adopted for measuring the quality of

current search engines. In [19] Henzinger et al. proposed a measure for search engines,
different from the traditional number of pages indexed. In particular, they provided an
algorithm for approximating the quality of an index by performing a random walk on the
Web, and used this methodology to compare the index quality of several major search
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engines. An experiment-based criterion, for evaluating and comparing link analysis algo-
rithms, is presented in [6].

3. Random walks

This section presents a new approach for topic distillation and community identification.
Our idea is to obtain the different clusters directly from the co-citation matrix (associated
to the base set obtained in the first step of Kleinberg’s algorithm or of some algorithm
based on the mutual reinforcement approach) without the application of the second step of
Kleinberg’s algorithm. This is carried out by denoting as the most relevant page the one
which is the “most similar” to all the other pages in the same community. Our notion of
similarity is based on the structure of the co-citation matrix: the “most similar” page, in a
given community, has the property of having the greatest number of citations in common
with the other pages in the community. So, the “most similar” page is also the most au-
thoritative obtained by applying Kleinberg’s algorithm. Thus, our technique identifies the
most authoritative pages and it does not suffer from the previous mentioned problems.

To achieve this, we propose analyzing the behavior of a Random Walk over the graph as-
sociated with the co-citation matrix. Observe that such a graph is weighted and undirected
and contains an arc between the node i and j with weight w iff i and j are pointed to by the
same set S of pages and |S| = w. So the probability of going to a certain page j , starting
from a page i, after a random walk through the other pages (following a random number
of arcs) is proportional to the number of co-citations shared by all pages in such a path.
The consequence is that this probability can be considered a measure of similarity. Before
going into the details of our approach we provide some background on random walks.

Definition 3.1. Let S be a set of states; a random walk on S corresponds to a sequence of
states. Moreover, it is Markovian if at each state the transition only depends on the current
state (that is, it is not affected by the previous steps).

In our context, the states correspond to the different Web pages while the transitions are
associated to the navigation of arcs (in the co-citation matrix). Since a transition between
two states is only possible if there is an arc joining the associated pages in the similarity
graph, a random walk defines a set of “similar” pages (connected in the similarity graph).

Definition 3.2. The equilibrium distribution of a state of a random walk is the fraction of
the number of times the walk passes over the state and the total number of state transitions
if it continues for an infinite time.

So, the first thing we need to define is the probability of a transition from one state to
another, which corresponds to the probability of navigating a link of a Web page. This
probability should take two factors into consideration: the information associated to the
outgoing links (label, destination page, etc.) and the content of the source page (textual in-
formation); both link and node information are measured by means of a weights calculated
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by using heuristics already present in the literature [10,17]. The information associated
with the outgoing links says how interesting the linked pages are, whereas the textual in-
formation says how interesting the current page is.

The combination of this information gives the probability of navigating the different
links and also the probability of remaining on the current page.

For modeling these two behaviors we define a transition probability matrix. Note that
all the following definitions and theorems refer to a generic graph G = (V ,E); for our
purpose this will be the graph computed in the first step of the mutual reinforcement algo-
rithm.

Definition 3.3. LetG = (V ,E) be a weighted graph andA the associated adjacency matrix
where Ai,j represent the weight of the arc (i → j) ∈ E; let C = ATA be the co-citation
matrix and let ci , with i ∈ V , be a weight associated to each node representing the textual
information of the node. Assuming, by definition

Ci,i = ci , ∀i ∈ V,
the transition probability matrix P is a |V | × |V | matrix in which every entry is

Pi,j = Ci,j∑|V |
k=1 Ci,k

.

Observe that in the probability matrix P , Pi,i denotes the probability of remaining in
node i, whereas Pi,j , with i �= j , denotes the probability of going from node i to node j .
We must emphasize the importance of defining the weights for arcs (weights Ai,j with
i �= j ) and pages (weights Ai,i ); this task can be addressed by means of some heuristic
already present in the literature. Anyhow, in our tests we do not adopt any heuristic and
associate to arcs and pages the weight 1.

As seen, the matrix P models the behavior of the unitary length transitions; its intuitive
meaning is that Pi,j represents the similarity between node i and j on the basis of one link
only. Now to continue our analysis we want to extend this model in order to describe what
happens in a random walk composed of more than one link.

Definition 3.4. Let P be the transition probability matrix, and let P 1
i,j = Pi,j the probabil-

ity of going from node i to node j in one step, then the probability of going from node i to
node j in n steps is

Pn
i,j = Pn−1

i,j × Pj,j +
∑

k �=i,k �=j
P n−1
i,k × Pk,j + Pn−1

i,i × Pi,j .

The intuitive meaning is that Pn
i,j represents a measure of similarity between node i

and j looking only at a co-citation through an n-dimensional path.
So, if we consider a random walk obtained for n→∞, what we will obtain is the equi-

librium distribution of our random walk. In any case we observe that the walk length has
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a probability distribution in itself. We decide to model this behavior with an exponential
distribution. With this assumption the following definition is obtained.

Definition 3.5. Being in a node i, the probability of going to a node j with a random walk
of random length (composed with a maximum of n steps) becomes

Ti,j (n) = (f − 1)×
(

1

f
P 1
i,j +

1

f 2P
2
i,j + · · · +

1

f n
Pn
i,j

)
,

where 1/f is a damping factor, with f > 0.

Now we calculate the terms Ti,j (n) for n→ ∞, so obtaining a value giving a measure
of co-citations by considering paths (with an arbitrary number of links) instead of arcs
(i.e., if the pages i and k point to a page p and the pages k and j point to a page q , then i

and j are indirectly coupled). Therefore, a higher value of
∑

i∈V Ti,j (n) gives a measure
of similarity of page j with respect to all the other pages, that is, an high value of the sum
means that page j has many co-citations in common with all other pages; such a page is
authoritative in the sense of Kleinberg theory. In the following, we shall denote with T (n)

the matrix in which every element with indexes i and j is Ti,j (n). To apply this idea, we
simply need to know the behavior of T (n) for n→∞.

Theorem 3.6. Let P be a matrix representing a transition probability and let f be a real
number greater than the principal eigenvalue of P , then the sequence

T (n) = (f − 1)×
n∑

i=1

(
1

f
× P

)i

converges for n→∞ to the value

W = (f − 1)× P × (f × I − P)−1,

where I is the identity matrix of the same size as P .

Proof: Observe that T (n+ 1) can be rewritten in two way:

T (n+ 1) = T (n)+ (f − 1)×
(

1

f
× P

)(n+1)

,

T (n+ 1) = T (0)+ T (n)×
(

1

f
× P

)
,

where T (0) = (f − 1)× (1/f × P). Combining the two expression, we notice that T (n)
can also be calculated as

T (n) = (f − 1)×
(
P

f
− P (n+1)

f (n+1)

)
×

(
I − P

f

)−1

.
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To prove the convergence of the sum we can show that each element P (n+1)
i,j /f (n+1) or,

equivalently, each element Pn
i,j /f

n, for n → ∞, converges to 0. In fact, as each element

of Pn is just a linear combination of terms like λn at most multiplied by a term like nk ,
by choosing f > λ1 (i.e., by choosing f to be greater than the principal eigenvalue), each
element Pn

i,j /f
n converges to 0. Then

T (n) = (f − 1)× P

f
×

(
I − P

f

)−1

= (f − 1)× P × (f × I − P)−1.

Finally, we can ensure that (f × I − P) is invertible since it has been assumed that f is
not an eigenvalue of P . �

3.1. Determining the value of f

We have shown that our method converges if the term f is made greater than the principal
eigenvalue of the matrix P . There are two ways for achieving this. The first one requires a
theoretical explanation and notation. Let A be an adjacency matrix, then GA is the graph
represented by A, called support graph.

Definition 3.7. The period of a graph G is the greatest common divisor of the lengths of
all cycles; if G has period 1 we say that it is aperiodic. A matrix P is aperiodic if the
graph GP is aperiodic.

Definition 3.8. A matrix P is irreducible if for every pair i, j there is a path in the support
graph of P originating in i and ending in j .

Theorem 3.9. If P is irreducible and aperiodic the choice of f = 2 ensures the conver-
gence of the formula in Theorem 3.6.

Proof: Recall that a real non-negative square matrix P is stochastic if all its rows sum
to 1 (

∑n
j=1 Pi,j = 1 for all i). Recall also that all eigenvalues of P are � 1 and that

1 is an eigenvalue with eigenvector [1, 1, . . . , 1]T [4]. Consequently, being P aperiodic
and irreducible, we can apply the Ergodic Theorem [26] according to which the principal
(simple) eigenvalue is λ1 = 1. �

In practice we can calculate the period p of the graph and then construct a virtual cycle
(not associated with real pages) of length p + 1 to ensure the aperiodicity. Instead from
the point of view of the irreducibility, we can create a node v with no informative content
pointing, with probability 1/n, to all the other nodes. So, intuitively, this model simulates
the behaviour of a surfer starting navigation from each node with the same probability.
Moreover, adding links to v, originating in nodes without outlinks, corresponds to the
situation in which such a surfer arriving in a node without leaving arcs decides to restart
the navigation randomly. This construction ensures that P is irreducible.
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The second way for ensuring the convergence of our algorithm is based on the calculus
of the principal eigenvalue λ of P with a simple procedure. Note that this task is simpler
than the task of calculating the corresponding eigenvector. Then, we can simply choose
f = λ+ 1.

3.2. Calculating the relevance

Theorem 3.6 is the real kernel of our technique: the columns of the matrix W can be used
to obtain the relevance of pages. In fact, Wj (column j of W ) contains the probabilities
of arriving in the corresponding node (j ) with a random walk originating in nodes i =
1, . . . , |V |, where |V | is the size of the base set. So if we assume that the probability of
being in node i is 1/|V |, the row vector

π = 1

|V | × [1, . . . , 1] ×W = f − 1

|V | × [1, . . . , 1] × P × (f × I − P)−1

is such that each term πi represents how much node i is similar to the other nodes in the
same community: that is the relevance of page i.

Observe that the vector ( can be calculated, in an approximated way, by applying De-
finition 3.5, choosing a value of n ensuring the desired precision (the convergence of the
sum is, anyhow, guaranteed by Theorem 3.6). The formula, expressing the approximation
of π (denoted by π̃), is

π̃(n) = f − 1

|V | × [1, . . . , 1] ×
(
P 1

f
+ P 2

f 2
+ · · · + Pn

f n

)
,

where 1/f is a damping factor, with f chosen accordingly to Section 3.1. Denoting the
vector [1, . . . , 1] × P/f as z, the formula can be rewritten as

π̃(n) = f − 1

|V | × z×
(
I + P

f
×

(
I + P

f
× (. . .)

))
,

where the multiplication operator is only applied to a row vector and a matrix (with O|V |2
cost). The approximation π̃ dependens on the value of n and for n→∞ we get the exact
solution π . Again, the convergence of π is stated by Theorem 3.6.

Observe that our approach is not affected by the spectral structure of the matrix W , as
the formula for calculating π still holds even if the graph is constituted by several strong
components (i.e., it can be used to rank all authoritative pages belonging to different com-
munities). Moreover, it is possible to weight the textual information associated with the
links (depending on the query string) producing a better ranking of pages.

3.3. Complexity

Assume G = (V ,E) be the graph representing the base set, where V is the set of pages
and E be the links in such a set. Our technique can be implemented by an algorithm with
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time complexity O(|V |3) (the complexity of calculating the inverted matrix). Thus, our
algorithm has the same complexity of other techniques based on the mutual reinforcement
approach, for computing the principal eigenvalue (i.e., only one community). Moreover, to
compute t communities, the mutual reinforcement algorithm takes O(t × |V |3), with t =
O(|V |). In practice, as Kleinberg uses an iterative procedure (with k iterations), the first
community is obtained in O(k× |V |2) time and the first t communities in O(k× t × |V |2)
time. In any case, by fixing the value of k, we cannot be certain whether the chosen k is
big enough to ensure the validity of the result.

As observed in the previous subsection, our technique can be implemented by an iter-
ative algorithm with the advantage of calculating all communities with O(n × |V |2) cost
and without inverting the matrix (f × I − P).

The computation of the approximate solution reduces the complexity and avoids the
problems which can arise if the matrix is ill-conditioned.4 However, considering the sparse
(nearly bipartite) structure of the base set, the case of ill-conditioned matrices is not so
frequent.

3.4. Discussion

The novelty of our approach, with respect to other previous methods, is that it does not use
the concept of random walk for describing the behavior of a user in surfing the Web. In
particular, in the previous approaches, each page is considered as a state of a navigation,
and the goal is to find those states in which it is more probable to lie after a random
navigation of links. On the contrary, our approach does not make any assumption about
user behavior, because it applies the notion of random walk to the co-citation graph and not
to the Web graph. As a consequence, a link from page i to page j represents the number
of citations that pages i and j have in common and not the probability of navigating the
link (i → j ). So, our approach identifies the relevant pages as those having the greatest
number of common citations; this result, according to Kleinberg approach, gives the most
authoritative pages.

4. System prototype

To verify the validity of our approach we have designed and developed a system prototype,
called ST ED (a System for Topic Enumeration and Distillation), implementing the ran-
dom walk approach presented in Section 3. The architecture of the prototype is reported in
Figure 2.

As previously discussed there are two steps in our technique:

• First, it computes the base set, through a script written in the WebL language. This task
is carried out by computing the root set, obtained by submitting the query string to a
search engine (Alta Vista [13] in the current version) and, then, augmenting the root set
into the base set. The result is stored in the database DB.
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Figure 2. System architecture.

• Next, it applies our method to the base set, in order to obtain the vector v described in
Section 3.2. In this way it ranks the pages according to the vi values.

Moreover, in order to apply the above mentioned steps, it is necessary to first construct
the database (called DB in Figure 2), associated to the whole Web. It stores information
about both the textual content of Web pages and the link structure. In this respect, the
system is similar to the Google search engine [7,8,17]. The database DB is constructed
by a WebCrawler entirely written in the WebL language [12], a scripting language fully
compatible with JAVA. The structures used to store information are of two different types:
an inverted index storing textual information and a matrix (based on adjacency lists) storing
links among pages.

The system can be seen by means of a user interface, which can be viewed in Figure 3
where the result for the query “abortion” is reported. The interface, interacting with the
Topic Distillation Engine, which is the real kernel of the prototype, enables (i) the con-
struction of the base set from the database DB, (ii) the computation of the authoritative
pages, and (iii) the identification of the different communities with respect to the query
topic.

In particular, the computation of the base set is performed by the Base Evaluator module
which implements the first step of Kleinberg’s algorithm [10,21], whereas the authoritative
pages are computed by means of an algorithm implementing the Random Walk approach,
through the modules CM, TD and Merger.

The Base Evaluator module interacts with the database DB and outputs the base set into
two temporary files: Host and Matrix. The file Host contains information about pages,
that is each page is associated with a unique numeric id and with a weight representing
the page’s informative content with respect to the supplied query. The file Matrix contains
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Figure 3. User interface.

the adjacency matrix A, where each node (i.e., Web page) is denoted by the identifier
associated with the page in the Host file.

With respect to other approaches, this one combines the link analysis with a content
page evaluation in order to consider the probability of remaining on a certain page if it is
relevant enough for the user.

More specifically, each tuple of the file Matrix, representing an arc in the Web graph,
is in the form 〈source, destination,weight〉, in which weight is obtained evaluating the rel-
evance of the links for the query (i.e., how the query string terms appear in the anchor
text, how links are relevant according to their positions, etc.). Therefore, the matrix A is
submitted to two modules working in parallel: the first one, called CM (Clustering Mod-
ule), calculates the components of the co-citation matrix associated to A, while the second
one, called TD (Topic Distillation module), performs the searching of relevant pages. Fi-
nally, the Merger module takes the outputs of the modules CM and TD, the Host file and
groups the pages, ranked by relevance, according to the communities computed by the CM
module.

The real kernel of this technique lies in the Topic Distillation block that performs the
ranking calculus on the basis of the results presented in Section 3.2.

5. Experimental results

We tested the prototype with base sets of different sizes, and compared our results with
those supplied by Kleinberg’s algorithm. Using a base set of about 2000 pages, for sets
defining a unique community, we found no relevant differences in the results. For instance,
consider the pages obtained in reply to the query string “search engines,” summarized in
Table 1.
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Table 1. Comparison with Kleinberg’s approach for query “search
engines”

Ranking Kleinberg ST ED

1 www.highway61.com www.yahoo.com
2 www.yahoo.com www.highway61.com
3 argos.evansville.edu www.excite.com
4 www.excite.com www.mckinley.com
5 www.mckinley.com www.malaysiadirectory.com
6 www.lycos.com www.change.org

Table 2. Comparison with Kleinberg’s approach for query “JAVA”

Ranking Kleinberg ST ED

1 www.javaarchives.com java.sun.com
2 ads.aceweb.net www.javaworld.com
3 www.ScreenSaverArchives.com www.java-pro.com
4 www.NTWare.com www.microsoft.com

The comparison of the results shows something interesting when there is more than one
community and a base set smaller than usual is chosen. In Table 2 we reported the results
for the query “JAVA” with a base set of just 500 nodes.

We point out that in this case our statistical approach performs better than Kleinberg’s
technique, even if applied to a small collection of nodes; that is, it seems to be less affected
by the dimension of the input.

Another interesting aspect of our approach is that it can be used even if there are many
communities; in this case Kleinberg supplies only the community associated to the princi-
pal eigenvector, while our method ranks all nodes; so we obtain pages belonging to differ-
ent communities ranked together. As an example, let us consider the results to the query
“abortion”, shown in Table 3. In the Web, with regard to this query, there are three main
types of communities: pro-life sites, pro-choice sites and sites encouraging abortion. As
the size of the pro-life community is the greatest, using Kleinberg’s algorithm we obtain
pages belonging to this community only.

However, as can be seen in Table 3, ST ED supplies pages belonging to all the three
identified communities. In fact, www.prochoice.com,www.naral.com and www.
cais.com are pro-choice pages, www.gynpages.com and www.abortion-help.
com are pages in which one can find useful information on abortion, while all the others
are pro-life pages.

As a further example, in reply to the query “jaguar” we obtain several communities,
the most relevant of which are reported in Table 4. These are respectively associated to
“jaguar” as the car manufacturer and as the football team.

Our prototype has also been tested with the query “Java OR Search Engine” whose result
contains (obviously) pages belonging to different communities and, as usual, Kleinberg’s
algorithm supplies only the largest one. Using ST ED, instead, sites belonging to both
groups are returned; moreover, we can distinguish the two communities by just analyzing
the base set.
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Table 3. Comparison with Kleinberg’s approach for query “abortion”

Ranking Kleinberg ST ED Comm.

1 www.nrlc.org www.nrlc.org 1
2 www.prolife.org www.prolife.org 1
3 members.aol.com/pladvocate/ www.ohiolife.org 1
4 www.rtl.org www.naral.org 2
5 www.peopleforlife.org www.prochoice.org 2
6 www.ohiolife.org www.peopleforlife.org 1
7 www.hli.org www.hli.org 1
8 www.heritagehouse76.com www.rtl.org 1
9 www.lifecall.org www.thenewamericans.org 1

10 www.serve.com www.gynpages.com 3
11 www.pregnancycenters.org www.pregnancycenters.com 1
12 members.tripod.com www.heritagehouse76.org 1
13 www.pfli.org www.abortion-help.com 3
14 www.afterabortion.org www.religioustolerance.org 1
15 www.abortionalternatives.com www.cais.com 2

Table 4. Communities 1 and 2 for query
“jaguar”

Ranking Site

1 autos.yahoo.com
2 www.jaguardealer.com
3 www.jec.org.uk
4 www.gtjaguar.com
5 www.xks.com
6 www.us.jaguar.com
7 www.jaguarcars.com
8 www.scottsdalejag.com
9 www.manhattanjagrkvl.com

10 www.jcna.com

1 www.footballfanatics.com
2 jaguars.jacksonville.com
3 www.nfl.com
4 www.netsportmag.com
5 www.macjag.com

The search of documents containing the string “Università italiane” is another interesting
query, for which we expect to obtain the most important Italian Universities; obviously, in
this case, the system returns one community only (reported in Table 5).

The really interesting aspect of our approach is that it ranks sites belonging to different
communities by applying the algorithm only once; on the contrary, Kleinberg’s approach
needs to calculate the other non-principal eigenvectors (i.e., the algorithm must be applied
several times). In particular, once all the relevant pages are obtained, in order to identify the
community to which each page belongs, ST ED groups the results by simply performing
a visit of the graph associated with the co-citation matrix. Moreover, in our approach
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Table 5. Result for the query
“Università italiane”

Ranking Site

1 www.unina.it/
2 www.unipd.it/
3 www.unibo.it/
4 www.unimi.it/
5 www.unipv.it/
6 www.univ.trieste.it/
7 www.unipi.it/
8 www.polimi.it/
9 www.uniroma1.it/

no heuristic is needed for ranking pages of different communities; in fact the smaller the
community, the smaller each term vi will be, for each node i of such a community (see
Section 3.2). This happens because most of the pages (outside the small community) do
not contribute to the transition probability, as there is no path for going inside the small
community.

6. Conclusion

In this paper, we have presented a new approach for Topic Distillation on the Web which
computes authoritative pages by analyzing the structure of the base set. The technique
applies a statistical approach to the co-citation matrix (of the base set) to find the most
co-cited pages and combines the link analysis with a content page evaluation to consider
the probability of remaining on a certain page if it is relevant enough for the user. We have
shown that our technique is more efficient than other techniques, based on the mutual rein-
forcement method, previously proposed in the literature and provided several experiments
showing its validity.

The proposed approach has several interesting properties:

1. it can be applied to unconnected graphs without additional costs,
2. in the approximated form, it does not need to make matrix inversion and has no conver-

gence problem,
3. in the case of a not ill-conditioned matrix, it can be implemented by using a closed

form.

Notes

1. Generally, � can be the alphabet of any closed semiring.
2. Based on the mutual reinforcement relationship holding among hubs and authorities.
3. Assuming the same weight for all arcs, the adjacency matrix has one eigenvalue with multiplicity two.
4. The inversion of a matrix is a problematic task in the case it is ill-conditioned.
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