
World Wide Web, 4: 101–119 (2001)
 2001 Kluwer Academic Publishers

XStorM: A Scalable Storage Mapping Scheme for
XML Data

WEN QIANG WANG, MONG LI LEE, BENG CHIN OOI and KIAN-LEE TAN
{wangwq,leeml,ooibc,tankl}@comp.nus.edu.sg

Department of Computer Science, National University of Singapore, 3 Science Drive 2, Singapore 117543

Abstract

With the increasing ubiquity of XML, an eXtensible Markup Language, the industry is racing to provide XML in-
frastructure for e-commerce, information interchange, effective query of diverse sources and yet more integration
of diverse data. It is anticipated that large volumes of XML data will be created manually from HTML documents
or generated using some WWW tools and electronic data interchange (EDI). In this paper, we examine how large
amounts of XML data can be stored in a relational database. Our scheme considers the unique irregular features
of XML, including missing elements or multiple occurrences of the same element, and elements which may have
atomic values in some data items and structured values in others. A detailed experimental study demonstrates
good query performance, effective space utilization and scalability.

Keywords: XML data management, relational database, scalable storage

1. Introduction

As XML expands beyond its document markup origins to become the basis for data in-
terchanges on the Internet, the industry is racing to provide XML infrastructure for e-
commerce, information interchange, effective query of diverse sources and yet more in-
tegration of diverse data. Once XML becomes pervasive, many information sources will
structure their external view as a repository of XML data, regardless of their internal stor-
age mechanisms. One highly anticipated application of XML is that XML will turn the
Web into a database system, thereby making it possible to pose SQL-like queries and get
better results than from today’s Web search engines.

There are various possible ways to store and query XML data: ranging from a primi-
tive file system, a relational database, an object-oriented database such as Excelon, to a
special-purpose (or semi-structured) system such as Stanford’s Lore [1,6]. The file system
is the most straightforward option although there is no support for querying the XML data.
An object-oriented database system has rich data modeling capabilities, which are use-
ful for clustering XML elements and subelements. Unfortunately, the current generation
of object-oriented database systems is not fully developed to process complex queries on
large databases. Theoretically, special-purpose systems should work best as specially de-
signed structures, indexes and query optimization techniques are customized to store and
query XML data. However, such systems are not common and take time to mature.



102 WANG ET AL.

The current trend is to leverage the robust and widespread technology by using a re-
lational database system. Relational stores are great at providing multiple distinct logical
views on the same data with very good scaling and transactional characteristics. Even then,
there are many different ways to store XML data. Oracle 8i lets the user or system admin-
istrator decide how XML elements are stored in relational tables. [7] infers from the DTDs
of the XML document how the XML elements should be mapped into tables. STORED [3]
analyzes the XML data and expected query workload to obtain a set of schemas. Any
data that cannot be accommodated in these schemas are stored in overflow graphs. This
involves integration of the relational storage with a semistructured overflow, raising yet to
be resolved system issues. Furthermore, if the data instance has a very irregular structure,
then the schema extracted may not cover a large percentage of the data. A lot of overflow
graphs will be generated leading to performance degradation.

Florescu and Kossman [5] takes the graph representation of an XML document and
studies various schemes to map the edges and nodes into relational tables. One simple
approach is to store all the edges in the XML graph into a single edge table containing in-
formation such as the sourceNode, targetNode, name etc. Separate value tables are created
for each data type. This edge approach performs poorly for heavy queries because joins
with the large edge table become very expensive. In any case, most of the data in the edge
table is irrelevant for a specific query. Another approach is to generate a single universal
table to sore all the edges. Such a table not only have many empty fields (i.e., set to NULL)
given the irregularity of XML data, but it may also contain a lot of undesirable redundancy.
The universal approach does not perform well for heavy queries for the same reasons as
the edge approach. The binary approach which creates a relational table for each attribute
(XML tag) and stores the value accordingly gives the best query performance. This scheme
is similar to the binary storage scheme proposed to store semistructured data in [9] and is
essentially a horizontal partitioning of the edge table. There are as many binary tables
created as there are different subelement and attribute names in an XML document. The
values of the attributes can be stored together (inlined) in the same table. Unfortunately,
the number of join operations needed to answer a query is proportional to the number of
attributes involved. This becomes very expensive when reconstructing large XML doc-
uments. In addition, the original XML document cannot be exactly reconstructed as the
structure information has been lost.

In this paper, we address the above-mentioned drawbacks of mapping XML data to
relational tables. We propose a mapping scheme, XStorM, to store XML data in relational
databases. The motivations behind our approach are:

1. XML elements that represent entities in the real world (objects) are differentiated from
XML elements that represent properties of entities (attributes). Excessive fragmen-
tation of XML data is avoided when each object is mapped to a core relational table
together with the majority of its attributes. To achieve this, a data-mining algorithm is
used to find frequent patterns in the XML dataset.

2. Irregularities or data instances that deviate from the core schemas are stored in separate
relational tables, or overflow tables.

3. Structural information of the XML document is embedded in the overflow table names
for fast reconstruction of the original XML document.



XSTORM: A SCALABLE STORAGE MAPPING 103

4. Data integrity is guaranteed as the entire XML data instances are stored in the relational
database.

Our experiments demonstrate that XStorM gives good query performance, uses minimal
space requirements, enables reconstruction of original XML documents, and is scalable.

The rest of the paper is organized as follows. Section 2 illustrates the various ways
XML data can be stored and introduces our mapping scheme XStorM. Section 3 explains
the algorithms involved in mapping XML data to the relational tables. The performance
results are shown in Section 4 and we conclude in Section 5.

2. The big picture

In this section, we informally discuss the intuition behind XStorM. We shall also illustrate
with an example XML document, which will be as the running example in this paper, the
proposed scheme.

The eXtensible Markup Language, XML, is initiated by the World Wide Web Consor-
tium (W3C) as a simplified subset of SGML specially designed for Web applications. The
key features in XML are that information providers can define new tags and attribute names
at will, document structures can be nested to any level of complexity, and Document Type
Definition (DTD) can be used to constrain the structure and data values of a class of XML
documents. XML models data as a tree of elements with attributes composed of name–
value pairs.

XML is fundamentally different from relational and object-oriented data. The key dis-
tinction between data in XML and data in traditional models is that XML is not rigidly
structured. In the relational and object-oriented models, every data instance has a schema,
which is separate from and independent of the data. In XML, the schema exists with the
data. Thus, XML data is self-describing and can naturally model irregularities that can-
not be modeled by relational or object-oriented data. For example, data items may have
missing elements or multiple occurrences of the same element; elements may have atomic
values in some data items and structured values in others; and collections of elements
can have heterogeneous structure. Figure 1 shows an XML representation of articles in
SIGMOD Record. An article element consists of issueNumber, title, startPage, endPage,
authors and description. The authors element consists of a set of author.

We can use the Document Object Model (DOM) [4] to give a graphical representation of
an XML document. Figure 2 shows a partial DOM representation of the XML document
in Figure 1. DOM has two types of nodes: element nodes and text nodes. All nodes
that have children are element nodes. All leaf nodes are text nodes. An element node is
labeled using the object name or attribute name, which are tags in the text representation
of an XML document. A text node is labeled with the value of an attribute. To simplify
our discussion, we assume that DOM is ordered from left to right and generate a unique
identifier for each element node in DOM.

From the existing schemes, we observe that it is crucial to strike a balance between
clustering attributes in a table and putting them in separate tables. We observe that there
are two types of XML elements: one that denotes objects or entities in the real world and



104 WANG ET AL.

Figure 1. Example of an XML document.

one that denotes attributes or the properties of entities. Note that in XML, an attribute can
also be defined within the start tag of an element, for example, in the following element

<book btype = “textbook> myBook </book>

where btype is an attribute of the book element. Such attributes bear textual information
instead of structural information and we have to mark these attributes when we store them
in a relational database so that we can reconstruct the XML data instance correctly. In
addition, we can differentiate between collections of attributes (as in authors) versus col-
lections of objects. Figure 3 shows how authors becomes a collection of objects when the
XML document records more information about an author such as institution, country, etc.
in addition to name. Note that authors can also be a mixed collection of attributes (au-
thor just has name) and objects (author has name, institution and country or just name and
institution) as shown in Figure 4.

It is important that different types of objects should be stored in separate tables since
they are likely to be referenced elsewhere. For example, if authors is a complex object
consisting of name, institution, country, then it should be stored in a separate table since a



XSTORM: A SCALABLE STORAGE MAPPING 105

Figure 2. DOM representation of the XML document in Figure 1.

person is likely to write more than one article and repeating his information for each article
leads to redundancy and updating anomalies. However, we have a number of options
when authors is just a collection of author names. For example, if the articles almost
always have two authors, then we can consider storing all the attributes of article, including
author1 and author2 in the same table. In practice, however, this may not be possible as
the XML data is often irregular. An article A may have 5 authors while another article B
may have 2. If we map the article element together with all its attributes (including fields
author1, author2, author3, author4, author5) to a relational table, then all the author fields
for article B will be NULL except for author1 and author2. This situation is worsened if
the majority of the articles have two authors. Adding more authors to an article becomes
problematic without expanding the table.

One solution is to store collections of attributes in a separate table. Hence, we can have
a core relational table for an object containing all the single-valued attributes and separate



106 WANG ET AL.

Figure 3. Authors as a collection of objects.

Figure 4. Authors as a mixed collection of attributes and objects.

overflow tables for collections of attributes. This scheme resembles how multivalued at-
tributes are handed in relational data model. However, this may not work too well if an
XML element has many different small collections of attributes, leading to many overflow
tables and subsequent joins for heavy queries.

On the other hand, suppose we know that the majority of the articles have two authors,
with a few outliers that have more than two authors or even one author. In this case, we
can incorporate author1 and author2 into the core relational table for article. Additional



XSTORM: A SCALABLE STORAGE MAPPING 107

Table 1. Sample relation tables from XML data instance

Table Name: Article_Core

articleID issueNo title initPage endPage authors.author1 authors.author2 abstract

1 16 Interoperabler Database 365 376 Gillian Ram James Braun . . .

2 18 Parallel Query Processi 123 133 Jacob Linz Paul Tan . . .

Table Name: Article.authors.author

articleID index author

2 1 Kelvin Tan

authors will be stored in an overflow author table. If an article has only one author, then
we simply set the author2 field to NULL. In the next section, we will explain how we can
employ a data mining algorithm for semistructured data [8] to find frequent tree patterns
in XML graph.

Table 1 shows the relational tables obtained assuming that the majority of the articles
have two authors. Note that we have embedded the structural information of the XML doc-
ument in the attributes authors.author1 and authors.author2 and the overflow table name
article.authors.author. The subscripts are used to ensure uniqueness of names. This em-
bedded structural information facilitates fast reconstruction of the original XML document
as we will demonstrate in our experiments.

3. The XStorM mapping scheme

In this section, we describe a mapping scheme for storing XML data into relational data-
base. The steps involved are:

1. Identification of XML objects.
2. Identification of frequent tree patterns in XML graph.
3. Generate core relational tables.
4. Generate overflow tables.

We will elaborate on each of these steps in the following subsections.

3.1. Object identification

As noted earlier, element nodes in DOM can be differentiated into object nodes and at-
tribute nodes. The goal of this step is to find all the XML objects in an XML data instance.
For example, if we have an XML data instance containing 1000 articles, then we need
to identify all nodes that represent the object article. However, to automatically identify
nodes that represent a specific object is a daunting task—if we know nothing about the
XML instance, then it is difficult, if not impossible, to know whether a node represents an
object or not.



108 WANG ET AL.

Figure 5. Partial data tree of an XML document.

In this paper, we adopt a three-step approach. First, we determine the number of paths
corresponding to a prefix.1 We shall refer to this as the support of the prefix. Next, we
identify the minimal prefix which is the shortest prefix whose support is greater than or
equal to some certain predetermined threshold. Finally, the node at the lowest level of the
minimal prefix is the target object that we are looking for. This scheme can be implemented
efficiently using the well-known breadth first search (BFS) algorithm. We shall illustrate
this object identification process.

Figure 5 shows the partial data tree of a sample XML document. The object we would
like to identify in this example is “article”. We first carry out a BFS on the data tree.
During the search process, we will discover the prefixes. If the support of a prefix exceeds
a certain threshold or minimal support, then we record it. Nodes that support this prefix
will not be expanded, that is, their children will not be pushed into the queues in the BFS
algorithm. Suppose we set the minimal support to be 3, which is a heuristic value. The
prefix we will discover is: SigmodRecord → issue. However, the support of this prefix is
only 3 (i.e., only 2 “issue” tags), which is less than the minimal support. The next prefix
found is SigmodRecord → issue → article. The support of this prefix is 4, which is
greater than the minimal support and then we record this prefix. As mentioned previously,
the children of article node will not be pushed into the queue. The search process stops.
With this prefix, it is straightforward to identify the four article objects in the sample. Note
that choosing an appropriate minimal support value is crucial. In the above example, if the
minimum support value we choose is 2, then the object identified will be issue, not article.

3.2. Frequent tree patterns

Given the “schema-less” semi-structured XML data, it is impossible to find a general
schema that covers the whole XML data instance. Deutsch et al. [3] showed that gen-
erating a storage schema for semistructured data that minimizes cost is NP-hard in the size
of the input data. Dynamic programming algorithms are not feasible. Instead, we use a
data-mining algorithm to identify frequent tree patterns in an XML graph. This enables



XSTORM: A SCALABLE STORAGE MAPPING 109

Figure 6. Examples of tree expressions.

us to generate a schema that covers a major portion of the data. Our aim is to incorpo-
rate as much small attribute collections into an object’s core relational table as possible
in order to minimize the overflow tables. Query performance is improved when excessive
fragmentation is avoided because joins are reduced.

We adapt the data-mining algorithm for semistructured data described in [8] for our
purpose here. We will first review some of the concepts used.

A tree-expression is a tree-like structure for representing patterns in the DOM graph.
A k-tree-expression is a tree-expression containing k leaf nodes. Examples of tree-
expressions are shown in Figure 6: t1 is a 1-tree-expression, t2 is a 2-tree-expression and t3
is a 4-tree-expression. A node N in the DOM graph supports a tree-expression TE if and
only if we can find TE in the sub-tree rooted at N . For example, the article node in Figure 2
supports all the tree-expressions t1, t2 and t3 in Figure 6. The support of a tree-expression
TE is defined as the number of nodes that support TE.

We observe that a k-tree expression, k � 1, can be constructed by “gluing” a sequence
of k 1-tree expressions that are not prefixes of each other. A 1-tree expression is actually a
simple path from a root node to a leaf node. For example, suppose we have three 1-tree ex-
pressions p1, p2, p3 as shown in Figure 7. Then, a 3-tree expression p4 can be constructed
from p1, p2, p3 and the sequence is 〈p1, p2, p3〉. We say that p4 = 〈p1, p2, p3〉. Note
that if the sequence of the 1-tree expression is different, then a different k-tree expression
is constructed.

Let pi denote a 1-tree-expression, for i � 1. Then a k-tree-expression 〈p1, p2, . . . , pk〉
is constructed from two (k−1)-tree-expressions 〈p1, p2, . . . , pk−2, pk−1〉 and 〈p1, p2, . . . ,

pk−2, pk〉. We call these two (k − 1)-tree-expressions a matching pair.
The above k-tree expression property is very useful as it prunes our search. We do not

need to consider a k-tree expression if it has some “subtree-expression” that is known to
be infrequent.

In order to determine frequent k-tree-expressions, we use the depth first search algo-
rithm to discover all the 1-tree-expressions starting from the object nodes found in step 1.



110 WANG ET AL.

Figure 7. Example of how a k-tree-pattern can be constructed from k 1-tree-expressions.

The supports of these 1-tree-expressions are tracked. Frequent 1-tree-expressions are used
to generate 2-tree-expressions; frequent 2-tree-expressions are used to generate 3-tree-
expressions, and so on. Finally, the algorithm will generate frequent k-tree-expressions
for a given k. A large k should be used to find a schema with maximal data coverage.
Figure 8 gives the details of the algorithm.

3.3. Generate core and overflow tables

The frequent k-tree-expression obtained in step 2 creates a schema for the XML data. Re-
lation tables can now be generated from it. Root nodes in the k-tree-expressions represent
objects. Each object node n in the schema is mapped to a core relational table R. Leaf
nodes in the tree rooted at n become attributes of R. In addition, R has an attribute that
stores the object identifiers, for example, articleID in Table 1. The XML data can now be
loaded into these relational tables. Nulls are used for any missing data.

Since XML is semi-structured, not all the data can fit into the core tables. In contrast
to STORED which uses overflow graphs in external devices, we store the extraneous data
in overflow tables in the relational database as shown in Table 1. The names of over-
flow tables are given by ObjectName.collectionName. The overflow table names embed
the XML structural information necessary for pattern matching queries and reconstruc-
tion of the XML document. For example, the overflow table name for the article object
is article.authors, indicating the path in the XML graph. Note that there is an additional
attribute, objectID, in the overflow tables that contains the identifier of the object to which
these overflow data belongs to.



XSTORM: A SCALABLE STORAGE MAPPING 111

Figure 8. Algorithm to find frequent tree pattern.

4. Performance study

We carried out a series of experiments on a Pentium 233PC with 64 MB RAM to evaluate
the performance of XStorM. Two metrics are used: the size of the relational database
generated and the response time of different classes of queries. We compared our storage
scheme with the binary approach in [5] and STORED [3]. All the mapping algorithms are
implemented in Java and calls to the Oracle database are made using the JDBC. Figure 9
shows the system architecture.

4.1. Experimental setup

We created synthetic XML documents based on the ACM SIGMOD Record XML data for
our experiments. The data sets have the following characteristics:



112 WANG ET AL.

Figure 9. System architecture for experiments.

Table 2. Benchmark query templates

Query Description Feature

Q1 Retrieving information to reconstruct XML object Select by object id
Q2 Find objects that have attribute a1 with value in certain range Select by value
Q3 Find objects that have attributes a1 and a2 with certain values Two predicates
Q4 Find objects that have a1 and a2 with certain value or just a1 Optional predicate

with certain value
Q5 Find objects that have a1 or a2 or a3 with certain value Predicate on attribute name
Q6 Find objects that match a certain pattern Pattern matching

1. Five sets of XML documents with varying sizes are used: 1 MB, 10 MB, 20 MB,
40 MB, and 100 MB. They contain 1274, 11500, 22890, 44200, and 113754 articles,
respectively.

2. Each article has the following information: issue number, title, starting page, ending
page, a number of authors, and a short abstract. The number of authors varies from 1
to 17. We observe that although the majority of the articles have 2 or 3 authors.

In order to minimize space wastage, the attributes are divided into two classes: large and
small attributes. For example, the name of an author is a small attribute while the abstract
is a large attribute.

Table 2 describes the query template used in our experiments. These query templates
test a variety of features, including simple selections by object identifiers (oid) and attribute
values, optional predicates, predicates on attribute names and pattern matching. All the
attribute values are stored as strings in the database. For predicates involving numeric
comparisons, we convert the string value to a number using the to_number () function
provided in SQL.

In order to obtain reproducible experimental results, we carry out all the benchmark
queries as follows: Each query is run once to warm up the database buffers and then ten
times subsequently to get the average running time of the query. Warming up the buffers



XSTORM: A SCALABLE STORAGE MAPPING 113

will have an impact on light queries that operate on data that fits in the main memory
although heavy queries are not affected.

4.2. Storage requirements

We first investigate the amount of storage required by the various mapping schemes to
store XML data. Table 3 shows the size of the XML document and the resulting relational
databases. The binary approach produces a much larger relational database compared to
STORED and XStorM. Indeed, the binary approach requires double of the actual data size
for storage, while STORED and XStorM requires a storage space of about 70–80% of the
original XML documents. The high storage space requirement by the binary approach is
because it stores the structural information for each object, even when the objects have
similar structure. On the contrary, both STORED and XStorM only store common struc-
tures extracted from the documents. While both STORED and XStorM use about the same
amount of storage for the base data, the overflow data obtained in XStorM is very minimal
compared to STORED. Furthermore, XStorM keeps both the base data and overflow data in
the relational database instead of using auxiliary data structures as in STORED. Apart from
consistency, keeping the overflow data in the database is amenable to faster reconstruction.

Table 3. Comparison of database sizes generated by different schemes

XML MB Binary MB STORED MB XStorM MB

Data set 1
Base data 1.1 2.25 0.84 0.84
Overflow data – – 0.1 0.01
Total 1.1 2.25 0.94 0.85

Data set 2
Base data 10.1 20.2 7.6 7.6
Overflow data – – 0.85 0.08
Total 10.1 20.2 8.45 7.68

Data set 3
Base data 20.2 40.3 15.2 15.2
Overflow data – – 1.7 0.16
Total 20.2 40.3 16.9 15.36

Data set 4
Base data 40 82.7 30.4 30.4
Overflow data – – 3.4 0.32
Total 40 82.7 33.8 30.72

Data set 5
Base data 100 202.2 77.4 77.4
Overflow data – – 7.4 0.8
Total 100 202.2 84.8 78.2



114 WANG ET AL.

4.3. Response time of queries

Query running time is a very important measure when evaluating these mapping schemes.
We will elaborate the results in the following subsections.

4.3.1. Retrieve information to reconstruct XML document. This experiment queries
information needed to reconstruct a XML object from the relational database. This query
involves selection by object id and for every table, there are indexes built on object id (e.g.,
articleID, source) column because it is the primary key or part of primary key. Figure 10
shows the results. We observe that in most cases, there is no significant difference among
all three mapping schemes since index lookup is very fast on relational databases. For the
100 MB dataset, the binary scheme performs badly because it requires the retrieval of data
from all the attribute tables compared to STORED or XStorM which retrieves data from
just the core table and overflow graphs/tables.

4.3.2. Selection queries. In this experiment, we tested queries to retrieve objects that
have attribute with values in a certain range on the various databases. An example of the
query used is

Query: Select articles that have “initpage” between 500 and 600.

The results are shown in Figure 11. The running times for all three mapping schemes are
almost the same. The reason is that the query only involves one attribute. Therefore, no
join operation is needed to answer this query. For the 100 MB dataset, the binary scheme
performs better since its single attribute table is smaller than the core table in the STORED
scheme and XStorM scheme.

4.3.3. Join queries. This experiment examines the situation where the predicates are
involved in a query. A typical query is shown below.

Query: Select articles with issueNumber 15 and whose 10th author is
‘Pinar Koksal’.

Figure 10. Results of reconstructing XML document experiment.



XSTORM: A SCALABLE STORAGE MAPPING 115

Figure 11. Results of selection query experiment.

Figure 12. Results of join query experiment.

Note that one of the predicates involves overflow attribute for the STORED and XStorM
schemes. Figure 12 shows the results of this experiment. We can see that the differences
of running time becomes large enough to claim that XStorM performs the best among all
three schemes when size of data sets increase. The reason is simple: joining a much smaller
overflow table is much faster than joining two large attribute tables as required in the binary
approach. The STORED scheme performs poorly in the 100 MB data set because there is
too many overflow graphs and searching for values in them is a time consuming process.

4.3.4. Queries with optional predicates. We test the performance of queries containing
optional predicates and predicates involving overflow data on the various storage mapping
schemes. For instance,

Query: Select articles that have first author ‘Dallan Quass’ AND 7th author
‘SvetlozarNestorov’ OR just first author ‘Kenneth A. Ross’ (no 7th author).

Figure 13 contains the results of the experiment. XStorM has the best overall performance.
Furthermore, STORED performs poorly for the same reasons given in join query experi-
ments.



116 WANG ET AL.

Figure 13. Results of optional predicate query experiments.

Figure 14. Results of query with attribute predicates experiment.

4.3.5. Queries with attribute predicates. This experiment evaluates the performance
of queries involving predicates on attribute names. Figure 14 shows the results when the
following query is issued.

Query: Select articles that have initpage = 388 or endpage = 2 or 7th author
‘Svetlozar Nestorov’.

The binary scheme performs poorly because we need to search matching tuples in three
attribute tables and then take the union of the tuples returned. Although the STORED
scheme only searches one table and XStorM searches two tables, XStorM performs better
than STORED because accesses to the overflow graphs in STORED takes more time than
retrievals from the overflow tables in XStorM.



XSTORM: A SCALABLE STORAGE MAPPING 117

Figure 15. Results of pattern matching query experiment.

4.3.6. Pattern matching queries. Figure 15 shows the performance results of the fol-
lowing pattern matching query:

Query: Select articles that have attributes issuenumber, title, initpage, and
9 authors.

XStorM performs significantly better than the binary scheme. For example, when the
XML data is 40 MB, XStorM is about 4 times faster than the binary scheme. The binary
scheme performs poorly in this query because it needs to join many attribute tables to find
the matching tuples, especially when the pattern involves many attributes. The STORED
scheme performs much better than the binary scheme because most of the attributes are
contained in the core table.

4.3.7. Discussion. Theoretically, schemes that maps XML data into relational model
based on schematic information should work better than just storing XML data in attribute
tables. The most expensive operation in query processing is join operation and to answer
most queries, we need information about several attributes of an object. In the binary
scheme, if we want information from several attributes, we have to join the corresponding
attribute tables to form the query result. If the attribute tables are large, then the join
operation will be expensive. On the other hand, storing XML data according to schema not
only saves disk space, but also reduces the number of join operations needed to answer a
query.

For example, let us consider the query to find objects with attributes a1 and a2 with
certain values. For binary scheme, to answer this query we need to join two attribute
tables table a1 and table a2. On the other hand, STORED and our proposed scheme,
XStorM, only search one table for tuples that satisfy the selection condition. While in
most cases, selection operation is much faster than the join operation, there are situations
that involve overflow data. Suppose attribute a2 is not included in the schema of the table.
In this case, we will need to join the core table with the overflow table that stores a2 to
get the complete answer. The cost of this join operation is tolerable because overflow
tables are typically much smaller than the core table. In addition, storing overflow data in



118 WANG ET AL.

relational tables have a better query performance than storing overflow data in local disk.
The reason is because relational databases have very powerful query optimizers that will
find the optimal plan for most queries. If we store overflow data on local disk, we cannot
make use of this conventional tool and have to find a way to efficiently retrieve and update
them. Furthermore, if the size of overflow data is too large to fit the main memory, then we
have to fetch them from hard disk, which is also a time consuming process.

When the XML data set is small, for example, 1 MB, we observe that there is not
much significant difference in the running times for the three schemes. However, when
the data set increase, the performance grain in XStorM becomes obvious. Among the three
schemes, XStorM gives the best performance for all the queries.

5. Conclusion

In this paper, we have examined how XML data can be stored using a relational database.
The semistructured feature in XML introduces complications in the mapping. Our pro-
posed scheme, XStorM overcomes the problems by making a distinction between XML
elements that represent entities in the real world, that is, objects, and XML elements that
represent properties of entities, that is, attributes. A breadth-first-search algorithm is used
to identify objects in the XML data.

XStorM avoids excessive fragmentation of XML data by mapping each object together
with the majority of its attributes to a core relational table. A data mining algorithm is
employed to find frequent patterns in the XML dataset. These frequent patterns are used to
generate the core relations for objects. Irregularities or data instances that deviate from the
core schemas are stored in separate overflow tables. The names of these overflow tables
also contain the structural information of the XML document for fast reconstruction of
the original XML document. Our performance study has demonstrated that XStorM gives
good query performance, minimizes storage space and is scalable.

We plan to extend this work in several directions. First, the object identification algo-
rithm can only identify objects whose paths are of the same length. For objects that are
represented by multiple paths of different length, new methods have to be designed. We
are looking into this. Second, recently, WWW Consortium has released a recommendation
on schema definition of XML data. We plan to examine how our results can be applied
there.

Acknowledgement

This work is funded by the National University of Singapore Academic Research Fund
RP082112.

Note

1. The prefix of a node is simply a chain of its ancestor nodes starts from root node and ends at its parent node.



XSTORM: A SCALABLE STORAGE MAPPING 119

References

[1] S. Abiteboul, D. Quass, J.Widom, and J. Wiener, “The lorel query language for semistructured data,” Inter-
nat. J. Digital Libraries 1(1), 1997.

[2] T. Bray, J. Paoli, and C. Sperberg-McQueen, “Extensible markup language (XML) 1.0. W3C,” Recommen-
dation, available at http://www.w3.org/TR/1998, 1998.

[3] A. Deutsch, M. Fernandez, and D. Suciu, “Storing semistructured data with STORED,” in Proc. of ACM
SIGMOD, 1999, pp. 431–442.

[4] Document Object Model (DOM) level 1 specification, http://www.w3.org/TR/REC-DOM-Level-1.
[5] D. Florescu and D. Kossman, “Storing and querying XML data using an RDBMS,” Bulletin of IEEE Com-

puter Society Technical Committee on Data Engineering, 1999.
[6] J. McHugh, S. Abiteboul, R. Goldman, and J. Widom, “Lore: A database management system for semi-

sturctured data,” SIGMOD Record 26(3), 1997.
[7] J. Shanmugashundaram et al. “Relational databased for querying XML documents: Limitations and oppor-

tunities,” in Proc. of VLDB, 1999.
[8] K. Wang and H. Liu, “Discovering typical structures of documents: a road map approach,” in ACM SIGIR

Conf. on Research and Development in Information Retrieval, 1998.
[9] R. Zowl, P. Apers, and A. Wilschut, “Modeling and querying semistructured data with MOA,” in Workshop

on Query Processing for Semistructured Data and Non-Standard Data Formats, 1999.


