
545

0855-7485/01/1000-0545$19.50/0 © 2001 Plenum Publishing Corporation

International Journal of Parallel Programming, Vol. 29, No. 5, October 2001 (© 2001)

Optimized Unrolling of Nested Loops
Vivek Sarkar1

1 IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598.
E-mail: vsarkar@us.ibm.com

Received December 2000; revised January 2001

Loop unrolling is a well known loop transformation that has been used in
optimizing compilers for over three decades. In this paper, we address the
problems of automatically selecting unroll factors for perfectly nested loops, and
generating compact code for the selected unroll factors. Compared to past work,
the contributions of our work include (i) a more detailed cost model that inclu-
des register locality, instruction-level parallelism and instruction-cache consid-
erations; (ii) a new code generation algorithm that generates more compact code
than the unroll-and-jam transformation; and (iii) a new algorithm for efficiently
enumerating feasible unroll vectors. Our experimental results confirm the wide
applicability of our approach by showing a 2.2× speedup on matrix multiply,
and an average 1.08× speedup on seven of the SPEC95fp benchmarks (with a
1.2× speedup for two benchmarks). Larger performance improvements can be
expected on processors that have larger numbers of registers and larger degrees
of instruction-level parallelism than the processor used for our measurements
(PowerPC 604).

KEY WORDS: Loop transformations; loop unrolling; unroll-and-jam; unroll
factors.

1. INTRODUCTION

Loop unrolling (1) is a well known program transformation that has been
used in optimizing compilers for over three decades. In addition to its use
in compilers, many software libraries for matrix computations contain
loops that have been hand-unrolled for improved performance. (2) The
original motivation for loop unrolling was to reduce the (amortized)
increment-and-test overhead for loop iterations. For modern processors,
the primary benefits of loop unrolling include increased instruction-level

parallelism (ILP), improved register locality (‘‘register tiling’’), and
improved memory hierarchy locality. (3–5) Loop unrolling is also essential for
effective exploitation of some newer hardware features, e.g., for uncovering
opportunities for generating dual-load/dual-store instructions, (6) and for
amortizing the overhead of a single prefetch instruction across multiple
load or store instructions. (7, 8)

However, it has been observed that loop unrolling can also have a
negative effect on a program’s performance when it is not used judiciously.
For example, excessive unrolling can lead to runtime performance degrada-
tion due to extra register spills when the register working set (‘‘register pres-
sure’’) of the unrolled loop body exceeds the number of available registers.(9)

Another concern is with the code size of the unrolled loop, which can
overflow a small first-level instruction-cache if loop unrolling is performed
too aggressively.(10) Apart from creating a large unrolled loop body, addi-
tional loops have to be introduced to correctly handle cases where the unroll
factor does not evenly divide the number of iterations. These remainder
loops substantially increase the compile-time for the transformed code and
the size of the final object code, even though only a small fraction of the
program’s execution time is spent in these remainder loops.

Most industry-strength compilers (including the optimizing back-end of
the XL Fortran compiler, which is the baseline for our performance mea-
surements) perform software pipelining and limited unrolling of innermost
loops. However, unrolling of perfectly nested loops [as in the unroll-and-jam
transformation(1, 11)] is performed less frequently (and with greater caution)
because of its potential for increased overhead due to increases in runtime,
compile-time or code size.

In this paper, we address the problems of automatically selecting unroll
factors for a set of perfectly nested loops, and generating compact code for
the selected unroll factors as as to make it a practical transformation for use
by industry-strength compilers. Compared to past work, the contributions of
our work include (i) a more detailed cost model that includes ILP and
I-cache considerations; (ii) a new code generation algorithm for unrolling
nested loops that generates more compact code (with fewer remainder loops)
than the unroll-and-jam transformation; and (iii) a new algorithm for effi-
ciently enumerating feasible unroll vectors.

The problem of automatically selecting unroll factors for nested loops
has been addressed in past work by Carr and Kennedy(9) and more recently
by Carr and Guan.(12) For loop kernels, their results are impressive and make
a convincing case for leaving the task of selecting unroll factors to the com-
piler rather than the programmer. However, their results for full applications
are less convincing—no results were reported by Carr and Guan(12) for
applications, and for the 10 applications considered by Carr and Kennedy(9)

546 Sarkar

from the SPEC92, Perfect and RiCEPS benchmark suites, the average
speedup obtained was 1.04× on an RS/6000 model 540.

The algorithm used by Carr and Kennedy(9) was based on the use of
input dependences, (13) whereas the approach by Carr and Guan(12) was based
on using the reuse model from Wolf and Lam (14) and its associated linear
algebra framework. Our solution (which was developed independently2 of

2 The origins of our work lie in the ASTI optimizer built during 1991–1993 for adding high-level
transformations to the XL Fortran product compilers.(15)

these past approaches) has a different technical foundation based on using
cost models that are both more detailed and more efficient to compute than
the cost models used in previous work. Our current performance results on a
PowerPC 604 processor show an average 1.08× speedup on seven of the
SPEC95fp benchmarks (with a 1.2× speedup for two benchmarks). These
speedups are significant because the baseline compiler used for comparison is
the IBM XL Fortran product compiler which generates high quality code
with unrolling and software pipelining of innermost loops enabled. The only
benchmark common to Carr and Kennedy(9) and to our results is the SPEC
benchmark, tomcatv. For tomcatv, the speedup due to unroll-and-jam (and
scalar replacement) reported by Carr and Kennedy(9) was only 1.01× ,
whereas the speedup for tomcatv obtained using our approach was 1.23× .

The rest of the paper is organized as follows. Section 2 describes our
approach to automatic selection of unroll factors for a set of perfectly
nested loops. Section 3 describes how we generate code for a specified
unroll vector; this algorithm generates code that is more compact than the
code generated by the unroll-and-jam transformation. Section 4 contains
our experimental results. Section 5 outlines extensions to our algorithm for
selecting unroll factors to support other optimizations that interact with
unrolling. Section 6 discusses related work, and Section 7 contains our
conclusions. Appendix A contains an example to illustrate the compactness
of the code generation obtained by our approach, compared to that of the
unroll-and-jam transformation.

2. AUTOMATIC SELECTION OF UNROLL FACTORS

This section describes our approach to automatic selection of unroll
factors for a set of perfectly nested loops. Section 2.1 reviews the unroll-
and-jam transformation. Section 2.2 formalizes selection of unroll factors
for multiple perfectly nested loops as an optimization problem. Section 2.3
introduces our cost function for estimating the cost of an unrolled loop
nest for a given vector of unroll factors, and capacity cost functions to

Optimized Unrolling of Nested Loops 547

model register set and I-cache constraints. Section 2.4 outlines our
algorithm for efficiently enumerating feasible unroll vectors and selecting a
feasible unroll vector that has lowest cost. Section 2.5 uses a matrix mul-
tiply computation as an example to illustrate our approach for automati-
cally selecting unroll factors.

The program model assumed in our work is as follows. A loop is a
candidate for unrolling if it is a counted loop with no premature exits, e.g.,
Fortran DO loops, or special cases of for loops in C and Java. Unlike some
prior work on loop unrolling, we allow the lower bound, upper bound, and
step expressions to have arbitrary (positive or negative) integer values that
may be unknown at compile-time. We also permit general (structured or
unstructured) acyclic control flow within a single iteration of the loop nest.

2.1. Unroll-and-Jam

Consider a perfect nest of two loops, i1 and i2, as shown in Fig. 1, and
assume we wish to unroll only the outer loop by a factor of R. The first
step in Fig. 1 shows the result of a mechanical unrolling of the outer i1
loop by an unroll factor of R. (For convenience, we use the standard
Fortran lower-bound, upper-bound, step triple notation to describe loops
that have nonunit step values.)

However, the output of the first step in Fig. 1 is not in a useful form
for enabling code optimization because of the multiple copies of the inner
i2 loop present after unrolling the i1 loop. The performance benefits due to
unrolling are realized when the multiple copies of the i2 loop are fused
together as shown in step 2 of Fig. 1 (the remainder loop is unaffected by
this loop fusion step). As described in Section 3, this two-step unroll-and-
jam sequence (1, 11) is performed as a single transformation in our framework.

Unlike unrolling a single loop, unrolling of multiple loops is not
always legal. The first unroll step can always be performed, but data
dependences may prevent the second fusion (‘‘jam’’) step from being per-
formed. Complex (nonlinear) loop bounds may also make it illegal to
perform a loop unrolling transformation. In a classical unroll-and-jam
transformation, it is the responsibility of the fusion step to recognize when
an illegal unrolling transformation is being attempted on a loop nest.
However, the legality condition for unrolling multiple loops is equivalent to
that of tiling, (16) i.e., given a set of k perfectly nested loops i1,..., ik, it is
legal to unroll outer loop ij if it is legal to permute loop ij to the innermost
position. In fact, unrolling of multiple loops can be viewed as dividing the
iteration space into small tiles. However, the iterations in an unrolled ‘‘tile’’
execute copies of the loop body that have been expanded (unrolled) in
place, rather than executing inner control loops as in tiling for cache locality.

548 Sarkar

Fig. 1. Unrolling of outer loop in a nest of two counted loops (unroll-and-jam).

Optimized Unrolling of Nested Loops 549

Fig. 2. General unrolling of multiple nested loops.

The transformation in Fig. 1 demonstrates how unrolling can be per-
formed on a doubly nested loop with unroll vector (R, 1), i.e., an unroll
factor of R for the outer loop and an unroll factor of 1 (no unrolling) for
the inner loop. However, the framework presented in this paper can be
used to generate code for any unrolling transformation specified by an
arbitrary unroll vector for a set of perfectly nested loops.

2.2. Problem Statement

Consider a set of k perfectly nested loops with index variables, i1,..., ik.
The perfect loop nest may have been written by a programmer or obtained
as a result of compiler transformations such as loop distribution. (15, 16)

An unrolling transformation can be specified by an unroll vector, u=
(u1, u2,...), which identifies an unroll factor, uj, for each loop j. The lexi-
cographic ordering of unroll factors corresponds to the ordering of the
loops from outermost to innermost.

Figure 2 outlines the structure of the unrolled loop nest that would be
obtained from a given unroll vector. (For simplicity, remainder loops are
not shown in this code structure.) Note that the unrolled loop body contains
u1×u2× · · · copies of the input loop body; each copy of BODY is instan-
tiated for a different tuple of index value taken from the Cartesian product,

{i1,..., i1+u1−1}× · · · ×{ik,..., ik+uk−1}

550 Sarkar

The optimization problem that we are interested in solving is to find
an unroll vector, (uopt

1 ,..., u
opt
k), such that

1. Each unroll factor, uopt
i is an integer in the range, 1 · · · umax

i , where
umax=(umax

1 ,..., umax
k) is the maximum unroll vector for the loop nest,

2. The unroll vector identifies a legal unrolling transformation,
3. The amortized number of register spills per original iteration in the

unrolled body does not exceed the number of register spills in the
original loop body,

4. The unrolled loop body fits in the instruction cache, and
5. The estimated cost of the unroll configuration is minimized. (If

multiple unroll vectors have the same estimated cost, then choose
a vector with the smallest total unroll factor, u1× · · · ×uk as the
solution.)

Conditions 1 and 2 are requirements imposed on a legal unrolling
transformation. To enforce Condition 2, we identify noninnermost loops
that cannot be permuted to the innermost position in the input loop nest
due to dependence constraints or constraints on loop bounds. (17) For each
such loop, i, we set umax

i =1 to ensure that loop i is not unrolled. For other
loops, j, we set umax

j =maximum number of iterations for loop j, using an
estimated value when the number is unknown.

Conditions 3 and 4 are capacity constraints. Condition 3 ensures that
loop unrolling does not cause extra register spills, and Condition 4 ensures
that loop unrolling will (most likely) not lead to extra I-cache misses. Our
experience is that Condition 3 is usually more tightly binding than Condi-
tion 4, i.e., ensuring no increase in register spills is usually sufficient to
ensure that there is no increase in I-cache misses.

In general, enforcing Condition 3 requires detailed knowledge of the
register allocation algorithm used by the back-end. For simplicity, our
solution to modeling Condition 3 is to ensure that the maximum numbers
of fixed-point and floating-pointing values in the unrolled loop that may be
simultaneously live are bounded by the numbers of available fixed-point
and floating-point registers respectively (see Section 2.3). This max compu-
tation is conservatively large—it assumes that two values may be simulta-
neously live if there exists some legal instruction reordering for which they
would be simultaneously live (even if the values are not simultaneously live
in the original instruction ordering). While this approximation may unne-
cessarily limit the amount of unrolling permitted, it ensures that any
software pipelining or instruction scheduling performed by the back-end
will not introduce additional spills.

Condition 5 is the objective function to be minimized and is defined
next in Section 2.3.

Optimized Unrolling of Nested Loops 551

2.3. Cost Function

In this section, we define an objective function F(u1,..., uk) that eval-
uates the cost of a given unroll vector, (u1,..., uk), for a perfect nest of k
loops. [A simpler version of this cost function was presented by Sarkar. (15)]
Having an explicit cost function simplifies the unrolling optimization and
makes it convenient to retarget the optimization to different processor
architectures or different models of the same processor architecture.

In our approach, the compiler builds the following symbolic cost func-
tions based on the data references in the loop nest. All functions take unroll
factors as arguments and return estimated values for the unrolled loop
body that would be generated by a u1× · · · ×uk unroll transformation of
the input loop nest:

• IR(u1,..., uk)=number of distinct Integer Register (fixed-point)
values in unrolled loop body.

• FR(u1,..., uk)=number of distinct Floating-point Register values in
unrolled loop body. IR and FR are computed by using the approach
given by Sarkar (15) and Ferrante et al. (18) for estimating the number
of distinct array elements accessed in a loop nest. This approach
avoids the expense of computing input dependences or of using a
linear algebra framework to perform the estimation.

• LS(u1,..., uk)=estimated number of cycles spent on Load and Store
instructions in unrolled loop body.

• CP(u1,..., uk)=estimated Critical Path length of unrolled loop body
(in cycles). We assume zero cost for load/store instructions when
estimating CP, because they are already accounted for in LS.

• TCj(u1,..., uk)=estimated Total Cycles on class j of functional units
required by unrolled loop body. We assume zero cost for load/store
instructions when estimating TCj, because they are already
accounted for in LS. Let NFj be the number of functional units of
class j available in the machine.

The symbolic cost functions are represented as expression trees in the
compiler with internal nodes that represent sum, product, reciprocal, min,
max operators. A leaf of an expression tree can be an unroll factor, ui, or a
constant. This representation makes it convenient to evaluate a symbolic
cost function for a given unroll vector.

The IR and FR cost functions are used to enforce register capacity
constraints. In addition, an estimated code size for a single iteration is used
to enforce the I-cache constraint.

552 Sarkar

The remaining cost functions contribute to the the objective function
to be minimized, which is a cost per iteration defined as follows:

F(u1,..., uk)
load/store term{

=
LS(u1,..., uk)
u1× · · · ×uk

+
max 5CP(u1,..., uk), max j 13

TCj(u1,..., uk)
NFj
426

u1× · · · ×ukz
ILP term

The objective function is defined to be the sum of the load/store term,
LS(u1,..., uk) and the ILP term, which is a max function that provides an
estimation of the parallel execution time of the unrolled loop body. Both
terms are divided by the product of unroll factors, u1× · · · ×uk so as to
obtain a cost function that is an amortized cost per original iteration of the
input loop nest, thus making it possible to directly compare costs for dif-
ferent unroll vectors.

A key design principle behind this cost function is that its terms should
be efficient to evaluate for different unroll vectors without actually having
to perform the unrolling transformation for each candidate unroll vector.
That is the main motivation for separating the load/store term (LS) from
the ILP term in the max function. (Otherwise, we would have to use dif-
ferent CP and TC functions for different unroll vectors.)

It is instructive to compare this ILP term with the recurrence-con-
strained and resource-constrained minimum initiation intervals (RecMII
and ResMII) that are used as lower bounds in modulo scheduling. (19, 20) In
fact, a computation similar to RecMII is used to obtain the CP value for a
given unroll vector, and a computation similar to ResMII is used to obtain
the TCj values for a given unroll vector. The key difference is that software
pipelining and modulo scheduling are only concerned with analyzing mul-
tiple iterations of the innermost loop, whereas this ILP term is used for
analyzing the combined effect of unrolling multiple loops in a perfect nest.
The notion of initiation interval does not apply to noninnermost loops,
which is why we use the CP term instead. An interesting direction for
future work would be to combine both approaches by using this ILP cost
model for noninnermost loops, and the initiation interval cost model for
the innermost loop.

Note that summing up the contributions of the load/store term and
the ILP term goes beyond the ‘‘balancing’’ approach proposed by Carr and
Guan. (12) Specifically, there are cases in which it might be beneficial to
reduce only one of the two terms even if doing so causes an imbalance
between the terms.

Optimized Unrolling of Nested Loops 553

As a final note, we briefly mention the effect of control flow within a
loop iteration on cost estimation: For the register capacity terms, IR and
FR, we use the worst-case largest number of registers that might be needed
for executing a single iteration. For the load/store and ILP terms, we
instead do an average-case estimation of the individual cost functions. (21, 22)

2.4. Algorithm for Selection of Unroll Factors

Our algorithm for selecting an optimized unroll vector is driven by the
cost functions introduced in Section 2.3. The basic idea is to enumerate a
set of feasible and profitable unroll vectors, compute the objective function
for each one, and select the one with smallest objective function as the
optimized unroll vector (uopt

1 ,..., u
opt
k).

For feasibility, we have to ensure that an unroll vector (u1,..., uk) is
legal and also that it satisfies the following capacity constraints3:

3We assume two register classes (fixed and float) in this description, but the approach can be
easily adapted to a different number of register classes.

IR(u1,..., uk) [# available fixed-point regs

FR(u1,..., uk) [# available floating-point regs

u1× · · · ×uk [
(size of instruction cache)
(code size of one iteration)

Given two unroll vectors, u and v, we say that u dominates v (written
as u R v) if and only if u1 \ v1,..., uk \ vk, i.e., each unroll factor in u is at
least as large as the corresponding unroll factor in v. An important obser-
vation used to prune the search space for feasible unroll vectors is that the
capacity constraints are monotonic, i.e., if unroll vector v is infeasible
because it violates a capacity constraint, then all unroll vectors u such that
u R v must also be infeasible.

Figure 3 outlines the high-level structure of the algorithm for selecting
an optimized unroll vector. Step 1 calls function EnumerateFeasible-
Vectors() to obtain a set of feasible unroll vectors, UV. Step 3 selects uopt,
the unroll vector from UV that has the smallest cost per iteration as the
optimized unroll vector for the input loop nest.

Figure 4 outlines the structure of function EnumerateFeasible-
Vectors(). The algorithm enumerates unroll vectors by moving from the
innermost loop to the outermost loop of the nest. Step 2 enumerates the
possible unroll factors, 1 · · · umax

i , for input loop i, and combines each value
with the input unroll vector, ucur (Step 2a). The for-loop in Step 2 is exited

554 Sarkar

Fig. 3. Algorithm for selecting an optimized unroll vector.

the first time an unroll factor is encountered for loop i that causes a capa-
city constraint to be exceeded (Step 2b). Step 2c implements a pruning
heuristic—the for-loop is exited if increasing the unroll factor for loop i
from 1 to 2 shows no improvement in the objective function. If i is the
outermost loop, the current unroll vector is inserted into the output set
(Step 2d.i). Otherwise, function EnumerateFeasibleVectors() is invoked
recursively to enumerate unroll factors for enclosing loops i, i−1,..., 1. The
resulting set, UVŒ, is then merged with the output set, UV (Steps 2e.i
and 2e.ii).

2.5. Example

As an illustration, Fig. 5 compares the execution times of a 500×500
double-precision dense matrix multiply computation for different unroll
factors. After tiling for cache locality, the inner tile of the matrix multiply
kernel consists of three nested loops as follows:

do i1 = i1_lo, i1_hi

do i2 = i2_lo, i2_hi

do i3 = i3_lo, i3_hi

a(i2,i1) = a(i2,i1) + b(i2,i3) * c(i3,i1)

end do

end do

end do

Optimized Unrolling of Nested Loops 555

Fig. 4. Function EnumerateFeasibleVectors().

Therefore, an unroll vector for the inner tile is specified by a
(u1, u2, u3) triple of unroll factors.

Figure 5 shows the execution time obtained for the matrix multiply
kernel for different choices of unroll factors. To simplify the discussion in
this section, we only consider two choices for each unroll factor value,
ui=1 or ui=4, which leads to the eight possible values for the (u1, u2, u3)
triple enumerated along the horizontal axis. (Measurements of a larger set
of unroll factors are presented in Fig. 8 in Section 4.) The (1, 1, 1) triple
corresponds to the original loop nest because an unroll factor of one is an
identity transformation. Other than unrolling of nested loops, all other
optimization options are the same for the different unroll vectors shown in
Fig. 5.

556 Sarkar

Fig. 5. Performance measurements on a 133 MHz PowerPC 604 processor for
500×500 matrix multiply example with different unroll factors.

For this example, we see that the performance obtained by unrolling
nested loops varied significantly for different unroll vectors. The worst
performance was obtained for (u1, u2, u3)=(1, 1, 4), which was slightly
worse than that of the (1, 1, 1) identity case. The best performance was
obtained for (u1, u2, u3)=(4, 4, 1), which delivered a 2.2× speedup.

We now describe how our approach can identify the (4, 4, 1) unroll
vector as the best candidate by using the cost functions and algorithm
outlined in Sections 2.3 and 2.4. Note that a (4, 4, 1) unroll vector is not
likely to be obtained by commonly-used heuristics such as ‘‘unroll only the
innermost loop’’ or ‘‘give all loops the same unroll factor.’’

Let (u1, u2, u3) be a candidate unroll vector for the matrix multiply
example. The most binding capacity constraint for this example is the
number of floating-point registers, which is estimated by the compiler as
FR(u1, u2, u3)=u2u1+(u2u3+u3u1). This estimation follows directly from
the presence of array references a(i,j), b(i,k), and c(k,j) (see Sarkar (15) and
Ferrante et al. (18) for details). The u2u1 term represents distinct unrolled
copies of the loop-invariant references to array a, and the (u2u3+u3u1)
term represents the number of registers required to hold distinct values of
arrays b and c. Assuming that there are 30 registers available for used in
the unrolled body, we need to ensure that FR(u1, u2, u3) [30 to satisfy the
capacity constraints.

Optimized Unrolling of Nested Loops 557

To estimate the objective function, F(u1, u2, u3), the compiler builds
the following symbolic cost functions; we only show TC for the FPU
(floating point unit), since the FPU is the critical resource for this example:

LS(u1, u2, u3)=u2u3+u3u1

CP(u1, u2, u3)=2u3

TCFPU(u1, u2, u3)=2u1u2u3

NFFPU=1

2 F(u1, u2, u3)=
LS(u1, u2, u3)
u1×u2×u3

+
max 5CP(u1, u2, u3),

TCFPU(u1, u2, u3)
NFFPU

6

u1×u2×u3

2 F(u1, u2, u3)=
(u2u3+u3u1)+(2u1u2u3)

u1×u2×u3

2 F(u1, u2, u3)=
1
u1
+
1
u2
+2

Since TCFPU(u1, u2, u3)/NFFPU \ CP(u1, u2, u3), the ILP term for this
example is resource bound rather than critical-path bound. However, if
there were additional floating-point available (i.e., if NFFPU > 1) then the
ILP term may have been critical-path bound for some unroll vectors.

The algorithm selects values of u1, u2, u3 so as to minimize F(u1, u2, u3)
=1/u1+1/u2+2 subject to the constraint that FR(u1, u2, u3)=u2u1+u2u3
+u3u1 is [30. Note that the objective function for this example,
F(u1, u2, u3), remains unchanged when u3 is increased. Hence, the search
space for optimal unroll vectors can be significantly reduced by restricting
u3=1 (see Step 2c in Fig. 4). Figure 6 illustrates how the algorithm for
selection of unroll factors (outlined in Section 2.4) partitions the space of
unroll vectors into feasible and infeasible regions for different values of u1
and u2, assuming a maximum unroll factor of 20 iterations in each dimen-
sion (a limit that may arise from the tile size used for cache tiling). All
unroll vectors in the feasible region satisfy FR [30. In the worst case, our
algorithm will visit all 44 unroll vectors in the feasible region and the 10
unroll vectors along the infeasible boundary, but this is considerably less
work than visiting all 20×20=400 possible values for (u1, u2, 1) or all
20×20×20=8000 possible values for (u1, u2, u3).

558 Sarkar

Fig. 6. Feasible and infeasible regions for enumeration of unroll vectors, assuming
u3=1.

Note that the simplified cost function discussed earlier, F(u1, u2, u3)=
1/u1+1/u2+2 is a monotonically nonincreasing function of unroll factors.
Given two unroll vectors u and v, if u R v then it must be the case that
F(u) [F(v). This observation can be used to further prune our search by
limiting our attention to the ‘‘largest’’ unroll vectors in the feasible region,
i.e., feasible unroll vectors that are not dominated by another feasible
unroll vector. The monotonicity of the cost function guarantees that since
this set must contain at least one optimal solution. For the matrix multiply
example, this pruning can reduce the search space from 44 vectors to 14
vectors. However, this pruning cannot be performed for more general non-
monotonic cost functions that arise in practice due to ILP and other con-
siderations.4 In Section 5.1, we will see an example of a nonmonotonic cost

4 In theory, the same consideration might argue against the heuristic in Step 2c of Fig. 4.
However, we have never encountered a case in practice where it is profitable to unroll a loop
with an unroll factor > 2, but the cost of using an unroll factor =2 is worse than the
no-unroll case.

Optimized Unrolling of Nested Loops 559

function that is a result of considering the possibility of generating dual-
word load/store instructions.

There are two optimal solutions to this constrained optimization
problem, (u1, u2, u3)=(4, 5, 1) and (u1, u2, u3)=(5, 4, 1), both of which
use a total of FR=29 floating-point registers in the unrolled loop body.
Increasing u1 to 5 makes FR equal 35, which exceeds the limit. Of the eight
unroll vectors measured in Fig. 5, our cost functions show that (4, 4, 1)
should indeed be the best choice. (It is closest to the optimal (4, 5, 1) and
(5, 4, 1) solutions.)

3. GENERATION OF TRANSFORMED CODE

In this section, we outline how our compiler generates code for a spe-
cified unroll vector, (u1,..., uk). The algorithm processes loops by moving
from the outermost loop to the innermost loop of the nest. Let i be the
current loop with unroll factor ui. First, the current unrolled loop body is
expanded by the specified unroll factor ui. Second, the loop header for the
current loop is adjusted so that if the loop’s iteration count, Ci, is known to
be less than or equal to the unroll factor, ui, then the loop is totally
unrolled by simply replacing the loop header by an assignment of the index
variable to the lower-bound expression; otherwise, the loop header is
adjusted so that the unrolled loop’s iteration count equals NCi/uiM. Third, a
remainder loop nest is generated, if needed. The body of the remainder
loop nest is a single copy of the input loop body. The remainder loop is not
created if it is determined at compile time that the loop length Ci is a mul-
tiple of the unroll factor ui.

In general, our algorithm produces u1× · · · ×uk copies of the code
from the original loop body in the unrolled loop. In addition, the number
of remainder loops produced by our algorithm is

C
1 [i [j

D
1 [h < j

uh=(u1× · · · ×uj−1)+(u1× · · · ×uj−2)+· · ·+(u1)+1

where j is the largest loop index with a non-identity unroll factor, i.e., with
uj > 1. Each remainder loop contains a single copy of the code from the
original loop body. In contrast, the unroll-and-jam transformation produces
(u1+mod(1, u1))× · · · ×(uk+mod(1, uk)) copies of the code from the
original loop body.5

5 mod(1, x) is a function that is=0 if x=1 and is=1 otherwise (assuming that x > 0).

Appendix A contains an example to highlight the difference between
our code generation and the code generation obtained by the unroll-and-

560 Sarkar

jam approach. For this example, our algorithm generated 21 remainder
loops as opposed to 61 remainder loops generated by the unroll-and-jam
approach. For the sake of completeness, a complete description of our
algorithm for generating compact code when unrolling multiple nested
loops is provided in Fig. 7.

Fig. 7. Code generation algorithm.

Optimized Unrolling of Nested Loops 561

4. EXPERIMENTAL RESULTS

In this section, we present experimental results to evaluate our approach
for optimized unrolling of nested loops. The algorithm outlined in Sec-
tion 2.4 has been implemented in the IBM XL Fortran product compiler.
This loop unrolling phase is performed as a ‘‘high-order’’ transformation (15)

so that back-end optimizations can exploit the code optimization oppor-
tunities created by loop unrolling. All runtime performance measurements
were made on a 133 MHz PowerPC 604 processor. The performance mea-
surements reported in this paper were obtained using version 5.0 of the
IBM XL Fortran compiler with the following options turned on in all
cases: -O2 (optimization level 2), -qarch=604, -qtune=604 (identifies
target processor as PowerPC 604), -qhot (enables high-order transforma-
tions (15)). We will later refer to this set of options as ‘‘default optimization.’’

First, we present some detailed performance measurements for the
matrix multiply example discussed in Section 2.5. Figure 8 shows the user
execution times measured for 100 different unroll vectors of the form
(u1, u2, 1) for 1 [u1, u2 [10. Recall that u1 and u2 are the unroll factors for
the the outer and middle loops respectively. We set the unroll factor for the
innermost loop to u3=1 for all the 100 data points because the cost func-
tion analysis in Section 2.5 revealed that unrolling the innermost loop
would not deliver any performance benefit. (This was confirmed by the

Fig. 8. Detailed performance measurements on a 133 MHz PowerPC 604 proces-
sor for 500×500 matrix multiply example with different unroll factors.

562 Sarkar

Fig. 9. Average number of loads and stores per original iteration for 500×500
matrix multiply example with different unroll factors.

results in Fig. 5 as well.) The unroll vector (4, 5, 1) that was identified in
Section 2.5 as the optimal solution for this example indeed delivered the
best performance in Fig. 8. Since register locality is the most significant
performance issue for loop unrolling in this example, Fig. 9 shows the
average number of loads and stores per original iteration for these 100
iterations. The average drops from 2.1 for the original loop identified by
unroll vector (1, 1, 1) to 0.55 for unroll vector (4, 5, 1) represents a nearly
4× reduction in the number of load/store instructions executed. These
averages were obtained by using the hardware performance monitor to
measuring the total number of load/store instructions executed and then
dividing that number by the number of times the inner loop is executed
(500×500×500=1.25×108).

Table I summarizes the execution times obtained on seven SPEC95fp
benchmark programs (23) for the following unroll configurations:

• no-unroll—default optimization with unrolling suppressed (except
for the 2× unrolling performed by software pipelining in the back-
end).

• (2, 2, 2)—default optimization with all loops in an innermost perfect
loop nest assigned an unroll factor of two. (There was no innermost
perfect loop nest encountered with > 3 loops in these benchmarks.)

Optimized Unrolling of Nested Loops 563

Table I. SPEC95fp Benchmarks Compiled with Different Unroll Configurationsa

Benchmark no-unroll (2, 2, 2) (3, 3, 3) (4, 4, 4) (5, 5, 5) opt-unroll

101.tomcatv 1317.0 1184.6 1256.8 1287.8 1375.3 1073.2
102.swim 2202.6 2127.4 2556.2 2928.7 3030.1 1836.4
103.su2cor 795.0 769.1 751.8 776.4 770.9 775.0
104.hydro2d 1581.3 1486.3 1496.7 1522.8 1469.8 1491.3
107.mgrid 1014.8 964.4 1024.5 1060.2 1407.1 1015.6
125.turb3d 1006.9 1028.1 1071.3 1207.9 1128.7 1007.3
145.fpppp 1181.1 1189.2 1216.5 1173.9 1469.8 1159.6

a Executed on a 133 MHz Power 604 (user execution times in seconds).

• (3, 3, 3)—default optimization with all loops in an innermost perfect
loop nest assigned an unroll factor of three.

• (4, 4, 4)—default optimization with all loops in an innermost perfect
loop nest assigned an unroll factor of four.

• (5, 5, 5)—default optimization with all loops in an innermost perfect
loop nest assigned an unroll factor of five.

• opt-unroll—default optimization with unrolling performed using
the algorithm reported in this paper.

Table II shows the speedups obtained relative to no-unroll, for the
execution times reported in Table I. The average speedup of 1.08×
delivered by opt-unroll outperformed that of the other unroll configura-
tions measured. The maximum speedup delivered by opt-unroll on a
SPEC95fp benchmark was 1.2× , observed for two of the benchmarks

Table II. Speedups for SPEC95fp Benchmarks with Relative NO-UNROLLa

Benchmark no-unroll (2, 2, 2) (3, 3, 3) (4, 4, 4) (5, 5, 5) opt-unroll

101.tomcatv 1.00 1.11 1.05 1.02 0.96 1.23
102.swim 1.00 1.04 0.86 0.75 0.73 1.20
103.su2cor 1.00 1.03 1.06 1.02 1.03 1.03
104.hydro2d 1.00 1.06 1.06 1.04 1.08 1.06
107.mgrid 1.00 1.05 0.99 0.96 0.72 1.00
125.turb3d 1.00 0.98 0.94 0.83 0.89 1.00
145.fpppp 1.00 0.99 0.97 1.01 0.80 1.02

Average speedup 1.00 1.04 0.99 0.95 0.89 1.08

a Executed on a 133 MHz Power 604 (user execution times in seconds).

564 Sarkar

(101.tomcatv and 102.swim). It is also important to note that, unlike all the
other unrolling configurations, opt-unroll never delivered a performance
degradation.

Thus, the results in this section demonstrate the effectiveness of the
approach presented in this paper for optimized unrolling of nested loops.
We believe that larger performance improvements due to unrolling of
nested loops can be expected on processors that have larger numbers of
registers and larger degrees of instruction-level parallelism than the pro-
cessor used for our measurements (a PowerPC 604).

5. EXTENSIONS

In this section, we outline extensions to our algorithm for selecting
unroll factors to support other optimizations that interact with unrolling.
Section 5.1 describes how the unrolling cost functions can be extended to
model the use of dual-word load/store instructions. Section 5.2 discusses
how unrolling can be performed on reduction loops. Section 5.3 describes
how statement interleaving can be performed in conjunction with loop
unrolling. Finally, Section 5.4 outlines how the unrolling cost functions can
be extended to exploit data-prefetch instructions.

All but the last of these extensions have been implemented in the ASTI
optimizer component of the IBM XL Fortran product compilers. (The
prefetch extension has only been implemented in a prototype extension of
the product compilers.) However, none of these extensions were enabled
when obtaining the experimental results presented in Section 4. The exten-
sions in Section 5.1 and 5.3 are only enabled when compiling for the IBM
Power2 processor. (24) The extension in Section 5.2 is only enabled when
using the -qnostrict option in the XL Fortran compiler.

5.1. Generation of Dual-Word Load/Store Instructions

Some processors support dual-word load/store operations that can
load/store a pair of adjacent memory locations into adjacent registers in a
single instruction. (6) Since a dual-word instruction moves two words in less
time that two single-word instructions, the use of dual-word instructions
can reduce the effective cost of load/store operations in a program. In the
IBM Power2 processor, (24) a quad-word instruction is used to move two
adjacent double-word locations into adjacent registers, thus displaying the
same behavior for double-precision data that dual-word instructions
exhibit for single-precision data.

In practice, loop unrolling is necessary to expose opportunities for
generating dual-word instructions. Consider the following vector-sum loop
as an example:

Optimized Unrolling of Nested Loops 565

real*4 A(1:n), sum

do i = 1, n

sum = sum + A(i)

end do

There is no opportunity to generate a dual-word instruction for this loop
because the loop body contains only a single load operation, A(i). Assum-
ing (for simplicity) that the CPU cost of the load instruction is 1 cycle, we
obtain LS=1 for the original loop with no unrolling which results in a
load/store contribution of 1 cycle/iteration to the cost function defined in
Section 2.3.

However, if the loop is unrolled by a factor of 2, the main unrolled
loop becomes:

do i = 1, n-1, 2

sum = sum + A(i)

sum = sum + A(i+1)

end do

It now becomes possible to combine the reads of A(i) and A(i+1) into a
dual-word load instruction, thus resulting in a cost of LS=1 for an unroll
factor of ui=2 (assuming for simplicity that the cost of a dual-word load
instruction is the same as that of a single-word load instruction). This con-
tributes 0.5 cycles/iteration to the load/store term in the cost function,
thus resulting in a smaller cost than the no-unroll configuration.

In general, the load/store term for this example can be written as the
following function of the unroll factor ui:

LS(ui)
ui

=
Kui/2L
ui

cycles/iteration

An interesting property of this cost function is that all even-valued unroll
factors contribute the same cost (0.5), whereas odd values contribute larger
costs that diminish and approach 0.5 as the unroll factor is increased. This
is an example of a non-monotonic cost function alluded to in Section 2.5
that forces our algorithm to examine all feasible unroll vectors rather than
only the largest ones.

5.2. Unrolling of Reduction Loops

In the previous section, we saw how unrolling can reduce the load/
store cost of a vector-sum loop by using dual-word load instructions.
However, straight unrolling did not contribute any reduction in the ILP
term for this example. When we examine the unrolled loop in Section 5.1,

566 Sarkar

we see that there is a chain of dependences between the array load and the
sum operations that causes the amortized critical path cost, CP(ui)/ui to
remain constant.

However, the knowledge that the computation being performed by the
loop is a sum reduction can be used to transform the unrolled loop into
a form that has a lower ILP cost. The idea is to use a ‘‘partial sums’’
approach and allocate a separate accumulator variable for each copy in the
unrolled loop body, and then combine the partial sums at the end after
exiting from the unrolled loop. The output of this transformation for the
example in Section 5.1 is as follows:

! INITIALIZE ACCUMULATORS

sum1 = sum

sum2 = 0.0

! UNROLLED LOOP

do i = 1, n-1, 2

sum1 = sum1 + A(i)

sum2 = sum2 + A(i+1)

end do

! REMAINDER LOOP

sum = sum1 + sum2

do i = i, n

sum = sum + A(i)

end do

It results in a decrease in the ILP cost since the two partial sum computa-
tions in the unrolled loop body are independent.

Note that this transformation is algebraically correct because addition
is commutative and associative. However, the transformation is not guar-
anteed to compute results that are bitwise identical to that of the original
loop. Therefore, it can only be performed under a user-controlled option
that permits the compiler to reorder such operations (e.g., the -qnostrict
option in the XL Fortran compiler).

If such an option is supplied, our extension to support unrolling of
reduction loops can be summarized as follows. First, identify all loops
in the loop nest that carry reductions. (Our current implementation only
identifies sum and product computations as reductions, though this
approach could also be used for min and max computations.) Next, update
the CP cost function so that partial sum/product computations are con-
sidered to be independent when reduction loops are unrolled. Finally,
modify the code generation algorithm so that partial accumulators are
correctly initialized and combined in the transformed code.

Optimized Unrolling of Nested Loops 567

5.3. Statement Interleaving

A practical issue that arises when performing high-level transforma-
tions such as loop unrolling is that an optimizing back-end is often unable
to perform the same extent of code motion as a high-level optimizer
because it lacks high-level information on memory accesses. Consider the
following loop as an example:

do i = 1, n

A(i,1) = A(i,1) + B(i)

A(i,2) = A(i,1) + C(i)

end do

Note that the operations within a single iteration form a dependence chain
and thus exhibit poor ILP.

After unrolling this loop by a factor of 2, the main unrolled loop
becomes:

do i = 1, n-1, 2

A(i,1) = A(i,1) + B(i)

A(i,2) = A(i,1) + C(i)

A(i+1,1) = A(i+1,1) + B(i+1)

A(i+1,2) = A(i+1,1) + C(i+1)

end do

Since the i loop is parallel, the critical path length for two copies of the
loop body is same as for one copy. Hence, unrolling by a factor of 2 effec-
tively reduces the CP(ui)/ui ratio in the ILP cost by a factor of 2.

However, many optimizing back-ends are unable to exploit the
improved ILP in the unrolled loop above because of their inability to
disambiguate among multiple stores to array A. (This is usually because
they operate on an intermediate representation that converts array refer-
ences to low-level load/store operations, and do not perform the analysis
necessary to reconstruct the original subscript expressions.) To ensure that
unrolling of parallel loops leads to effective exploitation of ILP, we
perform an additional transformation that we call ‘‘statement interleav-
ing.’’ The idea behind this transformation is to interleave the statements
generated for the unrolled loop body, so as to reduce the amount of code
motion that the back-end would need to do to exploit ILP. The main
legality constraint for statement interleaving is that it can only be per-
formed when unrolling parallel loops.

The output obtained by performing this transformation on the above
example is as follows:

568 Sarkar

do i = 1, n-1, 2

A(i,1) = A(i,1) + B(i)

A(i+1,1) = A(i+1,1) + B(i+1)

A(i,2) = A(i,1) + C(i)

A(i+1,2) = A(i+1,1) + C(i+1)

end do

ILP exploitation becomes easier because all (parallel) copies of a statement
are made adjacent. Statement interleaving can also expose additional
opportunities for generating dual-word load/store instructions.

5.4. Data-Cache Prefetching

Many processors support a prefetch instruction that can be used to
initiate the fetching of a cache block prior to its use, so that the transfer
delay can be overlapped with useful computation thus reducing the
overhead of a cache miss. The problem of automatically inserting prefetch
instructions for improved performance has received a lot of attention in
past work, e.g., see Mowry. (7)

In our framework, a prefetch optimization phase is performed prior to
loop unrolling, but after loop distribution, iteration-reordering transfor-
mations, and loop fusion. (15) [As discussed later, there is one prefetching
parameter called the iteration offset that is computed after loop unrolling.]
The output of this phase identifies a set of array references that have been
selected for prefetching, because their memory cost exceeds a given
threshold. Each reference selected for prefetching is annotated with a
replication vector, rep[], indexed by loops in the loop nest. rep[i] identifies
the replication frequency for the array reference, when loop i is unrolled;
if rep[i]=r, a single prefetch instruction is inserted after every r unrolled
iterations of the i loop. The replication vector is computed by setting
rep[i]=KB/siL for each loop i, where B is the size of a data-cache block
and si is the stride that the array reference would exhibit if loop i was the
innermost loop.

For example, consider a data cache with block size, B=32 bytes, and
a reference A(i) to a double-precision array A which results in a stride of
si=8 bytes. The replication frequency for loop i in array reference A(i) is
computed as rep[i]=K32/8L=4, i.e., one prefetch instruction is inserted
for every 4 unrolled iterations of loop i. Now consider a two-dimensional
array reference B(j, i) for which si=(column size of array B), which can
be arbitrarily large (say, 8000 bytes). The replication frequency for loop i in
array reference B(j, i) will be computed as rep[i]=K32/8000L=1, i.e., one
prefetch instruction is inserted for each unrolled iteration of loop i.

Optimized Unrolling of Nested Loops 569

For simplicity, the only impact of prefetch instructions on the unroll-
ing cost function modeled in our framework is on the load/store term in
Section 2.3. Each prefetch instruction in the unrolled loop adds an extra
cost to this term, PC, which is the cost incurred by the CPU to execute the
prefetch instruction and initiate the prefetch. Note that this cost does not
include the actual prefetch delay, i.e., the time spent in the memory system
to complete the prefetch.

In general, the number of cycles contributed by prefetch instructions
to the per-iteration load/store cost is:

<1 [i [k
! ui
rep[i]
"×PC

<1 [i [k ui

Consider array reference A(i) with rep[i]=4, as an example. If
PC=1, the average number of cycles contributed by prefetch instructions
per iteration will equal 1 for ui=1, 1/2 for ui=2, 1/3 for ui=3, 1/4 for
ui=4, 2/5 for ui=5, and so on. Now consider array reference B(j, i) with
rep[i]=1. The number of cycles per iteration contributed by prefetch
instructions for this array reference equals 1 for all unroll factors, ui.

Thus, we see that the modeling of prefetch costs is nonmonotonic in
unroll factors, similar to the modeling of dual-word load/store instruc-
tions. However, the prefetch costs can still be incorporated into the cost
function from Section 2.3, so that it can be combined with other perfor-
mance considerations for loop unrolling. This approach can also be
extended to support unrolling in the presence of flush and invalidate
instructions, when there are performance benefits or other reasons for
inserting these instructions in optimized code. (8, 25)

We conclude this section with a brief mention of the prefetch iteration
offset, O, which identifies the offset between the iteration containing a pre-
fetch instruction and the iteration containing the memory access targeted
by the prefetch instruction. The prefetch iteration offset is computed as

O=! (Prefetch delay)
(Cost of single iteration of unrolled loop)

"

so as to ensure that O iterations of the innermost loop will be sufficient to
overlap the delay of a single iteration. The cost of a single iteration of the
unrolled loop is computed by evaluating the cost function in Section 2.3 for
the final unroll configuration selected. (That is why the prefetch iteration
offset can only be computed after unroll factors have been selected.) Note
that the value of O is independent of the array reference. The same value is
used for all prefetch instructions.

570 Sarkar

6. RELATED WORK

As mentioned earlier, the loop unrolling and the unroll-and-jam
transformations have been in use for over three decades. (1) However, little
attention has been paid until recently to the problem of automatically
selecting unroll factors to obtain the best performance from loop unrolling.
For example, Wolf and Lam presented experimental results for register
tiling in conjunction with cache tiling (14) using the SUIF compiler, but the
register tiling in that work was implemented by hand.

The most closely related work to this paper is that of Carr and Kennedy(9)

and by Carr and Guan.(12) Some of the key differences between our approach
and their approaches(9, 12) have already been discussed in Section 1. Another
difference that is worth mentioning is that the objective function in their
approaches(9, 12) is to balance floating-point and memory-access instructions,
whereas the objective function in our approach is to reduce execution time.
These two objective functions are not necessarily equivalent. (As observed in
Hailperin’s review(26) of Carr and Kennedy,(5) ‘‘The most significant gap in the
experimental results concerns the connection between floating-point/memory-
access balance and performance.’’.) For example, the best results for the matrix
multiply example discussed in this paper were obtained when the average
number of loads is driven down to 0.5 loads per original iteration (see Figs. 8
and 9), even though each iteration has two floating-point operations. It is
unclear from the descriptions by Carr and Kennedy(9) and Carr and Guan;(12)

how a similar configuration would be obtained with their goal of balancing
memory instructions and floating-point instructions.

Most of the other related work applies only to unrolling innermost loops
rather thannested loops.Several industry compilers (including thebaselineXL
Fortran compiler used to obtain our experimental results) perform unrolling
of (bothcountedandnoncounted) innermost loops.Theproblemofcombining
loop unrolling with software pipelining has also received a lot of attention.
Weiss and Smith (27) studied unrolling of a single innermost loop and com-
pared it with software pipelining. Their conclusion was that loop unrolling
can deliver greater speedup than software pipelining, but requires more
hardware (more registers and a larger instruction buffer) to do so. Jones and
Allan (28) suggested that loopunrollingbeperformedbefore softwarepipelining
to effectively obtain a noninteger initiation interval. In their work, the unroll
factor is determined by the desired initiation interval rather than by specific
register and/or ILP cost considerations. Su et al. (29) proposed the URPR
algorithm (unroll, pipeline, reroll) as a way of combining loop unrolling and
instruction scheduling. Lavery andHwu (30) evaluated the benefits of unrolling
loops prior to modulo scheduling. In our approach, unrolling of nested loops
is performed prior to software pipelining in the XL Fortran back end.

Optimized Unrolling of Nested Loops 571

7. CONCLUSIONS

In this paper, we formalized selection of unroll factors for multiple
perfectly nested loops as an optimization problem. We introduced an
objective function to estimate the savings that will be obtained for a given
vector of unroll factors, and capacity cost functions to model register set
and I-cache constraints, and we specified the legality constraints for
unrolling loops in a perfect nest. We outlined an algorithm for efficiently
enumerating feasible unroll vectors (legal configurations that satisfy the
capacity constraints) and selecting an unroll vector that delivers the best
savings. We also addressed the problem of generating compact code for the
remainder loops resulting from an unroll transformation on nested loops,
and showed how our approach can generate fewer remainder loops than
the classical unroll-and-jam approach. Our experimental results on seven
SPEC95fp benchmarks using the XL Fortran compiler validated the
robustness of our approach and demonstrated its effectiveness for use in
industry-strength compilers. We expect to see larger performance impro-
vements due to unrolling of nested loops on processors that have larger
numbers of registers and larger degrees of instruction-level parallelism than
the processor used for our measurements (PowerPC 604).

Possibilities for future work include extensions of the cost functions
presented in this paper to handle new processor features such as multimedia
extensions and combining our cost model with the initiation interval cost
models used in software pipelining and modulo scheduling. An important
extension in code generation support would be to enable unrolling of
triangular/trapezoidal loops, similar to tiling of triangular/trapezoidal
loops. (17)

ACKNOWLEDGMENTS

The author would like to thank Khoa Nguyen was his contribution to
the algorithm for generating compact code when unrolling multiple nested
loops, and Krishna Palem and Barbara Simons for their contributions to
the algorithm for selection of unroll factors. The author would also like to
thank members of the original ASTI optimizer group at IBM Santa Teresa
Laboratory for their contributions to the design and initial implementation
of the ASTI optimizer during 1991–1993, and members of the Parallel
Development group in the IBM Toronto Laboratory for their ongoing
work since 1994 on extending and shipping the ASTI optimizer as part of
the IBM xl fortran compiler products.

572 Sarkar

APPENDIX A

A.1. EXAMPLE OF GENERATING COMPACT CODE FOR

UNROLLING MULTIPLE LOOPS

Consider generating code for unroll vector (4, 4, 4, 1) for the following
example nest of four loops (such an unroll vector may be selected due to
register locality considerations):

Fig. 10. Generated code using unroll-and-jam transforma-
tion (Part 1 of 4).

Optimized Unrolling of Nested Loops 573

Fig. 11. Generated code using unroll-and-jam transfor-
mation (Part 2 of 4).

574 Sarkar

Fig. 12. Generated code using unroll-and-jam trans-
formation (Part 3 of 4).

Optimized Unrolling of Nested Loops 575

Fig. 13. Generated code using unroll-and-jam transformation
(Part 4 of 4).

576 Sarkar

Fig. 14. Generated code using compact code generation
(Part 1 of 2).

Optimized Unrolling of Nested Loops 577

Fig. 15. Generated code using compact code generation (Part
2 of 2).

578 Sarkar

do l = 1, n
do k = 1, n
do j = 1, n
do i = 1, n
sum = sum + a(i,j,k) + b(i,j,l) + c(i,k,l)

end do
end do

end do
end do

The transformed code generated for this example obtained by using
the unroll-and-jam approach is shown in Figs. 10–13. Figures 14 and 15
show the transformed code obtained by using the code generation algo-
rithm presented in this paper. Both approaches generated an unrolled loop
body containing 4×4×4=64 copies of the original loop body. However,
our algorithm generated 4×4+4+1=21 remainder loops for this example
as opposed to 5×5×5−64=61 remainder loops generated by the unroll-
and-jam approach. The number of remainder loops generated by the unroll-
and-jam approach can potentially be reduced by first ‘‘rerolling’’ all
unrolled remainder loops and then performing an ‘‘index set merging’’
transformation on remainder loops (i.e., the inverse of the ‘‘index set split-
ting’’ transformation (16)). However, we are not aware of any compiler that
performs loop rerolling and index set merging of loops after applying an
unroll-and-jam transformation.

REFERENCES

1. F. E. Allen and J. Cocke, A catalogue of optimizing transformations, in Design and
Optimization of Compilers, Prentice-Hall, pp. 1–30 (1972).

2. J. J. Dongarra and A. R. Hinds, Unrolling Loops in Fortran, Software—Practice and
Experience 9(3):219–226 (March 1979).

3. J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau, Parallel Processing: A Smart
Compiler and a Dumb Machine, Proc. ACM Symp. Compiler Construction, pp. 37–47
(June 1984).

4. D. F. Bacon, S. L. Graham, and O. J. Sharp, Compiler Transformations for High-Per-
formance Computing, ACM Computing Surveys 26(4):345–420 (December 1994).

5. Steve Carr and Ken Kennedy, Scalar Replacement in the Presence of Conditional Control
Flow, Software—Practice and Experience (1):51–77 (January 1994).

6. Michael J. Alexander, Mark W. Bailey, Bruce R. Childers, Jack W. Davidson, and Sanjay
Jinturkar, Memory bandwidth optimizations for wide-bus machines, Proc. 26th Hawaii
Int’l. Conf. Syst. Sci., Wailea, Hawaii, pp. 466–475 (January 1993).

7. T. C. Mowry, Tolerating Latency Through Software-Controlled Data Prefetching, Ph.D.
thesis, Stanford University (March 1994).

8. Mauricio Breternitz, Michael Lai, Vivek Sarkar, and Barbara Simons, Compiler Solutions
for the Stale-Data and False-Sharing Problems, Technical report, TR 03.466, IBM Santa
Teresa Laboratory (April 1993).

Optimized Unrolling of Nested Loops 579

9. Steve Carr and Ken Kennedy, Improving the Ratio of Memory Operations to Floating-
Point Operations in Loops, ACM TOPLAS 16(4) (November 1994).

10. Jack W. Davidson and Sanjay Jinturkar, Aggressive Loop Unrolling in a Retargetable,
Optimizing Compiler, In Compiler Construction, Proc. Sixth Int’l. Conf. Linkoping,
Sweden, Vol. 1060, Lecture Notes in Computer Science, Springer-Verlag, New York (April
1996).

11. David Callahan, Steve Carr, and Ken Kennedy, Improving Register Allocation for
Subscripted Variables, Proc. ACM SIGPLAN Conf. Prog. Lang. Design and Implementa-
tion, White Plains, New York, pp. 53–65 (June 1990).

12. S. Carr and Y. Guan, Unroll-and-Jam Using Uniformly Generated Sets, Proc. MICRO-
30, pp. 349–357 (December 1997).

13. Allan K. Porterfield, Software Methods for Improvement of Cache Performance on Super-
computer Applications, Ph.D. thesis, Rice University, Rice COMP TR89-93 (May 1989).

14. Michael E. Wolf and Monica S. Lam, A Data Locality Optimization Algorithm, Proc.
ACM SIGPLAN Symp. Progr. Lang. Design and Implementation, pp. 30–44 (June 1991).

15. Vivek Sarkar, Automatic Selection of High Order Transformations in the IBM XL
Fortran Compilers. IBM J. Res. Dev. 41(3) (May 1997).

16. Michael J. Wolfe, Optimizing Supercompilers for Supercomputers, Pitman, London and
The MIT Press, Cambridge, Massachusetts (1989). In the series, Research Monographs in
Parallel and Distributed Computing.

17. Vivek Sarkar and Radhika Thekkath, A General Framework for Iteration-Reordering
Loop Transformations, Proc. ACM SIGPLAN Conf. Prog. Lang. Design and Implemen-
tation, pp. 175–187 (June 1992).

18. Jeanne Ferrante, Vivek Sarkar, and Wendy Thrash, On Estimating and Enhancing Cache
Effectiveness, Lecture Notes in Computer Science (589):328–343 (1991). Proc. Fourth
Int’l. Workshop Lang. Compilers for Parallel Computing, Santa Clara, California (August
1991).

19. B. Ramakrishna Rau, Iterative Modulo Scheduling: An Algorithm for Software Pipelin-
ing Loops, Proc. 27th Ann. Int’l. Symp. Microarchitecture, San Jose, California, pp. 63–74
(November 1994).

20. Vivek Sarkar and Barbara Simons, Don’t Waste Those Cycles: An In-Depth Look at
Scheduling Instructions in Basic Blocks and Loops, Video Lecture in University Video
Communication’s Distinguished Lecture Series IX (August 1994).

21. Vivek Sarkar, Determining Average Program Execution Times and their Variance, Proc.
SIGPLAN Conf. Prog. Lang. Design and Implementation 24(7):298–312 (July 1989).

22. Vivek Sarkar, Automatic Partitioning of a Program Dependence Graph into Parallel
Tasks, IBM J. Res. Dev 35(5/6) (1991).

23. The Standard Performance Evaluation Corporation, SPEC CPU95 Benchmarks,
http://open.specbench.org/osg/cpu95/ (1997).

24. IBM Corporation, POWER2 and PowerPC, Special issue of IBM J. Res. Dev. 38(5):
489–648 (September 1994).

25. Barbara Simons, Vivek Sarkar, Jr. Mauricio Breternitz, and Michael Lai, An Optimal
Asynchronous Scheduling Algorithm for Software Cache Consistency, Proc. Hawaii Int’l.
Conf. Syst. Sci. (January 1994).

26. Max Hailperin, Improving the Ratio of Memory Operations to Floating-Point operations
in loops, Computing Reviews. Copy of review can be found in the ACM digital library at
http://www.acm.org/pubs/citations/journals/toplas/1994-16-6/p1768-carr/.

27. S. Weiss and J. E. Smith, A Study of Scalar Compilation Techniques for Pipelined
Supercomputers, Proc. Second Int’l Conf. Architectural Support Progr. Lang. Oper. Syst.
(ASPLOS), pp. 105–109 (October 1987).

580 Sarkar

28. Reese B. Jones and Vicki H. Allan, Software Pipelining: An Evaluation of Enhanced
Pipelining, Proc. 24th Ann. Int’l. symp. Microarchitecture, pp. 82–92 (December 1990).

29. Bogong Su, Shiyuan Ding, Jian Wang, and Jinshi Xia, GURPR—A Method for Global
Software Piplining; Proc. 20th Ann. Int’l. Symp. Microarchitecture, pp. 88–96 (December
1986).

30. Daniel M. Lavery and Wen-Mei W.Hwu, Unrolling-Based Optmizations for Modulo
Sheduling, Proc. MICRO-28, pp. 327–337 (December 1995).

Printed in Belgium

Optimized Unrolling of Nested Loops 581

	1. INTRODUCTION
	2. AUTOMATIC SELECTION OF UNROLL FACTORS
	3. GENERATION OF TRANSFORMED CODE
	4. EXPERIMENTAL RESULTS
	5. EXTENSIONS
	6. RELATED WORK
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	

