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Multi-Input Multi-Output Ellipsoidal
State Bounding1

C. DURIEU,2 É. WALTER,3 AND B. POLYAK
4

Abstract. Ellipsoidal state outer bounding has been considered in the
literature since the late sixties. As in the Kalman filtering, two basic
steps are alternated: a prediction phase, based on the approximation of
the sum of ellipsoids, and a correction phase, involving the approxi-
mation of the intersection of ellipsoids. The present paper considers the
general case where K ellipsoids are involved at each step. Two measures
of the size of an ellipsoid are employed to characterize uncertainty,
namely, its volume and the sum of the squares of its semiaxes. In the
case of multi-input multi-output state bounding, the algorithms pre-
sented lead to less pessimistic ellipsoids than the usual approaches
incorporating ellipsoids one by one.

Key Words. Bounded noise, ellipsoidal bounding, identification, set-
membership estimation, state estimation.

1. Introduction

In the literature, most parameter or state estimation problems involving
an explicit characterization of uncertainty are solved via a stochastic
approach, with the perturbations assumed to be random and usually white
and Gaussian. However, often the statistics of these perturbations are not
known and sometimes it is more natural to assume that they belong to
known compact sets, with no other hypothesis on their distributions. Then,
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one can attempt to characterize the set of all parameter or state vectors
that are compatible with the data, model structure, and hypotheses on the
perturbations. All elements of this feasible set are candidate solutions for
the estimation problem.

Set-membership estimation was considered first in the late sixties in the
context of state estimation (Refs. 1–3). Then, it was a subject of intensive
research by the Russian school (Refs. 4–8) and has received a lot of atten-
tion worldwide especially in the context of parameter estimation; see, e.g.,
the survey papers in Refs. 9, 10, special issues of journals (Refs. 11–13),
book (Ref. 14), and references therein. The solution to the problem of par-
ameter or state bounding depends on whether the model output is linear in
the parameters or initial state and on how the feasible set is going to be
characterized.

The systems considered in this paper are assumed to be described by
the linear discrete-time state-space model

xtC1GAtxtCBtutCVtût , (1a)

ytGCtxtCDtutCWtwt , (1b)

where xt is the state vector at time t, yt the measured output vector, ut the
known input vector, ût the process perturbation vector, and wt the measure-
ment noise vector. Without loss of generality, Dt will be taken as 0 in what
follows. The only unknown quantities in (1) are assumed to be the state,
process perturbations, and measurement noise. The information available
regarding these quantities is that ût , wt , and x0 belong to known compact
sets. The problem is then to characterize the set of all vectors xt that are
compatible with the data given these hypotheses.

Tracking the parameters of a model whose output is linear in these
parameters can be treated as a special case of (1), where At is the identity
matrix, BtG0, and xt stands for the parameters to be estimated; then, the
particular case of time-invariant parameters can be considered by setting
VtG0. All algorithms are presented in the real case, but extend trivially to
complex parameter or state vectors. It will be assumed that the state dimen-
sion n is larger than one, which is not very restrictive as specific and more
efficient algorithms can be derived easily for the scalar case. It will also be
assumed that all components of the output vectors are corrupted by noise.

For a model described by (1), when ût , wt , and x0 belong to polytopes,
the feasible set is a polytope too. When the number of parameters or state
variables is not too large, an exact description of this polytope can be
attempted (Ref. 15). However, the set thus obtained may become extremely
complicated. So, it is customary to characterize it by computing a simpler
set that encloses it and is of minimum size in a sense to be specified.
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Although simplexes, boxes, parallelotopes, and polytopes with limited com-
plexity (i.e., possessing a limited number of faces and vertices) have been
considered, the usual approach, also adopted in this paper, is to approxi-
mate the feasible set by an outer ellipsoid.

Classically, the size of an ellipsoid is measured by its volume, pro-
portional to the square of the product of the lengths of its axes, which
corresponds to the determinant criterion. Thus, minimal-volume outer ellip-
soids are searched for. However, the determinant criterion presents some
disadvantages. First, it may be minimized by a very narrow ellipsoid, i.e.,
uncertainty in some directions may remain extremely large even when the
volume tends to zero. Second, volume optimization problems can seldom
be solved explicitly, the only well-known example of an explicit solution
being the intersection of an ellipsoid and a strip (Refs. 16–17). These
reasons motivate the consideration of an alternative measure of size,
namely, the sum of the squares of the lengths of the semiaxes, which corre-
sponds to the trace criterion and has been the object of a renewed attention
(Refs. 10 and 18–22). Although both criteria had been considered in Refs.
10 and 17, and although they are mentioned already in Ref. 23, the trace
criterion has received much less emphasis in the past than the determinant
criterion, which has been used in the literature overwhelmingly. For these
two measures of size, it is well-known that there exists a unique smallest
ellipsoid containing a compact set with nonempty interior (see Section 3.3).

Various numerical techniques are available for finding optimal or
suboptimal ellipsoids containing a given set. Most focus on the simplest
case where the sum or intersection of only two ellipsoids is to be computed,
and solutions can be found explicitly (Refs. 5, 17, 18, 24). Ellipsoidal
approximation may be converted also into convex optimization with linear
matrix inequalities (LMI) as constraints (Ref. 25). Then, the powerful tech-
niques of modern interior-point polynomial algorithms for LMI (Ref. 26)
can be employed. However, this approach is less suitable for on-line state
estimation or parameter tracking, where ellipsoidal approximation should
be performed in real time.

In the present paper, ellipsoidal approximation with the trace or deter-
minant criterion is studied systematically for the solution of two problems
that are at the core of state bounding, i.e., optimal outer approximation of
the sum and intersection of K possibly degenerate ellipsoids. Parametrized
families of ellipsoids are employed that can be proved to contain this sum
or intersection and lead to solving optimization problems with KA1 scalar
parameters. Whenever possible, our approach is oriented toward an explicit
solution, sometimes at the cost of suboptimality. The general case K¤2 is
treated. It was mentioned already in Ref. 2, but without optimization,
whereas only the case KG2 is considered in Ref. 18.
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The paper is organized as follows. Section 2 states the problem to be
solved and specifies the notation. Some basic properties of the trace and
determinant functions are established in Section 3. Then, algorithms are
presented for computing minimal-trace or minimal-determinant outer ellip-
soids containing the sum of K ellipsoids (Section 4) or their intersection
(Section 5). Thus the basic blocks of a multi-input multi-output bounded-
error counterpart to the Kalman filtering are provided.

2. Problem Statement

2.1. Ideal State Bounding. The perturbation vector ût and noise vector
wt of (1) may be partitioned respectively into I and J independent sub-
vectors. Then, each of these subvectors is assumed to belong to a known
ellipsoid. If the subvectors of ût or wt are not independent, then the algo-
rithms to be presented still apply, but the ellipsoidal approximation
obtained will be more pessimistic. Reciprocally, if some components of the
subvectors are independent, the results will be more pessimistic than if these
independent components were split into different subvectors. Let
ûi
t ∈ �pi

t, iG1, . . . , I, be the subvectors of ût. Then, the state equation (1a)
can be rewritten as

xtC1GAtxtCBtutC ∑
I

iG1

Vi
tû

i
t , (2)

where Vi
tû

i
t belongs to a known ellipsoid, Vi

t being trivially deduced from
Vt. Let B

n be the unit Euclidean ball of �n centered on the origin,

B
nG{x ∈ �n: ��x��⁄1},

where ��x�� is the Euclidean norm of x. A suitable transformation of Vi
t

makes it possible always to impose that ûi
t belongs to B

pi
t. In what follows,

it is assumed that this transformation has been performed. After some
additional transformations detailed in Section 7.1, and without loss of gen-
erality, the state and observation equations (1) can be rewritten as

xtC1GAtxtCBtutC ∑
I

iG1

Vi
tû

i
t , ûi

t ∈ B
pi
t, (3a)

y j
tGCj

txtCw j
t , w j

t ∈ B
r j

t , jG1, . . . , J, (3b)

where y j
t is obtained by linear combination of the components of yt that

are corrupted by the j th subvector of wt , w j
t is obtained by linear transform-

ation of the j th subvector of wt , and Cj
t is deduced from Ct. It is assumed

that the initial state x0 belongs to some known set Ω0/0.
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The objective is to find recursive ellipsoidal outer approximations of
the uncertainty sets Ωt�t and ΩtC1�t , respectively defined as the sets of all
values of xt and xtC1 that are compatible with all the information available
at t. In principle, ΩtC1�t and ΩtC1�tC1 could be computed recursively by
alternating prediction and correction steps (as in the Kalman filtering),

ΩtC1�tGAtΩt�tCBtutC ∑
I

iG1

Vi
tB

pi
t, (4a)

ΩtC1�tC1GΩtC1�t∩ � )
J

jG1
E

j
tC1�, (4b)

where E
j
tC1 is the set of all states xtC1 compatible with the measurement

y j
tC1 ,

E
j
tC1G{x ∈ �n: (y j

tC1ACj
tC1x) ∈ B

r j
tC1}. (5)

Of course, we shall consider only informative measurements, i.e., measure-
ments such that Cj

tC1≠0. The predicted set ΩtC1�t is obtained from Ωt�t by
a weighted Minkowski sum of sets, and the corrected set ΩtC1�tC1 is
obtained from ΩtC1�t by intersecting sets. However, in general, Eqs. (4) are
too complicated to be of any practical use, especially in real time. To reduce
complexity, ΩtC1�t and ΩtC1�tC1 will be approximated recursively by outer
ellipsoids. These outer ellipsoids will be assumed to be bounded and with a
nonempty interior. Some of the ellipsoids involved in the algorithms to be
presented will not satisfy this assumption, and a specific notation will be
needed to describe ellipsoids with empty interiors (such as intervals) or
unbounded ellipsoids (such as strips limited by parallel hyperplanes).

2.2. Notation. Any bounded ellipsoid E of �n with a nonempty
interior can be defined by

E G{x ∈ �n: (xAc)TP−1(xAc)⁄1, PH0}, (6)

where c is the center of E and P is a positive-definite matrix (denoted by
PH0) that specifies its size and orientation. Of course, it is equivalent to
write E as

E G{x ∈ �n: (xAc)TM(xAc)⁄1, MH0}, (7)

with MGP−1. The two measures of the size of such an ellipsoid to be con-
sidered in this paper are tr P and det P. As defined by (6) or (7), E can be
written also as

E G{x ∈ �n: xGcCVû, û ∈ B
n}, (8)
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where

M−1GPGVVTH0.

This description can be extended to accommodate ellipsoids with empty
interiors by allowing û to belong to a lower-dimensional space than x,

E G{x ∈ �n: xGcCVû, û ∈ B
p}. (9)

If pG1, V is a vector and E an interval. Equation (9) involves an affine
transformation of the unit ball of �p and describes an ellipsoid defined as
in (8) but with PGVVT no longer necessarily positive definite. Thus, the
following description of bounded ellipsoids will be convenient at the predic-
tion step of state estimation when summing ellipsoids, some of which may
have empty interiors:

E
+(c; P)G{x ∈ �n: xGcCVû, û ∈ B

p, PGVVT}. (10)

In (10), the matrix P is nonnegative definite, denoted by P¤0. If P has a
zero eigenvalue, then E

+(c; P) has an empty interior.
Sometimes, unbounded ellipsoids should also be considered. This

becomes possible if the condition MH0 in (7) is relaxed to M¤0. A typical
example is the strip

S (y; d )G{x ∈ �n: �yAdTx�⁄1}, (11)

which corresponds to (7) with

MGddT¤0.

The following description of such possibly degenerate ellipsoids will be con-
venient when intersecting ellipsoids at the correction step of state estimation,

E
∩ (c; M )G{x ∈ �n: (xAc)TM(xAc)⁄1, M¤0}. (12)

With this notation, E
j
t in (5) can be rewritten as E

∩ (c j
t ; M

j
t) with

Mj
tGC jT

t C j
t . The center c j

t of E
j
t may not be defined uniquely (it must only

satisfy Cj
tc

j
tGy j

t ), but it is not used in what follows. If y j
t is a scalar

measurement, then E
j
t is the strip S (y j

t ; C
jT
t ). Note that, when PH0,

E
+(c; P)GE

∩ (c; M ), with PGM−1.

2.3. Ellipsoidal State Bounding.

Initialization. The known compact set Ω0/0 guaranteed to contain the
initial state vector will be taken as

Ê 0�0GE
+(ĉ0�0 ; P̂0�0).
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As for recursive least squares, one may choose ĉ0�0G0 and P̂0�0Gα I, with
α large enough.

Recursion on Time. Let

Ê t�tGE
+(ĉt�t ; P̂t�t)

be an ellipsoidal outer approximation of Ωt�t . From (4a), an ellipsoidal
outer approximation of ΩtC1�t is given by

Ê tC1�tGE
+(ĉtC1�t; P̂tC1�t),

such that either

Ê tC1�tGarg min
E ⊃ M tC1

tr P, (13)

or

Ê tC1�tGarg min
E ⊃ M tC1

log det P, (14)

where M tC1 is the (weighted) Minkowski sum of sets,

M tC1GAt Ê t�tCBtutC ∑
I

iG1

Vi
tB

pi
t, (15)

and E GE
+(c; P). Equation (15) can be rewritten as

M tC1GE
+(ĉt�tCBtut ; AtP̂t�tA

T
t )C ∑

I

iG1

E
+(0; Vi

tV
iT
t ). (16)

Similarly, ΩtC1�tC1 is approximated by Ê tC1�tC1, such that either

Ê tC1�tC1Garg min
E ⊃ I tC1

tr P, (17)

or

Ê tC1�tC1Garg min
E ⊃ I tC1

log det P, (18)

where I tC1 is the intersection of sets,

I tC1GÊ tC1�t∩ � )
J

jG1
E

∩ (c j
tC1 ; C

jT
tC1 Cj

tC1)�, (19)

and

E GE
∩ (c; M )GE

+(c; P).

Thus, characterizing the set of possible values for xt requires summing ellip-
soids at the prediction step and intersecting ellipsoids at the correction step.
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Then, we look for the smallest ellipsoid, in the sense of the criterion con-
sidered, that contains the sum or intersection of ellipsoids. The correspond-
ing optimization problem is solved usually over a parametric family of
ellipsoids, at the possible cost of suboptimality. In (14) and (18), the cost
function is based on the logarithm of the determinant, to ensure suitable
convexity properties. Note that Schweppe proposed already parametric fam-
ilies of ellipsoids containing the intersection or sum of ellipsoids, but with-
out looking for the optimal ellipsoids in these families (Ref. 23).

3. Properties of Trace and Determinant

Solving minimization problems is much easier when they are convex
and the first and second derivatives of their cost functions are available,
which motivates what follows. Some proofs will use standard results of
matrix analysis (Ref. 27), which are now recalled.

3.1. General Results. Let � be a convex subset of �nBm, and let f be
a function from � to �. This function is convex over � if, for all λ ∈ [0, 1]
and all A and B in �,

f (λAC(1Aλ )B )⁄λ f (A)C(1Aλ ) f (B ).

It is strictly convex if the inequality is strict for 0FλF1 when A≠B.
Let A be any interior point in �, and let B be any point in �. If f is

such that, for any real (,

f (AC(B )Gf (A)C(α 1C(1�2)(2α 2Co((2),

then f is twice directionally differentiable. Its first two derivatives at A in
the direction B are

f ′(A; B )Gα 1 , f ″(A; B )Gα 2 .

For such a function, convexity is equivalent to f ″(A; B )¤0, and strict con-
vexity is guaranteed if f ″(A; B )H0 for B≠0. If f ′(A; B )Gtr(CB ), then f(A)
is differentiable and C is its first derivative: f ′(A)GC.

Let A(λ ) ∈ � be a differentiable function of a scalar parameter λ , and
let f(A) be a differentiable scalar function of A; then,

df (A(λ ))�dλGf ′(A(λ ); dA(λ )�dλ ).

Let A(λ ) ∈ �nBn and B (λ ) ∈ �nBn be two differentiable functions of a scalar
parameter λ ; then,

d tr A(λ )�dλGtr[dA(λ )�dλ ],

d(A(λ )B (λ ))�dλG[dA(λ )�dλ ]B (λ )CA(λ )[dB (λ )�dλ ],
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and if A is invertible,

dA−1(λ )�dλG−A−1(λ )[dA(λ )�dλ ]A−1(λ ).

3.2. Trace and Determinant Functions. Denote the linear space of all
nBn real symmetric matrices by �n and the subset of �n consisting of the
positive-definite matrices by �+

n .

Lemma 3.1. The function ft : �+
n →� defined by ft (M )Gtr(M−1) is

strictly convex; its first and second derivatives at A ∈ �+
n along B ∈ �n are

f ′t (A; B )G−tr(A−1BA−1), (20a)

f ″t (A; B )G2tr (A−1BA−1BA−1), (20b)

and its first derivative is

f ′t (A)G−A−2. (21)

Proof. A second-order Taylor expansion of ft with respect to ( can be
obtained as follows:

ft (AC(B )Gtr((IC(A−1B )−1A−1)

Gtr((IA(A−1BC(2A−1BA−1BCo((2))A−1)

Gtr(A−1)A( tr(A−1BA−1)

C(2 tr(A−1BA−1BA−1)Co((2). (22)

From the results of Section 3.1, this implies (20).
Since A ∈ �+

n , it has a unique square root A1�2. Take

CGA−1BA−1BA−1, DGA−1�2BA−1;

then,

CGDTD,

so C¤0. Thus, tr C¤0 and f ″t (A; B )¤0. Moreover, C≠0 for any B≠0;
otherwise, y would be 0 for all x, which is possible only for BG0. There-
fore, tr CH0 and f ″ t (A; B )H0, for all A in �+

n and B in �n , which implies
the strict convexity of ft . Since

tr(A−1BA−1)Gtr(A−2B ),

(21) is a direct application of Section 3.1. �
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Lemma 3.2. The function fd : �+
n →� defined by fd (M )G

log det M−1G−log det M is strictly convex, and its first and second deriva-
tives at A ∈ �+

n along B ∈ �n are

f ′d (A; B )G−tr(A−1B ), (23a)

f ″d (A; B )Gtr(A−1BA−1B ), (23b)

and its first derivative is

f ′d (A)G−A−1. (24)

Proof. A proof of convexity can be found in Ref. 27, Theorem 7.6.7,
and (23)–(24) are established in Ref. 26, Section 5.5.5. These results can also
be established directly in the same way as for the trace function in Lemma
3.1. Indeed,

fd (AC(B )Gfd (A)Alog det(IC(A−1B ). (25)

There exists a matrix P such that

TGP−1A−1BP

is triangular. Let λ i , iG1, . . . , n, be the ith entry on the diagonal of T.
Then,

det(IC(A−1B )Gdet(IC(T )G∏
n

iG1
(1C(λ i)

and

log det(IC(A−1B )G( ∑
n

iG1

λ iA(1�2)(2 ∑
n

iG1

λ 2
i Co((2).

Moreover,

∑
n

iG1

λ iGtr TGtr(A−1B )

and

∑
n

iG1

λ 2
i Gtr T2Gtr(A−1BA−1B ),

so

fd (AC(B )Gfd (A)A( tr(A−1B )C(1�2)(2 tr(A−1BA−1B ). (26)

From Section 3.1, this implies (23). Let

CGA−1�2BA−1�2;
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then,

tr(A−1BA−1B )Gtr(C2),

with

C2GCTC¤0,

hence tr(C2)¤0 and f ″d (A; B )¤0. Moreover, C≠0 for any B≠0. Therefore,
tr(C2)H0 and f ″d (A; B )H0 for all B≠0, which implies the strict convexity
of fd. Equation (24) is again a direct application of Section 3.1. �

3.3. Uniqueness of the Minimal Ellipsoid. Uniqueness is a well-known
property of the minimal-trace or minimal-determinant ellipsoid containing
a given compact set. For the determinant criterion, it corresponds to the
Loewner–Behrend theorem (Ref. 28). For the trace criterion, an analogous
result can be found in Ref. 29. The purpose of the present section is to give
a simpler proof of this result for the trace criterion. For the determinant
criterion, the proof can be established in the same way. A particular case of
the following lemma will be used to prove the uniqueness of the minimal
ellipsoid. The general case will be used when intersecting ellipsoids.

Lemma 3.3. If ck ∈ �n, Mk¤0, and α k¤0, kG1, . . . , K, are such that
∑K

kG1α kMkH0, then

δG
∆

∑
K

kG1

α kc
T
k MkckA� ∑

K

kG1

α kMkck�
T

� ∑
K

kG1

α kMk�
−1

� ∑
K

kG1

α kMkck�
¤0. (27)

Proof. For any MH0, c ∈ �n, and γ ∈ �, from the extension of the
Schur inequality (Ref. 30), the following conditions are equivalent:

PG�M c

cT γ�¤0 ⇔ γ ¤cTM−1c. (28)

Take

MG ∑
K

kG1

α kMk , cG ∑
K

kG1

α kMkck , γ G ∑
K

kG1

α kc
T
k Mkck ;

then,

δGγAcTM−1c.
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From (28), δ¤0 can be rewritten as P¤0. Take xTG(xT
1 , xT

2 ) to get

xTPxG ∑
K

kG1

α k (x1Ax2ck)
TMk (x1Ax2ck). (29)

So,

xTPx¤0, for all x,

which proves that P¤0 and thus that δ¤0. �

Theorem 3.1. Let C ⊂ �n be a compact set with a nonempty interior,
and let E GE (c; M ) ⊂ �n be an ellipsoid defined as in (7). Then, each of the
minimization problems minE ⊃ C tr M−1 (Problem T) and minE ⊃ C

log det M−1 (Problem D) has a unique solution.

Proof. Only the proof for the trace criterion will be detailed. First, let
us prove that a solution exists. Since C has a nonempty interior, it contains
a ball {x ∈ �n: ��xAc0 ��⁄rmin} with rminH0 and ��M��⁄r−2

min, where ��M�� is the
(operator) norm of M, equal to its maximum eigenvalue. The boundedness
of C implies that there exist dmax such that

��c0 ��⁄dmax

and rmax such that

��M−1��⁄r2
max.

Since c0 ∈ E, we have

��c0Ac��⁄rmax, ��c��⁄rmaxCdmaxGd0 .

Hence, Problems T and D can be considered subject to the extra constraints

��M��⁄r−2
min , ��M−1��⁄r2

max , ��c��⁄d0 ,

which define a compact set. Now, the cost functions tr MA1 and log det
MA1 are continuous on this set since they are differentiable. Therefore, by
standard continuity considerations, Problems T and D possess solutions.

Assume now that there are two distinct solutions of Problem T or D,
namely

E1GE (c1 ; M1), E2GE (c2 ; M2).

Then, for any x in C , one has

(1�2) ∑
2

kG1

��M1�2
k (xAck) ��2⁄1.
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This inequality is equivalent to

(xAc)TM(xAc)⁄1Aδ,

with

MG(1�2)(M1CM2),

cG(1�2)M−1(M1c1CM2c2),

δG(1�2)(cT
1 M1c1CcT

2 M2c2)AcTMc.

Since

(xAc)TM(xAc)¤0,

and since C is a nonempty set, δF1. Lemma 3.3 with KG2 and
α 1Gα 2G1�2 implies that δ¤0. Therefore, C is contained in E (c; M), but

also in E (c; (1Aδ)−1M ).
For the trace criterion, the two solutions satisfy

tr M−1
1 Gtr M−1

2 Gt*.

The strict convexity of the trace function implies that

tr((1Aδ)M−1)⁄ (1Aδ)t*,

the equality being satisfied only if

M1GM2 .

So the optimality of M1 and M2 implies that M1GM2 and δG0. Now, if
M1GM2GM, then

δG(1�4)(c1Ac2)
TM(c1Ac2),

so δG0 implies that c1Gc2 ; hence, E1GE2 . Thus, the minimum-trace ellip-
soid is unique. �

4. Sum

The ellipsoids considered in this section are bounded but may have
empty interiors; this is why they will be described in the form (10). Let

E GE
+(c; P).

Given K ellipsoids of �n

EkGE
+(ck ; Pk), kG1, . . . , K,
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and their sum

M KG ∑
K

kG1

Ek ,

which is a convex set, the problem is then to find either

E *Garg min
E ⊃ M K

tr P (Problem T+)

or

E *Garg min
E ⊃ M K

log det P (Problem D+).

From Theorem 3.1, this ellipsoid exists and is unique.

Theorem 4.1. The center of the optimal ellipsoid E * for both Prob-
lems TC and DC is given by

c*G ∑
K

kG1

ck . (30)

Proof. The support function sE : �n→� of E GE
+(c; P) is given by

(Ref. 23)

sE (η)Gmax
x ∈ E

ηTxGηTcC1ηTPη . (31)

Since the support function of a sum of convex sets is the sum of the support
functions of each of them, the support function of M K is

sM K(η)GηT ∑
K

kG1

ckC ∑
K

kG1

1ηTPkη . (32)

Moreover, E GE
+(c; P) contains M K if and only if

sE (η)¤sM K(η), for all η .

So, a necessary and sufficient condition to have M K ⊂ E is that

ηTcC1ηTPη ¤ηT ∑
K

kG1

ckC ∑
K

kG1

1ηTPkη , ∀ η ∈ �n. (33)

Assume that the ellipsoid E
+(cC ; P), with

cCG ∑
K

kG1

ckC∆,
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contains M K. Equation (33) can then be rewritten as

ηT∆C1ηTPη ¤ ∑
K

kG1

1ηTPkη , ∀ η ∈ �n. (34)

Replace η by Aη in (34) to get

AηT∆C1ηTPη ¤ ∑
K

kG1

1ηTPkη , ∀ η ∈ �n, (35)

which implies that E
+(cA ; P), with

cAG ∑
K

kG1

ckA∆,

also contains M K. Since P takes the same value in E
+(cC ; P) and

E
+(cA ; P), they are both equally optimal, which is in contradiction with the

uniqueness of the minimal determinant or trace ellipsoid containing M K,
unless ∆G0. So, the center of E * is given by

c*G ∑
K

kG1

ck . �

The following theorem provides a parametrized family of ellipsoids
over which optimization can be carried out. It is a slight modification of a
result given in Ref. 23, Exercise 4.14.

Theorem 4.2. Let D
C* be the convex set of all vectors

α ∈ �K with all α kH0 and ∑K

kG1α kG1. For any α ∈ D
+*, the ellipsoid

E α GE
+(c*; Pα ), with c* defined by (30) and

Pα G ∑
K

kG1

α −1
k Pk , (36)

contains M K.

Proof. A necessary and sufficient condition to have

M K ⊂ E α GE
+(c*; Pα )

is given by

sE α (η)¤sM K(η), for all η .

From (33) with cGc* defined as in (30) and PGPα in (36), this condition
is equivalent to

1ηTPα η ¤ ∑
K

kG1

1ηTPkη , for all η .
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This condition is also equivalent to

1� ∑
K

kG1

a2
k�� ∑

K

kG1

b2
k�¤ ∑

K

kG1

akbk , (37)

with

akGα 1�2
k , bkGα −1�2

k 1ηTPkη ,

which is satisfied for any α ∈ D
+* as a trivial consequence of the Schwarz

inequality; so, M K ⊂ E α . �

Note that the center of E α is optimal according to Theorem 4.1 and
does not depend on α or the measure of size considered. In what follows,
the optimal ellipsoid E * of Problem T+ or D+ will be approximated by the
optimal ellipsoid E α * in the parametrized family E α , which leads to comput-
ing either

α *Garg min
α ∈ D

+*
tr Pα (Problem T+

α )

or

α *Garg min
α ∈ D

+*
log det Pα (Problem D+

α ).

Theorem 4.3. The optimization problems T+
α and D+

α are convex and
their cost functions are twice differentiable. Let D * be the set of all α ∈ �K,
with α kH0, kG1, . . . , K, which contains D

C*. Define Pα as in (36), but
with α ∈ D *. Let ϕt (α )Gtr Pα . The ith entry of its gradient is given by

∂ϕt (α )�∂α iGAα −2
i tr Pi , (38)

and its Hessian Ht is diagonal, with

Ht (α )G2 diag( tr P1�α 3
1 , . . . , tr PK�α 3

K). (39)

Let ϕd (α )Glog det Pα . The ith entry of its gradient is given by

∂ϕd (α )�∂α iG−α −2
i tr(P−1

α Pi), (40)

and the entries of its Hessian Hd are given by

∂2ϕd (α )�∂α 2
i G2α −3

i tr(P−1
α Pi)Aα −4

i tr(P−1
α PiP

−1
α Pi), (41a)

∂2ϕd (α )�∂α i∂α jG−α −2
i α −2

j tr(P−1
α PiP

−1
α Pj), ∀ i≠ j. (41b)
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Proof. Equations (38) and (39) are obtained by direct calculation.
Since

ϕd (α )G−log det P−1
α ,

the results of Section 3.1 with f ′Gϕ ′d can be used to establish (40)–(41).
Since Pk¤0 and Pk≠0,

tr PkH0, kG1, . . . , K.

Therefore, Ht (α ) as given by (39) is a strictly positive-definite matrix and
ϕt(α ) is strictly convex over D * and thus over D

C*. It follows that Prob-
lem T+

α is convex. The demonstration for Problem D+
α is more complicated

and will be detailed in Section 7.2. �

The following result will be used to prove that replacing Problem TC

or DC by Problem T+
α or D+

α yields often a suboptimal solution of the
initial problem.

Lemma 4.1. A necessary condition for an ellipsoid E α * to be an opti-
mal solution of Problem T+ or D+ is that there exists η such that
α *A2

k ηTPkη does not depend on k.

Proof. A necessary optimality condition is that there exist contact

points between E α * and M K . These contact points correspond to vectors η
such that

sE α *(η)GsM K(η).

The proof of Theorem 4.2 shows that this is satisfied if and only if
akGα *1�2

k is proportional to bkGα *A1�2
k 1ηTPkη for all k, i.e., if and only

if α *A2
k ηTPkη does not depend on k for the values of η that correspond to

contact points. �

The next two subsections address the optimization Problems T+
α and

D+
α in turn.

4.1. Trace Criterion. A considerable advantage of the trace criterion
is that an explicit solution for α * can be given, and the following theorem
is the main result of this section.

Theorem 4.4. In the family E α GE
+(c*; Pα ), the minimal-trace ellip-

soid containing the sum of the ellipsoids EkGE
+(ck ; Pk), kG1, . . . , K, is
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obtained for

Pα *G� ∑
K

kG1

1tr Pk� � ∑
K

kG1

Pk�1tr Pk�. (42)

Proof. Let

tkGtr Pk , tα Gtr Pα ,

with

Pα G ∑
K

kG1

α −1
k Pk , α ∈ D

+*;

thus,

tα G ∑
K

kG1

α −1
k tk .

Problem T+
α can be solved easily by introducing a Lagrange multiplier λ

and minimizing

L(α )G ∑
K

kG1

α −1
k tkCλ � ∑

K

kG1

α kA1�.
A necessary condition for L(α *) to be a minimum is that

∂L�∂α kG0, kG1, . . . , K,

at αGα *. This implies that

α *k Gλ −1�21tk .

Then, the constraint

∑
K

kG1

α *k G1

leads to

1λ G ∑
K

kG1

1tk ,

so

α *k G� ∑
K

kG1

1tk�
−1

1tk , kG1, . . . , K.
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Equation (42) is finally obtained by replacing α in (36) by its optimal value
α *. �

Similar results could be derived with the Chernousko parametrization
(Refs. 10, 18, 29, 31). The next result shows that the solution is not necessar-
ily optimal.

Proposition 4.1. In general, the ellipsoid obtained by solving Problem
T+

α is only suboptimal for Problem TC.

Proof. Take

P1GddT,

with

dG(1, 1)T, P2Gdiag(1, 0), P3Gdiag(0, 1),

so

α *1 G(12C2)−112, α *2 Gα *3 G(12C2)−1.

Then, the condition of Lemma 4.1 becomes

2−1�2�η1Cη2 �G�η1 �G�η2 �,

and it is impossible to find η such that this condition is satisfied. �

The main advantage of Theorem 4.4 is the explicit form of the solution.
Another benefit of this solution is its transitive nature, which makes it easy
to consider a recursive version of Problem T+

α when the ellipsoids Ek are
made available one after the other. Suppose that the approximating ellip-
soid E

r
kGE

+(cr
k ; P

r
k) has been obtained after processing the first k ellipsoids

E1 , . . . , Ek . The next approximation is to find E
r
kC1GE

+(cr
kC1; P

r
kC1) con-

taining E
r
kCEkC1 . From (42) for KG2, one gets the recursive algorithm

cr
kC1Gcr

kCckC1 , (43a)

Pr
kC1G(1tr Pr

kC1tr PkC1)

B(Pr
k�1tr Pr

kCPkC1�1tr PkC1), (43b)

initialized at cr
1Gc1 and Pr

1GP1 .

Theorem 4.5. Once all the ellipsoids of the sum have been taken into
consideration, the recursive and nonrecursive algorithms generate the same
approximating ellipsoid.
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Proof. This is shown by direct calculation. �

Note that the Kalman filter shares this property of equivalence of the
results obtained recursively and nonrecursively.

4.2. Determinant Criterion. Contrary to the minimum-trace case, no
general explicit solution is available for the minimal-determinant approxi-
mation. The optimal value of α is obtained by solving a convex optimiz-
ation problem of dimension KA1 (Theorem 4.3). Then, standard iterative
methods for solving convex constrained optimization problems can be
applied, such as gradient projection, conditional gradient, and constrained
Newton methods (Ref. 32). A damped Newton method for self-concordant
functions (Ref. 26) can also be applied.

Proposition 4.2. In general, the ellipsoid obtained by solving Problem
D+

α is only suboptimal for Problem DC.

Proof. Consider the same example as in the proof of Proposition 4.1.
The symmetry of the problem implies

α *2 Gα *3 Gβ

and then the constraint α ∈ D
+* implies

α *1 G1A2β.

Solving Problem D+
α with respect to β yields

βG1�3.

Then, the condition of optimality in Lemma 4.1 becomes

�η1Cη2 �G�η1 �G�η2 �,

and it is impossible to find η such that this condition is satisfied. �

The recursive algorithm reads

cr
kC1Gcr

kCckC1 , (44a)

Pr
kC1Gα *A1

k Pr
kC(1Aα *k )−1PkC1 , (44b)

with

α *k Garg min
0FαF1

log det(α −1Pr
kC(1Aα )−1PkC1). (45)

It is initialized at cr
1Gc1 and Pr

1GP1 .
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The next proposition will be useful for the prediction step of the state
estimation in the special case where there is a single scalar bounded input,
as it gives an explicit expression for α *k in (45).

Proposition 4.3. When PkC1GdkC1d
T
kC1 , with dkC1 a vector, EkC1 is

an interval. Let γ GdT
kC1(P

r
k)

−1dkC1 . If γ ≠1, then

α *k G[γ (1An)C2nA1γ 2(1An)2C4γn]�[2n(1Aγ )]; (46)

else, if γ G1, then

α *k Gn�(nC1).

Proof. Let

l (α )Glog det(α −1Pr
kC(1Aα )−1dkC1d

T
kC1).

Since

det(ICuûT)G1CuTû,

it is easy to establish that

l (α )Glog det Pr
kAn log αClog(1Cα (1Aα )−1γ ).

A necessary condition for l(α ) to be minimum at α *k is that l ′(α *k )G0. The
numerator of l ′(α ) is

m(α )Gn(γA1)α 2C(γ (1An)C2n)αAn.

Note that m(0)G−nF0 and m(1)GγH0. Thus, the second-order poly-
nomial equation m(α )G0 has only one solution for α in ]0, 1[, which is
trivial to obtain and corresponds to α *k as given by the proposition. �

5. Intersection

Some of the ellipsoids considered in this section may be unbounded
but have nonempty interiors; this is why they will be described in the form
(12).

Let

E GE
∩ (c; M ).

Given K ellipsoids

E kGE
∩ (ck ; Mk) ∈ �n, kG1, . . . , K,
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and given

I KG)
K

kG1
E k ,

which is a convex set, the problem is then to find either

E *Garg min
E ⊂ I K

tr M−1 (Problem T∩ )

or

E *Garg min
E ⊃ I K

log det M−1 (Problem D∩ ).

From Lemma 3.1, this ellipsoid exists and is unique.

Theorem 5.1. Let D
C be the convex set of all vectors α ∈ �K, with

α k¤0, kG1, . . . , K, and ∑K

kG1α kG1. Take any α ∈ D
+ such that

∑K

kG1α kMkH0. Define

Mα G ∑
K

kG1

α kMk , cα GM−1
α ∑

K

kG1

α kMkck ,

δα G ∑
K

kG1

α kc
T
k MkckAcT

α Mα cα .

Then, the ellipsoid

E α GE
∩ (cα ; (1Aδα )−1Mα )

contains I K.

Proof. Let

ϕk (x)G(xAck)
TMk (xAck), kG1, . . . , K;

then,

I KG{x ∈ �n: ϕk (x)⁄1, kG1, . . . , K}.

Of course, if x ∈ I K , then

ϕ(x)G ∑
K

kG1

α kϕk (x)⁄1, for any α ∈ D
+.

After simple transformations, ϕ(x) can be written as

ϕ(x)G(xAcα )TMα (xAcα )Cδα ;
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then, I K can be rewritten as

I KG{x ∈ �n: (xAcα )TMα (xAcα )⁄1Aδα }.

Since I K is a nonempty set, δα F1 and thus,

I K ⊂ E
∩ (cα ; (1Aδα )−1Mα ). �

Proposition 5.1. For any α ∈ D
+, the ellipsoid E

∩ (cα ; Mα ) contains
also I K.

Proof. One has δα F1 and, from Lemma 3.3, δα ¤0; thus, δα ∈ [0, 1[
and E

∩ (cα ; Mα ) contains E
∩ (cα ; (1Aδα )−1Mα ). �

Thus, two parametrized families of outer ellipsoids may be considered
to find the optimal value of α , namely

E α GE
∩ (cα ; (1Aδα )−1Mα )

and

E ′α GE
∩ (cα ; Mα ).

This leads to four problems depending on the criterion and the family
considered:

α *Garg min
α ∈ D

+
tr((1Aδα )−1Mα )−1 (Problem T∩

α ), (47a)

α *Garg min
α ∈ D

+
tr M−1

α (Problem T′ ∩
α ), (47b)

α *Garg min
α ∈ D

+
log det((1Aδα )−1Mα )−1 (Problem D∩

α ), (47c)

α *Garg min
α ∈ D

+
log det M−1

α (Problem D′ ∩
α ). (47d)

Optimization within the family E α leads to a better value of the criterion
considered and so to a better ellipsoid than the one obtained with the family
E ′α , at the cost of more computation. Even if the optimization of α takes
place within the family E ′α , the final ellipsoidal approximation is improved
by taking

E α *GE
∩ (cα *; (1Aδα *)

−1Mα *).

Then, in most examples treated so far, the improvement obtained by optim-
izing within the family E α becomes marginal.
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Theorem 5.2. The optimization problems T ′ ∩
α and D′ ∩

α are convex
and their cost functions are twice differentiable. Let D be the set of all
α ∈ �K, with α k¤0, kG1, . . . , K, which contains D

C. Define Mα as in
Theorem 5.1, but with α ∈ D . Let ϕt (α )Gtr M−1

α . The i th entry of its gradi-
ent is given by

∂ϕt (α )�∂α iG−tr M−1
α MiM

−1
α , (48)

and the entries of its Hessian are given by

∂2ϕt (α )�∂α i∂α jG2 tr M−1
α MiM

−1
α MjM

−1
α . (49)

Let ϕd (α )Glog det M−1
α . The i th entry of its gradient is given by

∂ϕd (α )�∂α iG− tr M−1
α Mi , (50)

and the entries of its Hessian are given by

∂2ϕd (α )�∂α i∂α jGtr M−1
α MiM

−1
α Mj . (51)

Proof. These relations are obtained by applying the results of Section
3.1 with f ′Gϕ ′t or f ′Gϕ ′d given by (20) or (23).

From Lemma 3.1, tr MA1 is a strictly convex function, ϕt(α ) is strictly
convex over D and thus over D

C, so Problem T ′ ∩
α is convex. The function

log det MA1 is also strictly convex and a similar reasoning proves that Prob-
lem D′ ∩

α is also convex. �

The same type of optimization method as mentioned in Section 4.2 can
be employed. Problems T ′ ∩

α and D′ ∩
α are similar from a computational

point of view; none of them yields an explicit solution in general.
Consider now a recursive version of the problems in (47). Let

E
r
kGE

∩ (cr
k ; M

r
k)

be the approximate ellipsoid obtained after processing the first k ellipsoids
E1 , . . . , Ek . The next approximation is to find

E
r
kC1GE

∩ (cr
kC1 ; (1Aδα )−1Mr

kC1)

containing E
r
k∩ EkC1 . From Theorem 5.1, the following recursive algorithm

can be obtained:

Mr
kC1GMr

kC1(α *kC1) , (52a)

cr
kC1Gcr

kC1(α *kC1), (52b)

where

α *kC1Garg min
0⁄α⁄1

ϕ(α ),
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with

ϕ(α )Gtr((1Aδα )−1Mr
kC1)

−1,

ϕ(α )Gtr(Mr
kC1)

−1,

ϕ(α )Glog det((1Aδα )−1Mr
kC1)

−1,

or

ϕ(α )Glog det(Mr
kC1)

−1,

depending on the criterion and family considered, and where

Mr
kC1(α )Gα Mr

kC(1Aα )MkC1 , (53a)

cr
kC1(α )G(Mr

kC1(α ))−1(α Mr
kc

r
kC(1Aα )MkC1ckC1), (53b)

δα Gα crT
k Mr

kc
r
kC(1Aα )cT

kC1MkC1ckC1

−crT
kC1(α )Mr

kC1(α )cr
kC1(α ). (53c)

The algorithm is initialized at cr
1Gc1 and Mr

1GM1 . It generates a more
pessimistic final ellipsoid than the nonrecursive algorithm.

An important special case is when E kC1 is a strip,

EkC1GS (ykC1 ; dkC1),

because an expression of α * over the better parametrized family E α can
then be established. This corresponds to the well-known results of Fogel
and Huang (Ref. 17). The trace criterion requires finding the unique feasible
solution of a cubic equation. With the determinant criterion, this equation
is only quadratic. When one limiting hyperplane of the strip does not cut
into E

r
k , it is well-known that translating the nonintersecting hyperplane to

make it tangent to the intersected ellipsoid makes it possible to obtain a
better result (Ref. 16), which turns out to be optimal (Ref. 33). This confirms
that the solution obtained even with the best parametrized family is some-
times suboptimal. This strip tightening has the additional advantage (Ref.
34) of making useless a test of the algorithm for the trace criterion proposed
by Fogel and Huang. The complexity of both criteria then becomes equival-
ent for the intersection of an ellipsoid and a strip.

6. Conclusions

Algorithms for the ellipsoidal approximation of the sum and intersec-
tion of K ellipsoids are building blocks for a multi-input multi-output
bounding counterpart to the Kalman filtering. Those presented in this paper
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can accommodate situations where the perturbations and measurement
noise are multidimensional and consist of independent subvectors. Since sets
of ellipsoidal constraints can be taken into account, the method is not lim-
ited to linear inequalities. At each step, the ellipsoid is chosen optimally
in a family, each member of which is guaranteed to contain the set to be
characterized. However, the optimal ellipsoid that would be obtained with-
out constraints is not guaranteed to belong to this family, so the overall
result may be suboptimal.

To measure the size of the ellipsoids obtained, and thus the quality of
the approximation, it turns out that the trace criterion has several advan-
tages over the determinant criterion more classically used. The trace cri-
terion is less prone to yielding narrow ellipsoids with small volumes but
large parameter uncertainty intervals. In the case of the summation of ellip-
soids during the prediction phase, and contrary to the determinant criterion,
it leads to an explicit and transitive solution, which means that ellipsoids
can be added successively, with the same final result as if they were all
taken into account simultaneously. This is especially interesting if several
prediction steps must take place before the occurrence of a measurement
allowing a correction step. No explicit solution is available in general for
the intersection of ellipsoids during the correction phase with either cri-
terion. One of the two parametrized families that have been proposed here
has the advantage of leading to convex problems, with a seemingly marginal
decrease in performance. The extension of the approach to deal with uncer-
tainty in the matrices A, B, C, D is under investigation.

7. Appendix

7.1. Reformulation of the Observation Equation. The purpose of this
section is to show how the observation equation (1b) can be rewritten as
(3b). First, let

w j
t ∈ �q j

t, jG1, . . . , J,

be the independent subvectors of wt assumed to belong to known ellipsoids,
and let y j

t ∈ �r j
t be the r j

t components of yt corrupted by w j
t . Then, the obser-

vation equation (1b) can be rewritten as

y j
tGCj

txtCW j
tw

j
t , jG1, . . . , J, (54)

where Wj
tw

j
t belongs to a known ellipsoid, Cj

t and W j
t being trivially

deduced from Ct and Wt. A suitable transformation of W j
t makes it possible

always to impose that w j
t belongs to the unit ball B

q j
t and (54) becomes

y j
tGCj

txtCW j
tw

j
t , w j

t ∈ B
q j

t, jG1, . . . , J. (55)
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In what follows, it is assumed that this transformation has been performed.
Assume also that

dim w j
t¤r j

t , rank W j
tGr j

t .

This amounts to assuming that no linear combination of the components
of y j

t is noise free. As a result, the set of all xt such that (55) is satisfied has
a nonempty interior. As in the Kalman filtering, noise-free data would
require a special treatment.

Then, let us show that it is possible to eliminate the matrix W j
t , without

loss of generality. First, perform a singular-value decomposition of W j
t as

RSTT, where R and T are unitary matrices and SG(D, 0), with
DGdiag(λ 1 , . . . , λ r j

t), λ i , iG1, . . . , r j
t , being the (nonzero) singular values

of W j
t . Since T is unitary, the vector

wGTTw j
t

belongs to B
q j

t. Partition w as

wTG(w ′ jTt , w ″ jT
t ),

in a way compatible with the dimensions of the blocks of S. The projection
w ′ jt of w belongs to B

r j
t, and (55) can be rewritten as

y j
tGCj

txtCRDw ′ jt , w ′ jt ∈ B
r j

t.

Since R is unitary and D invertible, left multiply this equation by D−1RT to
get

y ′ jt GC ′ jt xtCw ′ jt , w ′ jt ∈ B
r j

t,

with

y ′ jt GD−1RTy j
t , C ′ jt GD−1RTCj

t .

To simplify notation, it is assumed in the paper that these transformations
have been performed already and that y ′ jt , C ′ jt , w ′ jt are written as y j

t ,
Cj

t , w
j
t .

7.2. Proof of Theorem 4.3. The demonstration of the convexity of
ϕd (α ) uses the function ∆d : [0, 1]→� defined by

∆d (λ )Gϕd (λα C(1Aλ )β)Aλϕd (α )A(1Aλ )ϕd (β), (56)

with α ∈ D * and β∈ D *. This function satisfies

∆d (0)G∆d (1)G0.
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From Lemma 3.2 and Section 3.1,

∆′d (λ )Gtr (P−1
γ Qγ)Aϕd (α )Cϕd (β),

with

γ Gλα C(1Aλ )β and Qγ GdPγ �dλG− ∑
K

kG1

δkγ−2
k Pk ,

where

δGαAβ.

It is then shown easily that

∆″d (λ )Gtr Sγ ,

with

Sγ GP−1�2
γ Tγ P−1�2

γ , Tγ GRγ AQγ P−1
γ Qγ ,

Rγ GdQγ �dλG2 ∑
K

kG1

δ2
kγ−3

k Pk .

By construction, Tγ is symmetric and thus Sγ is symmetric too. Since
Pγ H0, proving that Sγ H0 is equivalent to proving that Tγ H0. The proof
is based on the generalization of the Schur inequality (Ref. 27, Theorem
7.7.6). For any Pγ H0, the following conditions are equivalent:

Uγ G�Pγ Qγ

QT
γ Rγ

�H0 ⇔ Rγ HQT
γ P−1

γ Qγ . (57)

Since Qγ GQT
γ , Tγ H0 is equivalent to Uγ H0. Uγ can be rewritten as

Uγ G ∑
K

kG1

Uk ,

with

UkG�γ
−1
k Pk −δkγ−2

k Pk

−δkγ−2
k Pk 2δ2

kγ−3
k Pk

�. (58)

Since Pk is symmetric, Uk is symmetric too. Take xTG(xT
1 , xT

2 ), with x1 and
x2 in �n, to get

xTUkxG(γ−1�2
k x1Aδkγ−3�2

k x2)
TPk (γ−1�2

k x1Aδkγ−3�2
k x2)

Cδ2
kγ−3

k xT
2 Pkx2 . (59)

Since Pk¤0, kG1, . . . , K, and since Pγ H0,

xTUγ xH0, for all x,
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which proves that Uγ H0 and Sγ H0. Thus, tr Sγ H0 and therefore,
∆″d (λ )H0 and ∆d (λ )F0 for all λ ∈ ]0, 1[ and α ≠β, which is equivalent to

ϕd (γ )Fλϕd (α )C(1Aλ )ϕd (β);

so, ϕd is strictly convex and Problem DC is strictly convex over D * and
thus over D

+*. �
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