
Mobile Networks and Applications 6, 427–434, 2001
 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Globally Constrained Power Control Across Multiple Channels
in Wireless Data Networks

NICHOLAS BAMBOS
Department of Electrical Engineering and Department of Management Science Engineering, Stanford University, Stanford, CA 94305, USA

SUNIL KANDUKURI
Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

Abstract. We investigate multi-channel transmission schemes for packetized wireless data networks. The transmitting unit transmits
concurrently in several orthogonal channels (for example, distinct FDMA bands or CDMA codes) with randomly fluctuating interference
and there is a global constraint on the total power transmitted across all channels at any time slot. Incoming packets to the transmitter are
queued up in separate buffers, depending on the channel they are to be transmitted in. In each time slot, one packet can be transmitted in
each channel from its corresponding queue. The issue is how much power to transmit in each channel, given the interference in it and the
packet backlog, so as to optimize various power and delay costs associated with the system. We formulate the general problem taking a
dynamic programming approach. Through structural decompositions of the problem, we design practical novel algorithms for allocating
power to various channels under the global power constraint.
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1. Introduction

Power control in wireless networking mitigates interference,
increasing the network capacity, and minimizes the power
spent to achieve a target quality of service per communica-
tion link, prolonging the mobile battery life. Power control
in voice oriented wireless networks has been studied exten-
sively in the past [1–5,9,11,12,18–20], while in packet net-
works relatively more recently [6,8,15]. Previous studies of
power control in wireless networks with packetized data traf-
fic analyze the case of a single transmitter communicating
with a single receiver in a channel with randomly fluctuating
interference. During high interference periods packets may
have to be queued up in the transmitter buffer and incur a
delay cost instead of being transmitted at high power (due to
high interference) and incur an unacceptable power cost.

In this paper, we consider a central transmitting unit com-
municating with multiple receivers, each in a separate chan-
nel which is orthogonal to all others and has randomly fluc-
tuating interference. The total power transmitted in all chan-
nels has to be less than a certain power ceiling, which is
determined by operational constraints associated with the
transmitting unit. Arriving packets to the transmitter are
queued up in separate buffers, depending on which user (re-
ceiver in channel) they are to be transmitted to. In each
time slot one packet may be transmitted in each channel.
Given the power ceiling, the dilemma is how much power to
transmit in each channel, that is, how to distribute the con-
strained power to the various channels. Intuitively, one feels
that channels with high backlog and low interference in a
slot should be allocated more power than channels with low
backlog and high interference. To capture this dilemma and

understand the situation, in this paper we model the system
within a dynamic programming framework [7,14]. Because
packetized traffic may have to tolerate limited delay, we as-
sociate deadlines with packets. That is, if a packet is not
transmitted successfully before its set deadline, then it ex-
pires and gets dropped from the buffer and a cost in incurred.

The need for combined power control across multiple
channels with a global power ceiling can arise in cases where
a mobile wireless data terminal transmits to multiple net-
work access points concurrently (for example, multiple base
stations in the case of cellular networks) over orthogonal ra-
dio channels, that is, FDMA bands or CDMA codes. In
this situation of access and channel diversity the data ter-
minal may be supporting various wireless computing appli-
cations on different channels. The electronic circuitry and
the battery constraints determine the maximum power dis-
charge across all channels, that is, the power ceiling men-
tioned above. A ‘dual’ scenario is that where a central trans-
mitting unit, say a base station in a micro-cellular network
architecture or a wireless LAN, transmits to multiple user
receivers in orthogonal channels. We mostly refer to the lat-
ter scenario in this paper, however, the former is also clearly
covered.

The paper is organized as follows. Section 2 introduces
the stochastic model used in this study and the general for-
mulation of the power control problem, based on a dy-
namic programming approach. That includes packet dead-
lines leading to high complexity and making necessary re-
duced formulations of the problem that can lead to tractable
solutions. In section 3 the issue of allocating the power so as
to maximize the aggregate system throughput is considered,
as well as that of keeping the individual channel throughput
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constant in the presence of fluctuating interference. Novel
practical algorithms are introduced for these two cases. In
section 4 we consider a reduced formulation of the power
control problem which still includes delay costs associated
with the system buffers. However, the operational complex-
ity still remains high. To address that, we consider in sec-
tion 5 another formulation of the problem based on a de-
composition to individual queues. This allows us to design
a novel practical algorithm for multi-channel power control.
We conclude with some final comments.

2. The multi-channel power control model – general
formulation

Consider a central transmitting unit (for example, a base sta-
tion) communicating with K users, each receiving in one of
K distinct channels indexed by k ∈ {1, 2, 3, . . . ,K}. The
system operates in slotted time and transmission is packe-
tized. In each time slot, one packet may be transmitted in
each channel. Time slots are indexed by n ∈ {1, 2, 3, . . .}.

The transmitter has K buffers, one for each user. Pack-
ets arrive at the transmitter and are queued up in separate
buffers, depending on which channel they are to be trans-
mitted in. Each individual buffer is served in a FIFO (first-
in-first-out) manner. At most one packet per user can arrive
in each time slot and packet arrival streams are modeled as
independent Bernoulli processes. That is, in each time slot,
a k-user packet arrives with probability ak and is queued up
in the kth buffer, or none arrives with probability 1 − ak. All
arrival events are independent of each other in the various
time slots and amongst the various users/channels.

Let pnk be the power transmitted in channel k during time
slot n and Pn = (p1

n, p
2
n, . . . , p

k
n, . . . , p

K
n ) the joint power

vector. There is a power ceiling Pmax that the sum of all
transmitted powers cannot exceed, that is,

K∑
k=1

pkn � Pmax (1)

for every time slot n. Input signals to different channels are
multiplexed and modulated before being transmitted [16].

Let ikn be the interference level in channel k over time
slot n. It is assumed that the interference does not vary
within each time slot, but fluctuates between consecutive
ones. The joint interference vector over all channels during
time slot n is given by

In = (
i1n, i

2
n, . . . , i

k
n, . . . , i

K
n

)
(2)

and is assumed to fluctuate according to a time-homogene-
ous irreducible Markov chain on a finite (but perhaps large)
state space I with given transition probabilities

Prob
[
In+1 = I ′ | In = I

] = 
(
I, I ′), (3)

where I, I ′ ∈ I. Later in the analysis, we consider the spe-
cial case where the interference in each channel is statisti-
cally independent from that in others. Overall, it is assumed

that the interference is unresponsive to the power transmit-
ted in the channels, that is, it is modulated by some extrane-
ous agent. In practical situations, the cochannel interference
would be responsive to the power transmitted in the channel,
because of other transmitters in it reacting to power varia-
tions of the one under consideration. For methodological
purposes, however, we make the assumption that the inter-
ference is unresponsive, trying to separate the concern of re-
active cochannel interference from that of power allocation
across different channels, which is our focus here. Under-
standing the latter can allow one to develop efficient heuris-
tics to address the case of responsive interference, as in [6],
for example.

In each time slot, the packets that are positioned at the
front of the user queues are concurrently transmitted – each
in its corresponding channels – at certain chosen powers.
The probability that a packet transmitted in channel k dur-
ing time slot n is successfully received by the user receiver
is sk(pkn, i

k
n), depending on the transmitted power pkn and

the channel interference ikn . It is naturally assumed that each
sk(p, i) function is increasing in the power argument p and
decreasing in the interference one i. The particular form
of sk(p, i) depends on the modulation scheme and the chan-
nel propagation characteristics. For example, under standard
DPSK/F (differential binary phase-shift keying over a fading
channel) and NC-FSK/F (non-coherent frequency-shift key-
ing over a fading channel) [13,15] – and potentially several
others – the success probability has the generic functional
form

s(p, i) = p/i

α + β(p/i)
= p

αi + βp
, (4)

where α � 0, β � 1. Note that p/i is the SIR (signal to
interference ratio). Another common functional form is

s(p, i) = 1 − e−γp/i, (5)

where γ � 0. Actually, the detailed formula of s(p, i) turns
out not to be critical for the purposes of our study. It is
its functional form that matters, and this has to have the
structural properties of being increasing in p and decreasing
in i.

Upon successful reception of a transmitted packet in a
channel, the transmitter attempts to transmit the next packet
in the corresponding user queue. In the case of unsuccessful
transmission, the transmitter continues to attempt transmis-
sion of the same packet in the following time slots, until it
is successfully received (or until the packet deadline expires,
as we shall see later). It is assumed that there exists reli-
able ACK/NACK mechanism for each user, which informs
the transmitter whether the packet was successfully received
or not, instantaneously at the end of each time slot. Further-
more, it is assumed that we can estimate the channel interfer-
ence at the beginning of every time slot, and this stays con-
stant throughout the time slot. It is assumed that all random:
(1) packet arrival events, (2) successful or not transmission
events, and (3) interference switching events, are statistically
independent of each other.
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The standard approach would be to transmit equal power
Pk = Pmax/K in each channel k ∈ {1, 2, . . . ,K}. In this pa-
per, we consider power allocation schemes which transmit at
different power level in each channel, according to its inter-
ference and the corresponding user packet backlog. The goal
is to achieve throughput and power gains over the standard
approach.

We formulate the problem within a dynamic program-
ming framework. We consider that each packet of the kth
user has a deadline of Dk time slots associated with it.
That is, each k-user packet must be successfully transmit-
ted within Dk time slots after its arrival, otherwise it expires
and gets dropped from the kth buffer. We also consider that
each user buffer at the transmitter can hold up to Bk pack-
ets. Observe that, since at most one packet may arrive to the
kth FIFO buffer at any time slot, and every packet leaves the
buffer within Dk time slots (or else it is simply dropped),
the maximum number of packets that can ever be in the kth
buffer in a time slot is simply

Mk = min
{
Bk,Dk

}
. (6)

Note that a kth buffer overflow can only occur when Bk �
Dk . Otherwise, only packet drops may occur due to their
deadlines expiring before being transmitted successfully. In-
deed, when Bk > Dk , in the worst case scenario the front
packet of the kth FIFO buffer has been in it forDk time slots;
hence, it must be either successfully transmitted in the cur-
rent time slot or otherwise dropped from the buffer. There-
fore, the number of packets in this buffer will never exceed
Dk (< Bk), and no buffer overflow will ever occur due to an
arriving packet finding the buffer full.

The backlog state of the kth user’s buffer at the transmitter
during time slot n is given by the Mk-dimensional vector

Rk
n = (

rkn(1), r
k
n(2), . . . , r

k
n(m), . . . , r

k
n

(
Mk

))
, (7)

m ∈ {1, 2, . . . ,Mk}, where the integer rkn(m) is the resid-
ual lifetime of the packet at the mth place of the FIFO
buffer of the kth user at the nth time slot. The residual life-
time is the remaining number of time slots till the packet’s
transmission deadline expires; the latter is initiated when
the packet arrives in the buffer. If there is no packet at
the mth place of the kth buffer at the nth time slot, then
we artificially assign rkn(m) = ∞. Therefore, if there are
only q packets in the kth buffer during the nth time slot, then
Rk
n = (rkn(1), r

k
n(2), . . . , r

k
n(q),∞,∞, . . . ,∞). The collec-

tive backlog state of all K buffers at the central transmitter
unit during time slot n is denoted by

Rn = {
R1
n, R

2
n, . . . , R

k
n, . . . , R

K
n

}
. (8)

Let R be the set of all possible states that the collective back-
log state Rn may attain during its evolution. The complete
system state is {Rn, In}, which tracks both the backlog and
the the interference states.

It is easy to see that under the assumptions introduced
before, {Rn, In} is a discrete-time Markov chain on the state
space R × I. The transition probabilities can be calculated

easily, from those of the interference state (3) and the indi-
vidual backlog states of each buffer. For example, it is easy
to see that Rk

n = (rkn(1), r
k
n(2), . . . , r

k
n(q),∞,∞, . . . ,∞)

can switch to Rk
n+1 = (rkn(1) − 1, rkn(2) − 1, . . . , rkn(q) −

1,Dk,∞, . . . ,∞) with probability ak(1 − sk(pkn, i
k
n)), cor-

responding to (1) a packet arriving, (2) the transmitted
packet not being received successfully, and (3) no packet be-
ing dropped during time slot n. Similarly, Rk

n = (rkn(1),
rkn(2), . . . , r

k
n(q),∞,∞, . . . ,∞) can switch to Rk

n+1 =
(rkn(2) − 1, rkn(3) − 1, . . . , rkn(q) − 1,Dk,∞, . . . ,∞) with
probability aksk(pkn, i

k
n), corresponding to (1) a packet arriv-

ing, (2) the transmitted packet being received successfully,
and (3) no packet being dropped during time slot n. Given
the independence of all random events (arrivals, transmis-
sions, and interference transitions) that we have assumed,
we can similarly calculate the transition probabilities easily

Prob
[
(Rn+1, In+1) = (R′, I ′) | (Rn, In) = (R, I), Pn = P

]
= �P {(R, I), (R′, I ′)} (9)

for all (R, I), (R′, I ′) ∈ R × I and a given power vector P ,
by considering the possible state transitions and calculating
the probabilities through independent coin flips.

During the nth time slot the system incurs a power cost∑K
k=1 p

k
n, reflecting the total power spent transmitting in the

various channels, plus a backlog cost B(Rn). The function
B() from R to the positive real numbers reflects the delay
or holding cost of the packets in the various buffers of the
system, as well as potential deadline expiration and over-
flow costs. Indeed, note that when the backlog state of the
kth buffer becomes Rk

n = (0, rkn(2), . . . , r
k
n(q),∞, . . . ,∞),

the deadline of the front packet in this buffer has expired
(its residual lifetime has reached 0) and the packet has to
be dropped from the buffer. This packet dropping cost can
easily be incorporated into the backlog cost B(Rn) for the
corresponding backlog state.

The issue is how to optimally control the power {Pn} in
the various time slots, so as to minimize the expected cost
incurred by the system over its evolution. We can cast the
problem into a dynamic programming framework [7,14] as
follows. Suppose the system is run forN time slots total. Let
Vn(R, I) be the minimal cost-to-go at time n � N from state
(R, I) – that is, the minimal expected cost to be incurred un-
der optimal power control till time N , given that the system
starts at time slot n from state (R, I). The cost-to-go will
satisfy the dynamic programming equation

Vn(R, I)= min
P∈P

{
K∑
k=1

pk + B(R)

+
∑

(R′,I ′)∈R×I

�P

{(
R, I

)
,
(
R′, I ′)}

× Vn+1
(
R′, I ′)}, (10)

where P = {(p1, . . . , pk, . . . , pK):
∑K

k=1 p
k � Pmax} is

the set of power vectors that do not exceed the power ceiling.
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The dynamic programming equation can be solved re-
cursively backwards (starting from N with a given terminal
cost) to compute the optimal power control P ∗

n (R, I), n ∈
{1, 2, . . . , n, . . . , N}, for each (R, I) ∈ R × I. In principle,
the above dynamic program could be solved numerically for
a long time horizon N (to wash out the transient and bound-
ary effects) to obtain the optimal power to transmit at any
time instant P ∗(R, I) given the backlog and interference
states R and I , correspondingly. However, because of the
complexity of the backlog state R, solving the dynamic pro-
gramming recursion numerically is a highly nontrivial mat-
ter. To overcome this problem we consider below other rad-
ically simplified reformulations of the problem. There may
be ‘suboptimal’ but lead to simple ways for deciding how
much power to transmit in each channel.

3. Throughput oriented power allocation

As mentioned before, the simplest power control strategy is
to statically allocate power Pmax/K to each channel, inde-
pendently of its backlog and interference states. We call that
static power allocation. Obviously, this strategy does not
allow shifting power to channels/users where the interfer-
ence is high from those where it is not and vice versa. In its
most restricted form it would make Pmax/K available even
to channels with empty buffers at particular time slots where
it cannot be used, instead of allocating it to those that really
need it. That would be the case if the transmission processes
within each channel were totally decoupled and each chan-
nel were operated independently with a fixed power assigned
to it. This is basically the situation in current technology,
where each channel would have its own transmitter decou-
pled from all others and not allowing shifting of power from
channel to channel. A slight modification – and improve-
ment – over the previous approach is the situation where the
total available power Pmax is equally distributed to the chan-
nels that have non-empty buffers in the current time slot.

3.1. Maximizing the instantaneous aggregate throughput

An interesting approach is to try to allocate the power to the
different channels in such a way that we maximize the ag-
gregate packet throughput per time slot. Let us first assume
that none of the K buffers is empty. When the interference
vector in a time slot is I = (i1, i2, . . . , ik, . . . , iK) and a
power vector P = (p1, p2, . . . , pk, . . . , pK) is used, it is
easy to see that the expected total number of packets that are
successfully transmitted in this time slot across all channels
is simply

T (P, I) =
K∑
k=1

sk
(
pk, ik

)
, (11)

since the transmission events are independent of each other
and success occurs with probability sk(pk, ik) in the kth
channel. For each fixed I , we choose the power vector

P∗(I) = (p1∗(I), p2∗(I), . . . , pk∗(I), . . . , pK∗ (I)) that max-
imizes the instantaneous throughput T (P, I) or

T (P∗, I ) =
K∑
k=1

sk
(
pk∗(I), ik

) = max
P∈P

{
K∑
k=1

sk
(
pk, ik

)}
,

(12)
where P = {(p1, . . . , pk, . . . , pK):

∑K
k=1 p

k � Pmax} is
the space of power vectors that do not exceed the power ceil-
ing Pmax. Since all sk(pk, ik) are increasing in their power
argument pk , it easy to see that the maximum throughput
will be attained when the power vector is on the boundary of
the power space P, that is,

K∑
k=1

pk∗(I) = Pmax. (13)

Moreover, for any fixed I , there is a unique optimal power
vector P∗(I), which maximizes the aggregate throughput,
under the given interference pattern I . Assuming the inter-
ference Markov process {In} is in equilibrium at state I with
probability φ(I) (stationary distribution), the average packet
throughput in equilibrium will be

T =
∑
I∈I

T (P, I)φ(I), (14)

for any given power vector. It should be noted that by choos-
ing the optimal power vector P∗(I) for each interference
state I , we maximize the overall average throughput in equi-
librium. The calculation of the optimal power vector P∗(I)
can be obtained analytically for simple cases of the functions
s(p, i), but, in general, it would be identified numerically for
each interference pattern.

To see how the above ideas apply in practice, consider
the simplest possible example of two channels (K = 2) and
that the success probability per packet transmission in each
channel is given by s(p, i) = 1 − e−γ (p/i). Therefore,

T (P, I)= s
(
p1, i1

) + s
(
p2, i2

)
= 1 − e−γp1/i1 + 1 − e−γp2/i2 . (15)

Given fixed (i1, i2), the maximum throughput is attained for
p1+p2 = Pmax, so setting p2 = Pmax−p1 in the expression
for T (P, I) above and differentiating over p1, we get that
T (P, I) is maximized for

p1∗
(
i1, i2

) =
(

i1

i1 + i2

)
Pmax − 1

γ

(
i1i2

i1 + i2

)
log

(
i1

i2

)
(16)

and

p2∗
(
i1, i2

) =
(

i2

i1 + i2

)
Pmax + 1

γ

(
i1i2

i1 + i2

)
log

(
i1

i2

)
.

(17)
It should be noted that the optimization should really oc-

cur over the user buffers that are nonempty, since to chan-
nels for which their buffer is empty we should allocate zero
power. We call the above process for allocating power to the
channels throughput maximizing power control.
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3.2. SIR-oriented power allocation

Another approach to formulate the power control problem is
to attempt to maintain a required signal-to-interference ratio
(SIR) in each channel [9]. For standard s(p, i) functions that
actually have the form s(p/i), this implies that the average
throughput per channel would be kept constant. Let us first
assume that none of the user buffers is empty. Given the
interference I = (i1, i2, . . . , ik, . . . , iK) in a time-slot, we
want to assign the powers so that the SIR in the kth channel
is at a required level ξk = pk/ik , which typically reflects the
quality of service level required in the channel. Therefore,
pk = ξkik, assuming that such powers can be supported, that
is,

∑K
k=1 p

k � Pmax. If the latter is not possible the powers
have to be scaled back so that they add up to Pmax. There
are many ways to scale down the powers, but a reasonable
one is to proportionally scale down the SIRs so that they
can be supported at total power Pmax, distributing the burden
proportionally across all channels. The power allocated to
the kth channel when the interference is I , is simply

pk∗(I) =


ξkik, if

∑K
k=1 ξ

kik � Pmax,(
Pmax∑K
k=1 ξ

kik

)
ξkik, if

∑K
k=1 ξ

kik > Pmax.

(18)
Note that in any case we have

∑K
k=1 p

k∗(I) � Pmax. An ob-
vious modification – and improvement – of the algorithm is
to allocate power only to the channels/users where the packet
backlog is non-zero, so that no power is wasted in channels
where there is no information packet to transmit.

4. Incorporating backlog costs at reduced model
complexity

The previous power allocation algorithms take into account
the interference levels in the various channels but largely ig-
nore the packet backlog state of each user (except, for not
allocating any power to empty buffers). Therefore, they are
interference-sensitive but largely backlog-insensitive. As a
results the system analyst and designer cannot incorporate
backlog costs that may be important for high performance
engineering of such systems. Indeed, in order to model and
control performance tradeoffs like power versus delay and
packet drop – which are critical for quality of service sup-
port and QoS-oriented system design – we need to be able
to model and optimize cost structures that are both backlog
and interference sensitive.

In this section we consider special ‘reduced’ formulations
of the power allocation problem, which are both backlog
and interference aware, and do capture the important perfor-
mance tradeoffs for efficient system design. They are basi-
cally ‘relaxed’ versions of the general formulation presented
previously, which trade reasonable loss of model accuracy
and generality for substantial reduction of model complex-
ity. Being fairly tractable at an appropriate level of abstrac-
tion, they provide substantial intuition and insight regarding
the design and operation of such systems.

Recall the general formulation introduced in section 2,
where each packet of the kth queue has a ‘hard’ dead-
line Dk (time-to-live) associated with it. Relax this mod-
eling attribute by stretching Dk → ∞ for all queues k ∈
{1, 2, 3, . . . ,K}, hence, ‘washing out’ the deadline effect on
the cost structure of the formulation, since no packet will
ever expire.

Under this model relaxation, the backlog state (of the re-
duced model) becomes

Qn = {
q1
n, q

2
n, . . . , q

k
n, . . . , q

K
n

}
, (19)

where qkn is the number of packets in the kth buffer during
the nth time slot. It is easy to see that (Qn, In) is a Markov
chain controlled by P ∈ P. The transition probabilities can
be easily computed given the control P . Indeed, note that qk

switches to qk + 1 with probability ak(1 − sk(pk, ik)) in
general, corresponding to a packet arrival and an unsuccess-
ful packet transmission. There are two special cases: when
the kth buffer is full and when it is empty. When the buffer
is full (qk = Bk), the transition qk → qk + 1 occurs with
probability 0. When the buffer is empty, we must differ-
entiate between the system operating in a store-and-forward
mode (i.e., a packet must first be fully received in a slot be-
fore in can be transmitted in the next one) or cut-through
mode (a packet can be received and transmitted in the same
slot). When the buffer is empty (qk = 0), the transition
qk → qk + 1 occurs with probability ak in the store-and-
forward mode, and with probability ak(1 − sk(pk, ik)) in
the cut-through mode. Similarly, the transition qk → qk − 1
occurs with probability (1 − ak)sk(pk, ik) in general, corre-
sponding to no arrival of a new packet in the current time slot
and departure of one due to successful transmission. When
the buffer is empty (qk = 0), the previous transition occurs
with probability 0. Since all random events occur indepen-
dently of each other, say, by flipping independent coins, we
can analogously compute the probabilities of all the possible
system state transition and denote them by

Prob
[
(Qn+1, In+1) = (

Q′, I ′) | (Qn, In) = (Q, I);
Pn = P

] = #P
{
(Q, I),

(
Q′, I ′)} (20)

for fixed power P ∈ P and any (Q, I), (Q′, I ′) ∈ Q × I,
where Q is the set of all possible backlog states in this case.

The cost incurred in each time slot is the total power
transmitted and a holding/delay cost for the packets in the
buffer. Let CH (Q) be the holding cost (positive real num-
ber) incurred in a time slot when the backlog state is Q. For
example, we could take CH(Q) = ∑K

k=1 c
k
Hq

k to be a linear
cost, weighted with positive factors ckH ; if the latter are all
equal to one, the cost is simply the total backlog of packets
in the system. Assume that we run the system for N steps
(time slots). Let Jn(Q, I) be the cost-to-go at time n, that is
the minimum expected total cost to be incurred from time n
to N , given that the system starts from state (Q, I) at time
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n and is operated under the optimal power control strategy.
The dynamic programming equation then becomes

Jn(Q, I)= min
P∈P

{
K∑
k=1

pk + CH(Q)

+
∑

(Q′,I ′)∈Q×I

#P
{
(Q, I),

(
Q′, I ′)}

× Jn+1
(
Q′, I ′)} (21)

for n ∈ {1, 2, . . . , n, . . . , N}. The minimization over P =
{(p1, . . . , pk, . . . , pK):

∑K
k=1 p

k � Pmax} guarantees that
global power ceiling is not exceeded. At the boundary of
Q, where at least one buffer is full, there is the possibility
of a packet overflow. For such a boundary state the above
general dynamic programming equation should be amended
to include an overflow cost incurred when a packet arrives to
a full queue and has to be dropped. We could also include
some terminal cost associated with the packets that remain
in the buffer at the end of the N step horizon. Solving the
dynamic programming equation recursively we can get the
optimal power control P ∗

n (Q, I), n ∈ {1, 2, . . . , n, . . . , N},
for (Q, I) ∈ Q × I.

The complexity of the backlog state Q (e.g., number of
states in Q) is far smaller than that of the more refined back-
log state R (e.g., number of states in R) of the model pre-
sented in the previous section. In that respect, under this for-
mulation the problem is substantially more tractable than be-
fore. However, despite the reduction achieved by ‘relaxing’
the general formulation to the current one, the complexity is
still very high. This is due to two reasons. First, we need to
compute the dynamic programming recursion over an long
horizon N (undetermined) to obtain the optimal power con-
trol in equilibrium. More importantly, however, the state
space structure is inherently very complex. To dimension
the complexity, consider the simple example where there are
10 queues (channels), each having 10 buffer places. Then Q
has 1010 states! Considering that they exist 10 interference
levels per channel, I has 1010 states across all 10 channels!
Finally, if there are 10 power levels (discretized) per chan-
nel, the number of states in P is again 1010. This is a huge
space, indeed, over which we need to minimize! One can
explore various decomposition and approximation methods
or heuristics to handle the state space explosion. To sup-
press the complexity we consider below a further ‘relaxed’
formulation which now brings the problem into the domain
of realistic implementation.

5. Decomposition to individual channels and power
balancing

The main source of model complexity above is the ‘entan-
glement’ of the different channels, which occurs through the
global power ceiling that has to be observed jointly across all
channels. This ‘entanglement’ leads to a multiplicative (geo-

metric) explosion of the number of states in the complete
multi-channel system, as the number of channels increases.

In order to reduce the complexity down to practical im-
plementation levels, we follow two methodological steps. In
the first step, we artificially decompose the system into its
K individual channels, by removing the global power con-
straint (relaxing Pmax → ∞) and decoupling the interfer-
ence states of the various channels. This results in the chan-
nels being disentangled, so that each one can be studied in-
dependently of the others. Hence, the problem is drastically
reduced to K similar ones. We then study the power con-
trol problem for each channel obtaining the optimal power
to transmit in each time slot, given the individual backlog
and interference states of the specific channel under con-
sideration. Under this analysis, the sum of the individu-
ally optimal powers obtained may exceed Pmax. In the sec-
ond step, if the sum of computed powers exceeds Pmax, we
scale down the powers appropriately by load balancing them
across the channels. That way the channels get again en-
tangled through the power constraint (at a more superficial
level now of course). The key benefit is that, although the
state complexity in the original formulation grows geomet-
rically with the number of channels K , it grows linearly in
the reduced one based on decomposition to the individual
queues.

Let us now consider the analysis of one queue, decoupled
from the others. Dropping the superscript k used previously
to index the queues and channels, the notation is reduced as
follows. At time slot n, the number of packets in the queue is
qn, the channel interference level is in, the power transmitted
is pn, the probability of a packet arrival is a, the probability
of successful packet transmission is s(pn, in), and the buffer
size isB. Let the interference switch between different states
according to the Markov chain with transition probabilities

Prob
[
in+1 = i ′ | in = i

] = F
(
i, i ′

)
(22)

for all n’s and i, i ′ ∈ I, where I is the set of all states that
the interference can attain in the channel.

Each packet has a deadline D, and let rn (< D) be the
residual lifetime of the front (first) packet in the first-come-
first-served queue. This is the time-to-live of the packet un-
der transmission, until its deadline expires and is dropped
from the buffer incurring some drop cost discussed below.
For simplicity assume thatB is larger thanD, therefore there
are no buffer overflows and packets can only be dropped be-
cause of deadline expiration. We study the problem as fol-
lows, including the possibility of having packet deadlines.
Our main criterion is simplicity that will allow practical im-
plementation. Suppose that at time some time n, the backlog
is qn = q , the interference is in = i.

We formulate the following dynamic program over the
horizon 0 to D, which captures the evolution of the system
until the terminal event of the head packet in the queue being
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successfully transmitted before D or otherwise expiring at
D + 1 and being dropped from the buffer.

Um(q, i)= min
p

{
p + Ch(q)+ [

1 − s(p, i)
]

×
(
a

∑
i′∈I

F
(
i, i ′

)
Um+1

(
q + 1, i ′

)

+ (1 − a)
∑
i′∈I

F
(
i, i ′

)
Um+1

(
q, i ′

))}
.(23)

The variableUm(q, i) is the cost-to-go in this context, that is,
the minimal average cost incurred until the head packet gets
successfully transmitted or dropped from the buffer because
its deadline expires. In every time slot, there is a power cost
p incurred (that is, the power used to transmit the packet), as
well as a holding (delay) cost Ch(q), which is an increasing
function of the backlog size q – for example, it could be a
linear cost chq or a quadratic one chq2. If the head packet
has not been transmitted successfully by time D, then it is
dropped from the buffer at time D+1 and a drop costCd(q ′)
is incurred, which is an increasing function of the number of
packets q ′ left in the buffer when the head one is dropped.

The formulation of the drop cost is important, as it has to
capture the ‘deadline pressure’ and ‘expiration risk’ of the
other packets in the buffer. To elaborate on that, consider
that the system incurs a cost cd every time that a packet is
dropped due to its deadline expiring. Then, structure the
terminal drop cost of the dynamic program as

Cd
(
q ′) = cd + cdf

(
q ′) = cd

[
1 + f

(
q ′)]. (24)

The first term reflects the cost of the head packet that was lost
and the second one the cost associated with potential losses
of other packets in the buffer because of their deadlines ex-
piring, since the head one had been blocking them for two
long. Thus, f (q ′) reflects the ‘pressure’ that the other pack-
ets in the buffer put on the head one. Of course, f (q ′) should
be an increasing function of q ′ (the backlog of packets in the
buffer when the head one is dropped). Indeed, the risk that
more packets are dropped later increases as more packets ac-
cumulate in the buffer and are delayed, ‘spending out’ their
time-to-live horizons.

It turns out that the minimization in equation (23) can be
obtained analytically. Indeed, we can rewrite the equation
as:

Um(q, i) = min
p

{
p − s(p, i)Xm(q, i)+ Ym(q, i)

}
, (25)

where

Xm(q, i)= a
∑
i′∈I

F
(
i, i ′

)
Um+1

(
q + 1, i ′

)
+ (1 − a)

∑
i′∈I

F
(
i, i ′

)
Um+1

(
q, i ′

)
(26)

and

Ym(q, i) = Xm(q, i)+ Ch(q). (27)

It is easy to see that for fixed i, the expression in (25)
is minimized (recalling that s(p, i) is increasing in p) for
p∗(i, q,m) such that

∂s(p, i)

∂p

∣∣∣∣
p∗

= 1

Xm(q, i)
. (28)

For example, for

s(p, i) = p/i

α + βp/i
= p

αi + βp
,

we get

p∗(i, q,m) =




1

β

(√
αiXm(q, i)− αi

)
, i <

Xm(q, i)

α
,

0, i � Xm(q, i)

α
.

(29)
Similarly, for s(p, i) = 1 − e−γ (p/i), we get

p∗(i, q,m) =

− i

γ
log

i

γXm(q, i)
, i < γXm(q, i),

0, i � γXm(q, i).

(30)
It is easy to see that the dynamic programming recursion

(23), (25) can be solved backwards explicitly from m = D

to m = 1, by recursive substitution. Actually, note that given
the terminal cost Cd(q) to be incurred if the front packet is
dropped, we have

UD(q, i)= min
p

{
p + Ch(q)+ [

1 − s(p, i)
]

× (
aCd(q)+ (1 − a)Cd(q − 1)

)}
. (31)

Therefore, XD(q, i) = aCd(q) + (1 − a)Cd(q − 1) and
YD(q, i) = XD(q, i) + Ch(q). Solving for all m =
1, 2, 3, . . . ,D, we get the optimal power p∗(i, q,m) to
transmit at step m, given that the interference is i and the
backlog q . Note that the complexity now is manageable,
since for a system with 10 interference levels and a deadline
of 10 steps per packet (hence, we would never have more
than 10 packets in the buffer), the number of p∗(i, q,m) val-
ues is 10 × 10 × 10 or 1000.

Given the previous analysis, the power to be transmitted
in a channel (decoupled from the others) during time slot n
is simply p∗(in, qn,D − rn), where in is the interference in
that slot, qn the backlog, and D − rn is the index m used
above to mark how far advanced the process of transmission
of the head packet is towards its deadline horizon.

Consider now the system of K channels with the power
ceiling Pmax. If the power ceiling is not violated, we can
transmit power pk∗(ikn, qkn,Dk−rkn) in the kth channel, where
ikn is the interference in it, qkn the backlog, and rkn the residual
lifetime of the head packet in the queue. The power ceiling
not being violated means that

∑K
k=1 p

k∗(ikn, qkn,Dk − rkn) �
Pmax. In that case, the channels operate as if they were to-
tally decoupled. However, if

∑K
k=1 p

k∗(ikn, qkn,D − rkn) >

Pmax, then the powers need to be scaled down and load bal-
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anced to observe the power ceiling collectively. One way is
to scale them down proportionally, that is:

pk∗(ikn, qkn,Dk − rkn)

=



pk∗

(
ikn, q

k
n,D

k − rkn
)
, if pk � Pmax(

pk∗(ikn, qkn,Dk − rkn)∑K
k=1 p

k∗(ikn, qkn,Dk − rkn)

)
Pmax, if pk > Pmax

(32)

where pk = ∑K
k=1 p

k∗(ikn, qkn,Dk − rkn). There are other
ways to scale down the powers to observe the power ceiling,
for example, using weights that are increasing functions of
the backlog.

It should be noted that the new ‘entanglement’ of the
channels, brought about by rebalancing the individual pow-
ers to observe the power ceiling, couples again the channels
which had been decoupled initially. However, the approach
taken here has substantially reduced complexity and the pre-
vious algorithm is now easily implementable.

6. Conclusions

We have studied the issue of power control across several
channels and under a maximum total power constraint. The
problem has been formulated within a very general dynamic
programming framework. Despite the insight the general
formulation provides, it is too general for practical imple-
mentation. Therefore, through selective model reductions
we have designed novel power control algorithms that can
be practically implemented.
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