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Probability of Heavy Traffic Period in Third Generation CDMA
Mobile Communication
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Abstract. The paper considers a problem of deriving the multidimensional distribution of a segment of a long-range dependent traffic in
the third generation mobile communication network. An exact expression for the probability is found when a self-similar process from [8]
models the traffic. The probability of heavy-traffic period, the outage probability, and the level-crossing probability are found. It is shown
that the level crossing probability depends on the average call length only. Further, this probability for traffic with dependent samples
is lower than for traffic with independent samples. Also, it is shown that there is a linear dependence between the average heavy traffic
interval and the average call length.
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1. Introduction

Consider a mobile communication stationary traffic as a se-
quence . . . , Y (−1), Y (0), Y (1), . . . where Y (t) is the num-
ber of actually transmitting mobile stations (MS) at time t

(t ∈ Z =̂ {. . . ,−1, 0, 1, . . .}) (see figure 1). Let Y (t), t ∈ Z,
be a long-range dependent traffic as it is expected in the third
generation of CDMA mobile communication networks ca-
pable to transmit not only voice but also data and file mes-
sages.

A problem is to find the probability that at times t and
t + N (N � 2), the traffic is not heavy (this means that
Y (t) � M and Y (t+N) � M where M is a given threshold)
but in the whole interval between t and t + N , the traffic is
heavy (i.e., Y (i) > M, t < i < t + N) (see figure 2). This
probability is called the probability of heavy-traffic period of
length N − 1 and denoted as Phvy(N − 1).

Another problem is to find the outage probabilityPout(N)

[6,9–11], that is, the probability that at time t , the traffic is
not heavy but in an interval, which begins at t + 1 and lasts a
given time N at least, it is heavy, i.e., Pout(N) =̂ Pr{Y (t) �
M,Y(t + 1) > M, . . . , Y (t +N) > M}(see figure 3).

In a special case of N = 1, it is interesting to give an ex-
pression for the outage probability called the level crossing
probability and denoted as Pcross. Pcross is the probability
that at time t the traffic is not heavy but at time t + 1, it is
heavy, Pcross =̂ Pout(1) = Pr{Y (t) � M,Y(t + 1) > M}
(see figure 4). The level crossing probability is related, in
its turn, to another important traffic characteristic. Con-
sider an interval t + 1, . . . , t +T (where T is a random vari-
able) such that Y (t) � M,Y(t + 1) > M, . . . , Y (t + T ) >

M,Y (t + T + 1) � M . This interval is called the heavy
traffic interval and the random variable T is the length of
the interval. An interesting value is the average of T , i.e.,
ET . The following equation relates ET and the level cross-

Figure 1. Mobile communication traffic.

Figure 2. Heavy-traffic period.

ing probability:

ET = Pr{Y (t) > M}
Pcross

. (1)

A more general problem is to find the probability distrib-
ution of traffic segment Y (t), . . . , Y (t + N). Having this
distribution, one can find, in principle, not only the proba-
bility of heavy-traffic period but also all other traffic char-
acteristics depending on the traffic behavior in interval from
t to t + N . However, the calculation of these characteris-
tics is not a simple problem. There are a number of papers
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Figure 3. Outage event.

Figure 4. Level crossing.

and books on the subject (for example, [1,4]). We note that
even for the most considered Gauss, Rayleigh, and Markov
processes, the problem of calculation of Phvy and Pout is not
generally solved.

If Y (t), t ∈ Z, are independent, the problem is a trivial
one since for finding

P(yt , . . . , yt+N) = Pr
{
Y (t) = yt , . . . , Y (t + N) = yt+N

}
,

(2)
it is necessary to know only the one-dimensional distribu-
tion Pr{Y (t) = y}. On contrary, if Y (t), t ∈ Z, is a long-
range dependent process, the problem is not trivial and if
P(yt , . . . , yt+N) can be found, it would not be expected to
have a simple analytical expression.

In the paper, we use a model for long-range depen-
dent traffic from [8] (section 2). The model is motivated
by the real-time traffic measurements in corporate LANs,
Variable-bit-rate video sources, WWW-network, and other
communication systems [2,3,5]. In fact, the considered traf-
fic model represents a self-similar stochastic process (sec-
tion 3). In section 4, we give a representation of traffic val-
ues Y (t), . . . , Y (t + N) in terms of some random variables
which, in section 5, are used for deriving a formula for the
multidimensional distribution P(yt , . . . , yt+N). The distrib-
ution will be derived by using a splitting argument and show-
ing with its application that the segment Y (t), . . . , Y (t +N)

of this long-range dependent traffic can be represented by a
certain number of independent but not identically distributed
Poisson random variables. Using P(yt , . . . , yt+N), we get
ET and some numerical results. It is shown that for the con-
sidered traffic, the level crossing probability depends only
on the average call length but not on other behavior of the
distribution of call length and that the probability Pcross for

Figure 5. The traffic as an aggregation of calls. There are ξ = 3 call arrivals
at t , ξt+1 = 1 call arrivals at t + 1, ξt+4 = 2 call arrivals at t + 4, ξt+9 = 1
call arrivals at t + 9, and no other call arrivals between t and t + 9. The call

s = 1 has 4 packets, the call s = 2 has 2 packets and so on.

traffic with dependent Y (t) is lower than for traffic with the
same EY (t) but independent Y (t). Also, it is shown that
there is a linear dependence between the average heavy traf-
fic interval ET and the average call length when EY (t) is
kept as given. Section 6 gives a Gaussian approximation to
the probability of heavy-traffic period. An extension of the
obtained results to a more general traffic model is given in
section 7. Section 8 is a conclusion.

2. Input traffic

The considered traffic Y (t), t ∈ Z, is assumed to be a stream
of packets. The packets have equal lengths accepted as
length 1. The packets are assigned to mobile station calls,
so the traffic is an aggregation of packets generated by mo-
bile stations during their calls (see figure 5). The calls are
enumerated by s ∈ Z. (A number s is not a telephone num-
ber of MS. The enumeration by s is introduced here only to
order calls in the traffic process. Thus, the same MS can
appear in different segments of traffic being numerated by
different s; each its s represents a new call of the MS.) We
say that a call s “starts to generate its packets” at time de-
noted by ωs (ωs � ωs+1). The moment ωs is called the time
of call s arrival. The call s generates one packet at each time
ωs+i−1 in time intervalωs, . . . , ωs+τs−1, i ∈ {1, . . . , τs}.

The time interval ωs, . . . , ωs + τs − 1 is called the call
period s and τs ∈ N is called the length of call s. It is clear
that before time ωs and after time ωs + τs − 1, the call s
does not generate any packets. At any time moment t ∈ Z,
more than one call can be started (in other words, we say that
more than one call arrival can occur). By ξt , we denote the
number of calls arrived at t , that is, ξt ∈ Z+ is the number
of MS started their calls at t .
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Thus,

Y (t) =
∑
s∈Z

θs(t − ωs + 1), t ∈ Z, (3)

where θs(i) = 1 for i ∈ {1, . . . , τs} and θs(i) = 0 for i � 0
and i � τs + 1. This means that Y (t) is a total number of
packets generated by all active MS at time t .

It is assumed τs, s ∈ Z, are i.i.d.; the numbers of call
arrivals, ξt ∈ Z+ =̂ {0, 1, . . .}, t ∈ Z, are i.i.d. with
0 < λ =̂ Eξt < ∞ and Pr{ξt = 0} < 1; the random vari-
ables τs are mutually independent of ξt and ωs . Let τ (let ξ )
be a generic symbol for τs (for ξt ).

The call traffic Y (t) is specified by two distributions, the
distribution of number of new call arrivals at time t (Pr{ξ =
k}) and the distribution of call length (Pr{τ = l}).

In what follows, it is assumed that ξ is a Poisson random
variable, i.e.,

Pr{ξ = k} = e−λλk

k! , 0 < λ < ∞, k ∈ Z+, (4)

where λ = Eξ is a parameter of the Poisson distribution.
With this assumption, the call traffic Y (t) is specified by one
distribution (Pr{τ = l}) and one parameter (λ).

Remark. We note, although it will not be used later, that
when it is known that actual call traffic is described by (3)
with Poisson ξ , it is possible to find its Pr{τ = l} and λ by
measuring the autocovariance w(k) =̂ cov{Y (t), Y (t + k)}
of the traffic Y (t). Namely,

Pr{τ � k + 1} = w(k) −w(k + 1)

w(0) −w(1)
, (5)

λ = w(0)− w(1). (6)

In turn, the autocovariance w(k) can be expressed in terms
of λ and Pr{τ � l} by the following equation:

w(k) = λ

∞∑
l=k+1

Pr{τ � l}. (7)

As to distribution of call length, the most important case is
such that τ has a Pareto-type distribution

Pr{τ = l} = c0l
−α−1, c0 =̂

( ∞∑
l=1

l−α−1

)−1

,

1 < α < 2, l ∈ N, (8)

where α is an only parameter of the distribution. Table 1
gives the values of the normalization constant c0 and the av-
erage call length Eτ for several values of α.

The traffic Y (t), which has Pareto-type distributed τ and
Poisson ξ , is a stationary (in narrow sense) and ergodic
process. It is specified by only two parameters, λ and α.
These parameters can be measured with application of (5)
and (6) when actual call traffic is described by (3).

Our results below hold true for general distribution
Pr{τ = l} with finite mean. However, when we want to con-
sider a long-range dependent traffic, we shall assume that (8)

Table 1

α c0 Eτ

1.1 0.6409 6.784
1.2 0.6709 3.751
1.3 0.6981 2.745
1.4 0.7229 2.245
1.5 0.7454 1.947
1.6 0.7660 1.751
1.7 0.7848 1.612
1.8 0.8019 1.509
1.9 0.8176 1.431
2.0 0.8319 1.368

Figure 6. The curve of log Pr{Y(t) > M = 230} as a function of EY(t).

is satisfied, that is, τ is Pareto-type distributed. A sufficiency
of the condition (8) for traffic self-similarity will be given by
a theorem in section 3.

Note. When Y (t) is Poissonian, the one-dimensional proba-
bility

Pr{Y (t) > M} = e−EY (t)
∞∑

m=M+1

(EY (t))m

m!

plays an important role in finding the Erlang capacity of
reverse links for CDMA mobile networks (see [9], equa-
tion (6.47) and figure 6.4 there). As shown in [9], for a single
cell and perfect power control network (as well as for some
other networks), it is necessary to find Pr{Y (t) > 230} nu-
merically as a function of EY (t). To calculate Pr{Y (t) >

230}, it is possible to use the following expression for the
large deviation of Poissonian Y (t):

Pr
{
Y (t) > 230

} =
∞∑

m=230

em[1+ln(EY (t)/m)]−EY (t)
√

2πm
(
1 + 1

12m + 1
288m2 + . . .

) ,
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where the series(
1 + 1

12m
+ 1

288m2
+ · · ·

)

is from the Stirling formula.

Figure 6 shows the probability Pr{Y (t) > 230} as a func-
tion of EY (t). Also, figure 6 shows how close to Pr{Y (t) >
230} is the Gaussian approximation

∫ ∞

(230−EY (t))/
√

EY (t)

exp{−x2/2}√
2π

given in [9].

3. Traffic self-similarity

Under some conditions, the traffic Y (t), t ∈ Z, defined
by (3) is actually long-range dependent and, actually, asymp-
totically self-similar. To present such a condition, which is
taken from [8], we first recall a definition of second-order
asymptotic self-similarity.

Let X = (. . . , X−1,X0,X1, . . .) be a second-order-
stationary real-number random process of discrete time t ∈
Z. Let X(m) =̂ (. . . , X

(m)
−1 ,X

(m)
0 ,X

(m)
1 , . . .), where

X
(m)
t =̂ Xtm−m+1 + · · · +Xtm

m
,

m ∈ N =̂ {1, 2, . . .}, t ∈ Z, (9)

be the X process averaged over blocks of length m. The
process X is called second-order asymptotically self-similar
with the Hurst parameter H = 1 − (β/2), 0 < β < 1, if

lim
m→∞ rm(k) = 1

2
δ2(k2−β), k ∈ N, (10)

where rm(k) is the correlation coefficient of X(m) and
δ2(f (x)) is the central second difference operator applied
to the function f (x), so

δ2(k2−β) = (k + 1)2−β − 2k2−β + (k − 1)2−β. (11)

Theorem 1 [8]. The process Y (t) is second-order asymp-
totically self-similar (as-s) with parameter H = 1 − (β/2),
0 < β < 1 if ξ is the Poisson random variable and

Pr{τ = l} ∼ L(l)l−(β+2), l → ∞, (12)

where L(l) is a slowly varying function at infinity. (A pos-
itive measurable function L(x) is called slowly varying at
infinity if L(ux)/L(x) → 1, x → ∞ for each u > 0.)

According to this theorem, the traffic Y (t), t ∈ Z, with
Pareto-type distributed τ , (8), and Poisson ξ , (4), is an as-s
process with the Hurst parameter H = (3 − α)/2 [8].

4. Random variables representing Y (t), . . . , Y (t +N)

Here, we express Y (t), . . . , Y (t +N) in terms of the follow-
ing random variables:

• ξt (l): the number of calls with given length τ = l, started
at t (t ∈ Z, l ∈ N);

• ξ
(l)
t =̂ ξt (l) + ξt (l + 1)+ ξt (l + 2)+ · · ·: the number of

calls with lengths τ � l, started at t ;

• ρ
(l)
t =̂ ξt (l)+ ξt−1(l+1)+ ξt−2(l+2)+· · ·: the number

of calls started at t or earlier and still continued in the
interval [t, t + 1);

• η
(l)
t =̂ ξ

(l)
t + ξ

(l+1)
t−1 + ξ

(l+2)
t−2 + · · ·: the random variable

which can be interpreted via the above defined variables.

The random variables {ξt (l), l ∈ N, t ∈ Z} are indepen-
dent and Poissonian with parameters

λ1(l) =̂ Eξt (l) = λPr{τ = l} (13)

which are independent of t and dependent on l. Using a
splitting argument applied to a Poisson random variable ξt
one can easily check this fact. Namely, for each t , one should
split ξt into ξt (l), l ∈ N by sending all calls with length l

into ξt (l) and get ξt = ∑∞
l=1 ξt (l).

The other random variables introduced above, namely,
ξ
(l)
t , ρ

(l)
t , η

(l)
t , are also Poissonian since they are defined as

the sums of Poisson random variables. Their averages are
independent of t and dependent on l,

λ2(l) =̂ Eξ(l)t = Eρ(l)t = λ

∞∑
j=l

Pr{τ = j }, (14)

λ3(l) =̂ Eη(l)t = λ

∞∑
i=0

∞∑
j=l+i

Pr{τ = j }. (15)

We note also that ξ(1)t ≡ ξt .
Now, we express the successive traffic random variables

Y (t), . . . , Y (t+N) in terms of ξt (l), ξ
(l)
t , ρ

(l)
t , η

(l)
t . We have

Y (t +N)=
(

N∑
l=1

ξ
(l)
t+N−l+1

)
+ η

(N+1)
t ,

Y (t +N − i)=
N−i∑
l=1

i−1∑
j=0

ξt+N−l−i+1(l + j)

+
N−i∑
l=1

ξ
(l+i)
t+N−l−i+1 (16)

+
N∑

l=N−i+1

ρ
(l)
t + η

(N+1)
t , 0 < i < N,

Y (t)=
(

N∑
l=1

ρ
(l)
t

)
+ η

(N+1)
t .

It is important that in each equation in (16), all summands
are independent Poisson random variables. Dependence be-
tween Y (t), . . . , Y (t +N) is due to the fact that the different
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equations among (16) contain the intersecting summands.
For example, the random variable η(N+1)

t is an intersecting
summand; it is contained in each of those equations.

Let us write now (16) in special cases of N = 1 and
N = 2 for a simple illustration.

For N = 1, we have

Y (t)= ρ
(1)
t + η

(2)
t , (17)

Y (t + 1)= ξ
(1)
t+1 + η

(2)
t . (18)

The equations (17) and (18) give a representation of Y (t),
Y (t + 1) in terms of three independent Poisson random vari-
ables, ξ(1)t+1, ρ

(1)
t , η

(2)
t , with parameters given by (13)–(14).

Dependence between Y (t) and Y (t + 1) exists because of
η
(2)
t contributes in both Y (t) and Y (t + 1).

For N = 2, we have

Y (t)= ρ
(1)
t + ρ

(2)
t + η

(3)
t , (19)

Y (t + 1)= ξt+1(1)+ ξ
(2)
t+1 + ρ

(2)
t + η

(3)
t , (20)

Y (t + 2)= ξ
(1)
t+2 + ξ

(2)
t+1 + η

(3)
t . (21)

The equations (19)–(21) give a representation of Y (t),
Y (t + 1), Y (t + 2) in terms of six independent Pois-
son random variables ξt+1(1), ξ

(2)
t+1, ξ

(1)
t+2, ρ

(1)
t , ρ

(2)
t , η

(3)
t

with parameters given by (13)–(15). Dependence between
Y (t), Y (t + 1), Y (t + 2) exists because of η(3)t is in each of
these equations; ρ(2)t is in (19) and (20), and ξ

(2)
t+1 is in (20)

and (21).

5. Distribution P(yt , . . . , yt+N)

Now, we are prepared to present the multidimensional dis-
tribution P(yt , . . . , yt+N). To make a less complicated pre-
sentation, first we give P(yt , yt+1) and P(yt , yt+1, yt+2).

Let ξ(1)t+1, ρ
(1)
t , η

(2)
t take on the values denoted as k(1)t+1,

r(1), n(2), respectively. All k(1)t+1, r
(1), n(2) are from Z+.

The distribution P(yt , yt+1) is given by

P(yt , yt+1)

=
∑

k
(1)
t+1, r

(1), n(2)∈N:
r(1)+n(2)=yt ,
k
(1)
t+1+n(2)=yt+1,

e−2λ2(1)−λ3(2) [λ2(1)]k
(1)
t+1+r(1)[λ3(2)]n(2)

(k
(1)
t+1!)(r(1)!)(n(2)!)

,

(22)

where the sum is taken over k(1)t+1, r
(1), n(2) in the shown re-

gion which is denoted now as *1. (We could present (22)
in simpler notation omitting most of indexes but we have to
keep the used notation for our later presentation of general
case.)

We can give another expression for P(yt , yt+1)if we use
(22) and note that λ2(1) = λ, λ3(2) = λ[(Eτ ) − 1], and

*1 = {
k
(1)
t+1, r

(1), n(2): 0 � n(2) � yt , r
(1) = yt − n(2),

k
(1)
t+1 = yt+1 − n(2)

}
.

We have

P(yt , yt+1)= e−λ(1+Eτ )λyt+yt+1

×
yt∑

n(2)= 0

[((Eτ )− 1)/λ]n(2)
[(yt − n(2))!][(yt+1 − n(2))!][n(2)!] .

Let ξt+1(1), ξ
(2)
t+1, ξ

(1)
t+2, ρ

(1)
t , ρ

(2)
t , η

(3)
t take on the val-

ues denoted as kt+1(1), k
(2)
t+1, k

(1)
t+2, r

(1), r(2), n(3), respec-

tively. All kt+1(1), k
(2)
t+1, k

(1)
t+2, r(1), r(2), n(3) are from

Z+.
The distribution P(yt , yt+1, yt+2) is given by

P(yt , yt+1, yt+2)

=
∑

Pr
{
ξt+1(1) = kt+1(1)

}
Pr
{
ξ
(2)
t+1 = k

(2)
t+1

}
× Pr

{
ξ
(1)
t+2 = k

(1)
t+2

}
Pr
{
ρ
(1)
t = r(1)

}
× Pr

{
ρ
(2)
t = r(2)

}
Pr
{
η
(3)
t = n(3)

}
=
∑

e−λ−2λ2(1)−2λ2(2)−λ3(3)

× [λ1(1)]kt+1(1)[λ2(1)]k
(1)
t+2+r(1)

(kt+1(1)!)(k(2)t+1!)(k(1)t+2!)(r(1)!)

× [λ2(2)]k
(2)
t+1+r(2) [λ3(3)]n(3)

(r(2)!)(n(3)!) , (23)

where the sums are taken over kt+1(1), k
(2)
t+1, k

(1)
t+2, r

(1),

r(2), n(3) in the region

*2 = {
kt+1(1), k

(2)
t+1, k

(1)
t+2, r

(1), r(2), n(3) ∈ Z+,
r(1) + r(2) + n(3) = yt ,

kt+1(1)+ k
(2)
t+1 + r(2) + n(3) = yt+1,

k
(1)
t+2 + k

(2)
t+1 + n(3) = yt+2

}
.

We conclude with a theorem giving the multidimensional
distribution P(yt , . . . , yt+N).

Theorem 2. Distribution P(yt , . . . , yt+N) is the sum of the
products of Poisson distributions of the following indepen-
dent random variables:{{

ξt+n−l−i+1(l + j), 1 � l � N − i, 1 � i � N − 1,

0 � j � i − 1
}
,{

ξ
(l+i)
t+N−l−i+1, 1 � l � N, 0 � i � N − 1

}
,{

ρ
(l)
t , 1 � l � N

}
, η

(N+1)
t

}
.

The sum is taken over the region *N = {Y (t) = yt , . . . ,

Y (t + N) = yt+N}, where Y (t), . . . , Y (t + N) have to be
replaced with the right-hand sides of the equations (16).

Using the theorem, it is easy to put down a formula for the
probability of heavy-traffic period of length N − 1 (denoted
as Phvy(N − 1)). Namely,Phvy(N − 1) is the same sum as
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Figure 7. Logarithm of the level crossing probability as a function of traffic
rate. The curve 1 is for traffic with independent Y(t). The curves 2 and 3

for traffic with Eτ = 10 and Eτ = 100, respectively.

given in the theorem with only difference that now the region
is

*∗
N = {

Y (t) � M,Y(t + 1) > M, . . . , Y (t +N − 1) > M,

Y (t + n) � M
}
.

Similarly, the outage probability Pout(N) is the same sum as
given in the theorem with only difference that the region is

*∗∗
N = {

Y (t) � M,Y(t + 1) > M, . . . , Y (t +N) > M
}
.

For example, if N = 1,

Pout(1)≡ Pcross =
M∑

yt=0

∞∑
yt+1=M+1

P(yt , yt+1)

= e−λ(1+Eτ )
M∑

yt=0

λyt
∞∑

yt+1=M+1

λyt+1

×
yt∑

n(2)=0

[((Eτ )− 1)/λ]n(2)
[(yt − n(2))!][(yt+1 − n(2))!][n(2)!] (24)

We note that the level crossing probability Pcross depends on
Eτ only but not on the entire behavior of Pr{τ = l}. (Pcross
as function of EY (t) is shown in figure 7.) For Y (t), we have
EY (t) = λEt . Hence, λ = EY (t)/Et in (24).

The same is true for ET , i.e., ET depends on Eτ only.
Figure 8 shows ET as function of Eτ for different values of
EY (t) and M = 10. It can be observed with the figure that
ET is a linear function of Eτ . The 3-dimensional plot which
shown in figure 9, gives ET as function of Eτ and EY (t).

6. Gaussian approximation

Here we give a way of an approximate calculation of
q =̂ Pr{Y (t) � M,Y(t + 1) > M, . . . , Y (t + N − 1) >
M,Y (t + N) � M}, the probability of heavy-traffic period
of length N − 1. We do not know how the approximation

Figure 8. Average length of the heavy-traffic interval as a function of aver-
age call length.

Figure 9. Average length of the heavy-traffic interval as a function of the
pair (average call length, traffic rate).

(denoted as q0) is closed to the exact value of the probabil-
ity q and cannot say whether q0 is an upper or lower bound
to q or it is not any bound at all.

To get q0, we use the following fact: the function

g(k) =̂ (σ 2/2)δ2(k2−β), k ∈ N, g(0) = σ 2
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is the covariance of exactly second-order self-similar process
with the variance σ 2 and the Hurst parameterH = 1−(β/2),
0 < β < 1.

To obtain q0, we take the Gaussian multidimensional dis-
tribution having the density

fN (xt , . . . , xt+N)

= |A|1/2

(2π)n/2 exp

{
−1

2

N∑
i,j=0

aij (xt+i −m)(xt+j −m)

}
,

where aij are the elements of the matrix A which is the in-
verse of the covariance matrix

R = σ 2

∥∥∥∥∥∥∥∥∥

g(0) g(1) . . . g(N)

g(1) g(0) . . . g(N − 1)
...

. . .
. . .

...

g(N) g(N − 1) . . . g(0)

∥∥∥∥∥∥∥∥∥
and σ 2 = varY (t) = λEτ, m = EY (t) = λEτ .

Now, we put

q0 =
∫ M

−∞
dxt

∫ ∞

M

dxt+1 . . .

∫ ∞

M

dxt+N−1

∫ M

−∞
dxt+N

× fN(xt , . . . , xt+N).

This is the suggested approximation to q .

7. Extension to a more general model of traffic

In this section, we introduce a more general model of long-
range dependent traffic [7], than is presented in section 2,
and extend the above results to this new model. The only
difference of the new model from that presented in section 2
is that in the new model, a call generates one packet at each
time ωs + i − 1(see section 2) with probability p and does
not generate any packet with probability 1−p independently
of other generations in this call and other calls. The model
considered in section 2 is a special case of the new model
when p = 1. The new model matches a model considered
in [9, section 6.6.2].

It is easy to notice that all results presented above hold
for the new model if λ is substituted for pλ.

8. Conclusion

The problem of deriving of the multidimensional distribu-
tion of a segment of a long-range dependent traffic was con-
sidered for 3-G mobile communication network. An exact
formula was obtained for this probability when a self-similar
process from [8] models the traffic. It was shown how to ob-
tain the probability of heavy-traffic period with every given
length and the outage probability. As it was expected, in gen-
eral case, these probabilities have cumbersome expressions
caused by the long-range dependence in the traffic.

It is shown that for the considered traffic, the level cross-
ing probability depends only on the average call length but

not on other behavior of the distribution of call length and
that the probability Pcross for traffic with dependent Y (t) is
lower than for traffic with the same EY (t) but independent
Y (t). Also, it is shown that there is a linear dependence of
average heavy traffic interval ET on the average call length
when EY (t) is kept as given.

Also, we presented an analytical Gaussian approximation
to the probability of heavy-traffic period.
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