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Part I: The Curve-like Representation
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Abstract. Intermediate-level vision is central to form perception, and we outline an approach to intermediate-
level segmentation based on complexity analysis. We focus on the problem of edge detection, and how edge
elements might be grouped together. This is typical because, once the local structure is established, the transition
to global structure must be effected and context is critical. To illustrate, consider an edge element inferred from
an unknown image. Is this local edge part of a long curve, or part of a texture? If the former, which is the next
element along the curve? If the latter, is the texture like a hair pattern, in which nearby elements are oriented
similarly, or like a spaghetti pattern, in which they are not? Are there other natural possibilities? Such questions
raise issues of dimensionality, since curves are 1-D and textures are 2-D, and also of complexity. Working toward
a measure of representational complexity for vision, in this first of a pair of papers we develop a foundation based
on geometric measure theory. The main result concerns the distribution of tangents in space and in orientation,
which serves as a formal basis for the concrete measure of representational complexity developed in the companion
paper.
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1. Introduction

How complex or simple a structure is depends criti-
cally upon the way we describe it. Most of the com-
plex structures found in the world are enormously
redundant, and we can use this redundancy to sim-
plify their description. But to use it, to achieve the
simplification, we must find the right representation.

Herbert A. Simon (1968)

Although edges provide the foundation upon which
much of visual processing is built, it is curious that the
definition of an edge remains unsettled. The usual one,
which has roots back to Ernst Mach in the mid-19th
century, is that edges are bright-to-dark transitions (or

vice-versa), and that these transitions can be detected
from measurements provided by (discrete approxima-
tions to) linear differential operators. Mach, for exam-
ple, preferred the Laplacian operator, and Marr has re-
vived modern interest in it. However, this view has
turned out to be problematic, and much frustration in
visual shape analysis derives from the unsatisfactory
nature of early edge processing. In brief, the edges
returned by standard tools do not correspond in any
systematic way to the boundaries of objects; they arise
in other ways as well, such as in textures. Nevertheless,
it is boundaries—not bright-to-dark transitions—that
are needed for visual shape analysis. Our goal in this
paper is to propose a geometric foundation for early
vision in an attempt to get right to the matter of what
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comprises a boundary. Our proposal is based on con-
cepts from differential geometry and geometric mea-
sure theory. In the process of achieving this goal, we
shall overview our recent research in edge detection,
and shall concentrate on the geometric problems as-
sociated with interpreting the role an edge might be
playing in an image. The geometric approach in the
end leads us to conclude that one should think not in
terms of edges, which are image-defined constructs,
but rather in terms of tangents, which are differential-
geometric constructs. It is this abstraction that reveals
the connection back to boundaries.

Our contribution is divided into two papers. The first
one is, in a sense, the more theoretical, and it moti-
vates the philosophy of our approach, while the the sec-
ond is more relevant to applications, in that it contains
experiments. But both papers are linked, in that they
both cover material from geometric measure theory,
with the first building on Hausdorff measures and the
second on Minkowski constructions. These different
approaches to dimension theory lead to different types
of results: we use Hausdorff (and Besicovich) construc-
tions in the first paper to prove “tangent separation theo-
rems”, or statements in principle about how many tan-
gents can arise in different positions and in different
orientations. This structure is fundamental to under-
standing certain aspects of the geometry of grouping, or
separating boundaries from textures. These “density”
results in turn motivate the algorithms developed in the
second paper that are based on the Minkowski sausage
and more practical area computations. Because the ma-
terial is abstract and dimension theory is not commonly
used in computational vision, both papers are written
in a discursive, informal style. Examples to stimulate
the reader’s intuition are spread throughout, as are ref-
erences to the mathematical literature. We believe this
motivation for the role of complexity analysis in com-
putational vision is perhaps the most important contri-
bution of these papers.

1.1. Motivation

A classical problem in the design of a general pur-
pose artificial vision system is the localization and de-
scription of image curves (edges or bars). For instance,
imagine a dark cube against a white background. The
task of early vision is to abstract a description of
this cube sufficiently rich to enable its recognition,
while segmenting it as a figure from the background.
Such a description must certainly involve the bounding

contour around this cube, and it is the task of bound-
ary detection to recover this contour.1 Complexity and
dimension issues arise immediately. From an intuitive
geometrical point of view, surfaces are boundaries of
solids, lines are boundaries of surfaces and points are
boundaries of lines, as was pointed out by the French
mathematician Poincaré [40]. Because the cube may
subtend a large visual angle covering an enormous
number of pixels, “re-presenting” it by its edges re-
duces the amount of information tremendously while
keeping the essence of the information about the object.
Line drawings are another example of abstraction of in-
formation in which the essence of the scene is kept and
reduced to its minimal expression. Thus, it made intu-
itive sense thirty years ago to begin to build computer
vision systems by developing algorithms that would
extract these edges and segment images automatically.
At the same time, neurophysiology was providing im-
portant conceptual support for these techniques. The
result is that now, among the stages for the processing
of visual information, edge detection is one of the best
understood.

1.1.1. Structure Detection in Early Vision. Edge de-
tection implies however a basic problem in perceptual
grouping: once the local structure is established, the
transition to global ones must be effected. To illustrate,
imagine standing on an edge element in an unknown
image, as in Fig. 2(a) or (b). Is this edge element part
of a curve, or perhaps part of a texture? If the former,
which is the next element along the curve? If the pattern
is a texture, is it a hair pattern (in which nearby elements
are oriented similarly) or a spaghetti pattern (in which
they are not)? These questions are in part about com-
plexity since curves are “simpler” than textures, and
in part about dimensionality, since some discontinu-
ities are 0-D, curves are 1-D, and textures are 2-D. In
this paper a complexity measure designed to address
these questions will be proposed. The ultimate goals
are to show, in the context of curve detection, that the
choice of representation and support for the grouping
process is an important issue, and to provide a means
of making an appropriate decision regarding the choice
of representations.

Measures, dimensionality, and complexity are cou-
pled concepts, and the relationships between them are
important practically as well as theoretically. Mea-
sures for curves might include their length, the num-
ber of components (cardinality), or the area covered.
However, the situation is more subtle than this, as is
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Figure 1. Two Kanizsa patterns. (a) a pattern due to Kanizsa [25] (b) circle/triangle pattern due to Galli and Zama [15]. Both these examples
illustrate the need of using different representations for integration. Why does the texture “absorb” portions of the rectangle in (a) and of the
triangle in (b)? In both cases the grating seems to predominate over the perception of the closed curve.

illustrated in several examples. The first example is
taken from a classical demonstration by the Italian psy-
chologist Kanizsa [25]. Figure 1(a), in which a pin-
striped surface appears to be occluding a rectangle,
demonstrates that curves, or sets of curves, can ac-
tually connote either the outline of objects (as in the
rectangle) or surfaces (the pinstripes). Closer exami-
nation reveals that the rectangle is actually continuous
through the surface, suggesting that visual inferences
somehow group the pinstripes together and ignore the
fact that the rectangle is the longest curve in the image.
Neither the length of the curve, defining the rectangle,
nor the number of components, defining the pinstripes,
is dominant. Figure 1(b), a triangle, is similarly cam-
ouflaged within a horizontal grating, and once more
illustrates what Kanizsa [25] called the “social confor-
mity of a line”.

Our second example is an image of a statue
(Canova’s sculpture “Paolina”, see Fig. 2(e)). The re-
sult of an edge operator [24] at a given scale is shown in
Fig. 2(f), and the problem of integrating local informa-
tion raises the following observations. For the shoulder
region (Fig. 2(c)), the underlying object is simple and
a curve representation seems appropriate to group the
edge elements. If we examine instead regions subtend-

ing part of the hair structure (Fig. 2(d)), then choosing
a curve representation and walking along a hair would
lead very quickly to confusion, since it will be difficult
to know on which part of the curve one is. A texture
representation in this case seems more appropriate.

1.2. Problem Definition

The leading question of this paper is: given the output of
edge/line detectors at a given scale and for a given reso-
lution, how can these be grouped together? This clearly
involves a local-to-global transition which has been de-
scribed as “collecting individual edge points together to
form continuous curves” [7]. However, it assumes that
edge points should be grouped into curves, a common
assumption in computer vision (see also [3, 16, 28, 42,
50–52]). But local edges can arise from other image
structures, such as a texture (hair, or fields of grass, for
instance). We therefore question this assumption that
edges should be grouped only into curves, and rather
seek to determine which representation should be cho-
sen for the grouping, together with the dimension of
its support. While the problem of contours “bleeding”
into textures is classical [2], even recent systems still
have the problem [29].
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Figure 2. The subtlety of “walking through” a tangent map: (a and c) curves, (b and d) texture. Moving from right to left, the gray shaded areas
are expanded to show the need for different representations to support the grouping of local edge elements. Integrating the responses of local
edge detectors in the hair region is problematic. By what principles should the tangents be grouped?

A second view of grouping is that it is a noise prob-
lem [54]. Since there are spurious responses from the
local detectors, a global estimation procedure is neces-
sary to eliminate them (Kalman filtering, for instance).
A third is that it is simply an image-domain phe-
nomenon linked to scale. Since larger operators have
more image support, they should be less susceptible
to such local variations. However, they are also more
likely to average across features belonging to different
objects.

This paper questions all these assumptions and will
try to shine light on the grouping and representa-
tion problems through arguments of complexity. The
starting point of our investigation will be the search
for edges, and for positive or negative contrast lines.
The local structure will be given by the output of an
edge/line detector [24] sometimes followed by a few
iterations of relaxation labeling [23, 56]. The process
that will be described in this paper in some cases would
decide where those of Cox et al. [7], David and Zucker
[8] or Mumford [36] could be used, i.e. where a curve
support is appropriate and over which extent. In the
case when the support indicates a surface (textures for
instance), then approaches such as [53] and [26] for
integral curves, or [30] for oriented texture characteri-
zation should rather be used.

1.3. Complexity in Early Vision?

Complexity has entered computer vision systems in
two ways. First, there is the classical notion of com-
putational complexity and proofs that problems are in
given classes (e.g., labeling blocks world diagrams is
NP-complete). Second, there are issues of efficency,
and intermediate-level representations are commonly
thought to be required to improve it (e.g., segment-
ing images into regions, to reduce search domains).
However, we believe the relationship between com-
plexity and representation is deep in another sense,
and the following examples are intended to illustrate
this.

Example 1 (The loop and the spaghetti). Consider
two images, one of a circle, and the other of a plate of
spaghetti. Two tasks can be envisioned: one, to draw the
curves and the other, to follow them. To draw the circle,
the algorithm can be very simple: repeat n times: take
1 pixel step, rotate 2π/n. In the case of the spaghetti
pattern: repeat n times: take a long step, rotate random
amount. Now, suppose one would like to reproduce the
two patterns. In the first case the complexity is bounded,
while in the second case we need remember the various
random rotations.
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Another issue is the one of following the path. In
the case of the circle, the task is very easy. In the case
of the spaghetti pattern, the task is much more com-
plicated and confusing. The fact that there are many
branching points makes the path not unique: there are
many different paths. In fact it leads to a combinatorial
explosion of possibilities. The “curve” representation
then fails to be efficient. Following the pattern leads to
integration but the representation that needs to be used
varies from one case to the next.

Example 2 (Pick-up sticks). Suppose we are only
working with line segments and we want to find out
when the segment representation is no longer appro-
priate. Three instances are shown in Fig. 3. Now, let us
make a parallel with the game called “Pick-Up Sticks”.2

Complexity will be related to the difficulty of picking
up a stick without moving the other sticks. Clearly this
is dictated by the tweezers: two scales are involved, one
for the width and one for the length. Thus, in Fig. 3(a),
the task is trivial since there is only one segment. In
Fig. 3(b), it is a little more difficult, but still very easy.
In Fig. 3(c), the task is hard. The task is not simply a
matter of the number of line segments. Even with only
two segments, the task can be hard if the sticks are par-
allel and close one to another, or if they cross at a small
angle.

Example 3 (Frequency). An example taken from the
representation of numbers states that, at first glance, it
is very unlikely that somebody would be able to dis-
tinguish between the numbers 99999999999999 and
9999999999999 without serially scanning each digit.
The same point can be made with grating patterns,

Figure 3. Line segments or texture? Three examples of sets composed of line segments. Notice how difficult it is to follow every path in (c).

suggesting that our organization of understanding for
visual patterns is richer than the simple enumeration
of the individual curves. In Fig. 4, we reconsider
the Kanizsa pattern to determine whether the percept
changes when a pinstripe is added or removed.3 For
instance, compare Fig. 1(a) and Fig. 4(a): which has
20 and which has 21 lines? The distinction is very hard
to make, but the one between Fig. 4(a) and Fig. 4(b) is
immediate. Rounding the corners would be noticeable,
however, even though these events are isolated.

Taken together, Examples 1 and 2 show how algo-
rithmic complexity relates to computational vision. The
first example stressed the complexity of communica-
tion of a pattern and of a visual task. The second exam-
ple introduced some of the central principles we will
develop in this paper. Most importantly, it showed how
the class of all patterns could be partitioned through a
complexity measure into equivalence classes of equally
hard tasks. There are many games of Pick-Up Sticks
that are equivalent in terms of difficulty—i.e., in terms
of complexity—even though the particular arrange-
ment of the sticks may differ enormously.

How can one relate algorithmic complexity to vi-
sion? Recalling the intuitive description of algorithmic
complexity presented earlier, let us build the follow-
ing experiment. Take three persons: Robert, Bruno, and
Veronica. Bruno has a pattern that he shows to Veronica
who then describes it to Robert. From this description,
Robert reproduces the pattern. He then shows his re-
production to Veronica. If Veronica cannot distinguish
the reproduced pattern from the original in a bounded
amount of time, then we will say that the represen-
tational complexity is bounded by the length of the
description. Representational complexity would thus
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Figure 4. Kanizsa patterns again but this time with different grating frequencies. Notice how easy it is to tell these two apart but how difficult
it is to differentiate between (a) and Fig. 1(a).

build equivalence classes of patterns. Relating back to
our Pick-Up Sticks example, within each equivalence
class, the visual tasks are equally hard. The question
now is how to build a measure of complexity that will
define these equivalence classes of patterns, and then
how to assess it.

Returning to our examples, the last one showed that,
for some patterns, approximation is sufficient. In the
case of grating patterns, the exact number of lines
and their exact location might not be relevant. There
is an obvious difference between a pattern with one
segment and one with two segments provided the lines
are (i) sufficiently long and (ii) sufficiently apart from
one another. In the grating part of the Kanizsa pattern,
the difference between n and n + 1 lines is irrelevant
for our percept if n is large enough and if the lines
are reasonably distributed. Compare the gratings be-
tween Fig. 1(a) and Fig. 5 and try to say at a quick
glance the difference between the two. The difference
between 20 and 200 lines would however be notice-
able (provided again that they are reasonably posi-
tioned), again reinforcing the suggestion of equivalence
classes of patterns that would be indexed by complexity
measures.

The take-home message from all these examples is
that, within a single representation and within a gen-
eral setup, integration from local to global represen-
tations is intractable. However, integration is a key
step in moving from an image-centered representation
to an object-centered one. It has been done success-
fully in controlled environments where one knows the
complexity of the scene a priori, or assumes the com-
plexity to be within some bounds. The blocks world is
an example of such a constrained environment. How
does one build a general theory of integration for edge
detection?

The core of this paper will show that different actions
in the integration stage should be taken depending on
the context. First, we need to choose and define both
an intermediate representation and a complexity mea-
sure. Given this representation, the local information
can be integrated only if the underlying object is sim-
ple enough. Identifying such simple cases (in our case,
curves will be simple compared with textures) will fa-
cilitate the transition from early to intermediate levels
of vision. If the complexity of an object at a certain
scale and for a particular representation exceeds some
value, then two choices could be made:
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Figure 5. The main idea: examine the rate of growth of oriented dilations, in the normal direction N to test density (“space-fillingness”) and
in the tangential direction T to test continuity.

1. keep the same scale but adopt another representa-
tion, or

2. change scale.

Keeping status quo, i.e. keeping the sole curve repre-
sentation under the current scale, is bound to failure.

1.4. Mapping Complexity and
Indexing Representation

As curve detection is central to vision, what is re-
quired is a measure of the complexity of curves,
and our specific goal in this paper is to propose
one. We will show how it successfully handles the
Kanizsa and the Paolina examples, among others. It is
based on an intermediate representation—the discrete
tangent map, or a discretized tangent field—and a con-
sequence of our analysis is that such intermediate rep-
resentations are necessary for a proper segregation of
curve-like patterns that fill areas, from curve-like pat-
terns that extend mainly along their length and also
from dust patterns (discontinuities, for instance). These
representational differences capture the first stages of
segmentation; but via complexity analysis not pixel
grouping.

The complexity measure we derive will be tailored
to discrete “curve-like” sets such as those we seek in
edge detection. The basic idea will be to look in two
directions: in the tangential direction to assess conti-
nuity and in the normal direction to assess density of

the object within a local extent (Fig. 5). This will lead
to two complexity indexes, that we call the normal and
tangential complexity indexes, and constitute the basis
for our complexity map. Although the tangential com-
plexity captures the same line of thought as previous
researchers such as Ullman and Mumford, it is the nor-
mal complexity that provides some further insight into
segregating textures from curve patterns. Both must be
used together.

A Note on the Experiments. A series of examples will be
carried over throughout this paper and the companion
paper. These will serve to illustrate the points we are
trying to make and clarify different concepts related
to the algorithms involved. We will constantly refer to
these as

1. the Kanizsa pattern: Fig. 1(a);
2. the Ullman pop-out pattern (Fig. 6(a));
3. the Ullman hidden pattern (Fig. 6(b)); and
4. the Paolina image: Fig. 2(e).

These examples are not all equivalent. Some are sets
that can be described easily, others are images in which
the underlying curve-like sets must be inferred. For the
Kanizsa pattern the structure was known a priori, so
the tangent map will be discretized from the continuous
one precisely. The discrete tangent map of the Ullman
patterns will be obtained by analyzing the correspond-
ing images as described later. The Paolina image is our
example of a full grey level image for which we will
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Figure 6. Curve complexity and context. In these two figures developed from Ullman [48], notice how in (a) the big circles pop-out as opposed
to (b) where they tend to blend more into the scene.

infer edges and interpret the inference process. Note
the difference between the Ullman patterns, in which
we will try to detect negative contrast lines (i.e. dark
lines on a light background), and the Paolina image, for
which we are seeking edges (i.e. boundaries between
light/dark regions).

In all cases we will project the set or the image into
the unit square, so our numbers (scale for grouping
and resolution) will be relative to the unit square. Two
different scales will be considered: (i) the scale of the
operator σ , expressed in pixels and (ii) the scale for
complexity analysis δ. δ is linked with the spatial ex-
tent � over which grouping should be considered. Res-
olution is the inverse of the size of smallest element of
the digitized grid. Finally, whenever a variable is “hat-
ted”, ω̂, for instance, it means it is expressed in image
coordinates (pixels).

2. Boundaries and Their Detection

What, precisely, is a boundary? Mach’s intuition was
founded in photometry, and is based on the observation
that since the reflectance of an object is typically dif-

ferent from the background, the object will project to
an image region with different intensity from those re-
gions to which the background projects. This intuition
breaks down, however, when the object has internal
structure.

To take advantage of this internal structure, consider
(informally) a smooth surface such as a ball. The sur-
face of the ball has a 2-dimensional tangent plane every-
where, and this tangent plane projects smoothly into the
image except along the locus of positions at which the
viewing vector just grazes the ball; at these positions
the tangent plane becomes singular, and collapses to
a single (one-dimensional) tangent. That is to say, the
tangent plane folds away from the line of sight. An inte-
gral curve through these tangents defines the boundary
of the ball. Thus, each tangent defines a proper edge
element.

To see that edge elements can arise from other con-
figurations, consider a bulge of cloth. Edges can now
arise from within the cloth, with the tangent plane
disappearing along the top of the bulge and then re-
appearing on the other side. The tangent plane tran-
sition across a bulge (from cloth-to-cloth) is thus
different from that across the ball, because it never
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re-appears. Moreover, this type of fold can end within
the body of the cloth, as in the wrinkles around one’s
shirt sleeve or the muscles in one’s shoulder.

2.1. Whitney’s Classification Theorem

Whitney has classified the generic maps from smooth
surfaces into smooth surfaces, and has shown that these
two situations are the only ones that can occur gener-
ically (see [27]). Generically means that the configu-
ration does not change with small changes in view-
point. He referred to them as the fold and the cusp
(the position where the cloth fold disappears). Fur-
thermore, by considering a view of a mountain range
it is easy to observe that generic boundaries are not
globally smooth; rather, they are punctuated by dis-
continuities. Thus we have two observations regarding
boundaries:

1. local edge elements arise in different contexts such
as exterior boundaries or interior folds. Textures, of
course, provide further examples of complex con-
texts for edge elements.

2. discontinuities should be expected in bounding con-
tours from occlusion relationships.

The structure of this map is developed formally in
Huggins and Zucker [21].

2.2. Normal Intensity Configurations and
Logical/Linear Operators

We begin with the first observation to provide formal
and computational support for the idea that local edge
elements can be interpreted as tangents to contours.
The first advantage is that, with the tangent direction
established, one can examine the intensity profiles in
the tangent and the normal directions separately. Note
that most other edge operators average these together,
although not necessarily uniformly. Informally we ob-
serve immediately that, in many situations and at a finite
scale,

• Normal direction: The fold condition in Whitney’s
Theorem often takes on a different intensity pro-
file for a bounding edge (which involves a dark-
to-light transition) than for an interior fold (which
involves a light-to-dark-to-light transition) or vice
versa. This latter profile is often called a line, and
must be separated from the former. Standard linear

operators blur both together. Examples of this (light-
dark-light) interior fold configuration can been seen
in the shoulder musculature of the Poalina image. It is
curious how such surface markings (and line opera-
tors) relate to edge operators. Considering a “line” as
back-to-back edges suggests how surfaces can “fold”
into a crack from both sides (in the normal direction
to the edge). The need for a separate operator is clear
numerically: back-to-back edge operators cannot be
evaluated without overlap. In general, such obser-
vations stress the importance of separating analysis
along tangential and normal directions, a point that
will recur in these papers.

• Tangential direction: The differential interpretation
demands that continuity conditions exist (that is, that
the limit of one point approaching another must ex-
ist). This corresponds to continuity contraints on the
intensity pattern.

A necessary condition for a tangent to exist is that
one or the other of the above intensity and continu-
ity conditions must be satisfied. We have developed a
class of non-linear local operators, called logical/linear
operators, that use Boolean conditions to test whether
the above structural criteria are met. “Edge operators”
are separated from “line operators”, and lines can arise
either in light-dark-light conditions (typical of a crack
or a crease) or dark-light-dark conditions (typical of a
highlight). Note that both of these latter conditions refer
to surface markings, rather than to surface boundaries.

The tangent interpretation also leads to a solution for
representing orientation discontinuities, but requires a
more modern view of a discontinuity. While it is clas-
sically the case that no unique tangent exists at an ir-
regular point on a curve, it is also the case that multiple
tangents can be defined to exist there. Informally, tak-
ing a limit into the point of discontinuity from one
side yields one tangent; a limit from the other side
yields another. The two tangents span a 2-dimensional
space; it is precisely this difference in dimensional-
ity between the tangent spaces at regular and singu-
lar points that we exploit. The logical/linear operators
are arranged into columns, so that multiple values of
tangent orientation are possible at each point. Those
points at which multiple tangents are established are the
discontinuities.

Code for a system that implements the three log-
ical/linear operators [24] in columns, one for edges,
one for bright lines, and one for dark lines, is avail-
able from via anonymous ftp;4 Researchers are invited
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to experiment with this system. Results are shown in
Fig. 2.

2.3. Edge Maps, Tangent Maps, and Grouping

The result of our logical/linear edge operator [24] at a
given scale is shown in Fig. 2(f) on the image of the
statue (“Paolina”, see Fig. 2(e)) and raises the follow-
ing observations. For the shoulder region (Fig. 2(c)),
the underlying object is simple and a curve representa-
tion seems appropriate to group the edge elements. If
we examine instead regions subtending part of the hair
structure (Fig. 2(d)), then choosing a curve representa-
tion and walking along a hair would lead very quickly
to confusion, since it will be difficult to know on which
part of the curve one is. A texture representation in this
case seems more appropriate. The remainder of the pa-
per will deal with these issues.

Although we have been speaking of the the logi-
cal/linear operators as if they signal tangents, actually
they only return a distribution of positions at which the
above intensity signatures are obtained. This is a very
different notion firm that of tangent. As we show in
the next two sections, however, there is a geometric-
measure-theoretic definition of tangent that suggests a
connection between them.

3. Curve-like Sets

In the case of the world on a human scale you don’t
care much about problems involving infinities or
infinitesimals, whereas you certainly care whether
something is line-like or point-like.

Jan. J. Koenderink (1990)

An elementary analysis textbook [43] states that “a
continuous curve is usually thought as the path of a
continuous moving point and this rather vague notion
is often felt to carry with it the even vaguer attribute
of ‘thinness’ or ‘one-dimensionality’”. This definition
of a curve is bound to the one of dimension. The first
part of this section will informally address the issue
of dimension to give a feel for what will follow. Then
the Jordan definition of a curve will be presented, stat-
ing that a curve � is the range of a continuous map α

from an interval I to Euclidean space (typically R2 or
R3). It will remind us of concepts such as the one of
length, denoted L(�), and the one of best linear local
approximation, namely the tangent to � at x = α(t),

denoted T (x). Within these are embedded the notions
of local representation (the tangent) and global mea-
sure (the length), which are tied together through the
map α. Unfortunately, however, the map α is not given
for general vision problems, but must be inferred. More
abstract notions of a curve are thus required. A gener-
alization of the previous ideas through measure theory
to maps that are not necessarily smooth will thus be
introduced. The resulting curve-like sets and their as-
sociated parametrization-free tangents will constitute a
much better basis for our needs and will represent the
core apparatus for our work.

When inferring curve-like objects from images, one
is confronted with issues such as discretization, quan-
tization and choice of scale. One of the main character-
istics of curve-like sets is that they lie in the continuous
domain. How can one make a parallel between these
sets and the output of a finite set of “edge detectors”?
An answer to this will lead to a definition of what we
will call discrete curve-like sets. The underlying phi-
losophy will be somewhat different since we are trying
to infer the set from images. We start by getting the dis-
crete tangent map and then infer the curve-like set from
its local properties. The local structure of the discrete
curve-like sets will be obtained through edge detection.
From our previous description of the edge we will be
able to present the implications of our choice of oper-
ators and decision method.

3.1. Elements of Dimension Theory

The history of the various notions of dimension in-
volves some of the greatest mathematicians of the turn
of the century: Poincaré, Lebesgue, Brouwer, Cantor,
Peano, Hilbert, just to name a few. That history is very
closely related to the creation of space-filling curves
and early fractals [39]. Hausdorff remarked that the
problem of creating the right notion of dimension is
very complicated. People had an intuitive idea about
dimension: the dimension of a set, say E , is the num-
ber of independent parameters (coordinates), which are
required for the unique description of its elements.
This turned out to be incorrect, as the counterexam-
ples of Cantor and Peano showed. In this section, we
will review three different approaches to defining the
concept of dimension. These will help in setting up
the framework for our own intuitive requirements (pre-
sented last) which we call the curve assumption.

3.1.1. Poincaré’s Cut Dimension. Poincaré’s cut di-
mension is inductive by nature and starts with a point.
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A point has dimension 0. Then he observes that “...if
to divide a continuum it suffices to consider as cuts
a certain number of elements all distinguishable from
one another, we say that this continuum is of one di-
mension; if on the contrary, to divide a continuum
it is necessary to consider as cuts a system of ele-
ments themselves forming one or several continua, we
shall say that this continuum is of several dimensions”
[40].

From this definition we get that a segment has dimen-
sion 1 since it can be split by a point (dimension 0). The
same happens for a circle, since it can be disconnected
using a pair of points (dimension 0). The unit square
has dimension 2, since it needs a line (dimension 1)
to get disconnected. Finally, the cube has dimension 3,
since can be disconnected using a plane (dimension 2).

Poincaré’s definition has the advantage of being very
intuitive and easy to grasp. It will be used later to mo-
tivate the proofs of the tangent separation theorems
(Section 3.4). This idea of dimension also formed the
basis of the now accepted one developed by Menger
and Urysohn [22]; namely that

1. the empty set has dimension −1,
2. the dimension of a space is the least integer n for

which every point has arbitrarily small neighbor-
hoods whose boundaries have dimension smaller
than n.

Figure 7. Illustration of Poincaré’s cut and Lebesgue’s covering dimension of a line. (a) A simple line disconnected by a single point; (b) covers
of orders 2, 3, and more. Since it is possible to cover the curve with a cover of order 2, its dimension is not bigger than 1 from the definition.

3.1.2. Lebesgue Covering Dimension. The Lebesgue
covering dimension is the most frequently used in point
set topology to define the notion of dimension for a
topological space [10, 37]. It consists in covering the
set E with little disks (such as those used in point set
topology) and then focusing on the maximal number of
disks in the cover which have non-empty intersection.
This is called the order of the cover.

An object E has covering dimension n provided any
cover admits an open refinement of order n +1, but not
of order n. Taking the line segment as an example, it is
easy to see that the order of the cover cannot exceed 2,
leading to a topological dimension smaller than 1 (see
Fig. 7).

Another equivalent definition would be that the topo-
logical dimension of a set E is the smallest integer k
such that, for all ε > 0, there exists a covering Ai of
E by closed sets of diameter ≤ ε, with the following
property: the intersection of any k +2 sets Ai is empty.

3.1.3. Measure and Dimension. In their classical
monograph, Hurewicz and Wallman [22] presented
different approaches to defining dimension. The one
we will adopt here will associate the concepts of
measure and dimension. An object will be called
one-dimensional if it has length (one-dimensional
measure), 2-dimensional if it has an area (2-dimen-
sional measure), 3-dimensional if it has a volume (3-
dimensional measure), and so on. The measure that will
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be used in this case is the one developed by Hausdorff.
It will also allow us to study in more detail the local
structure of the set.

Before introducing geometric measure theory, we
will review the concepts of local linear approximation
and rectifiability for Jordan simple curves in R2. This is
most easily approached through differential geometry.
We will then try to extend it to a more general class
of objects that we will call curve-like sets. It will be
shown that the concept of rectifiability allows us to
derive important properties and constraints on the local
structure of the sets to be studied.

3.2. Elementary Differential Geometry:
Jordan Curves

The most common definition of a curve is the one of
Jordan, namely that a curve � is the range of a con-
tinuous map γ from an interval I to Euclidean space
(typically R2 or R3). In elementary differential geom-
etry, this definition precedes two other basic notions,
namely the length and the best local linear approxima-
tion or the tangent to � at γ (t).

Definition 1 (Jordan curve [47]). A curve � in
R2 is the range of a continuous function γ (t) =
(γ1(t), γ2(t)) defined on an interval [a, b]. If γ is an
injection, the curve � is called simple. Its endpoints are
γ (a) = A and γ (b) = B. The mapping γ is called a
parametrization for the curve �.

Figure 8. Examples of Jordan curves. In (b) we reproduced a drawing due to Picasso entitled “Le Jongleur” (adapted from Mendès-France,
[31]).

Remark 1. In this subsection, when using the word
“curve”, we mean a simple Jordan curve. Although too
restrictive a definition for the type of patterns detected
in edge detection, it will be useful to study the basic
concepts. We will later widen the definition to include
the types of sets sought after in computer vision.

Two examples of Jordan curves are shown on Fig. 8.
In (a), a simple Jordan curve, i.e. a Bézier curve with
7 control points. In (b), a Jordan curve that is not sim-
ple (since the curve cuts itself). This is a drawing due
to Pablo Picasso that we adapted from Mendès-France
[31], and it illustrates the fact that the definition of
“curve” is indeed very large. The following defini-
tion builds an equivalence relation between different
parametrizations of a curve.

Definition 2 (Fréchet equivalence [6]). A mapping
� : γ = γ (t), t ∈ I is said to be Fréchet equivalent
to another mapping �1 : γ = γ1(s), s ∈ I1 if for every
ε > 0 there exists a homeomorphism hε from I1 to I
such that |γ (hε(s)) − γ1(s)| < ε for all s ∈ I1. This
defines an equivalence relation between � and �1, and
then we write � ∼ �1.

3.2.1. A Curve in the Small: Tangent. The notion
of a tangent, the best linear approximation to a curve
at a point, is key in the study of curves in the small.
Intuitively, it is defined as follows:

Definition 3 (Tangent to a curve [19]). If � is a simple
(parametrized) curve and x is a point on �, the tangent
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Figure 9. This figure illustrates in (a) the intuitive definition of a tangent T to a curve � at a point x = γ (t). Take a sequence {y1, y2, . . .} of
points on the curve converging to x . Draw the lines passing through yi and x . The “limit line” gives us the tangent T (x) to the curve at x . In (b)
we illustrate the parametrization-free definition of the tangent, looking at a cone that shrinks around the point x (presented later in the text).

T (x) to the curve at x is the limit (if it exists) of the
straight line passing through x and y when y ∈ � and
y → x . (see Fig. 9(a).)

The reason why we called this an intuitive definition
is the fact that the limit x → y is not always defined.
Furthermore, in applications such as computer vision,
for one, the parametrization is exactly what one is try-
ing to infer. Thus a more general model is required.
However, when the parametrization is given, the tan-
gent is the first derivative of the map γ . We will see in
the next section that this local notion is tightly linked
to the global one of length. In this highly structured
situation, there is a clear model of the local-to-global
transition.

3.2.2. The Length of a Curve. We mentioned previ-
ously that a curve was a set extending along its length.
How can we compute such a length? And even before
that, does such a measure exist for a particular set? One
formalisation of the intuitive definition of the length of
a parametrized simple curve can be derived from the
ancient device of inscribed polygons:

Definition 4 (Partition and its norm [47]). Let
[a, b] ⊂ R, then a partition P([a, b]) is a set of points

{t0, t1, . . . , tn} such that

a = t0 < t1 < · · · < tn = b

The norm |P| of a partition is defined as being

|P| = max(ti+1 − ti ), i = 0, 1, 2, . . . , n − 1

Given �, a simple curve in R2, let Pn be a sequence
of partitions such that limn→∞ |Pn| = 0. Define

L(Pn, �) =
n−1∑
i=0

|γ (ti+1) − γ (ti )|

From the triangle inequality we see that the insertion
of new points of subdivision will produce an increase
in L(Pn, �).

Definition 5 (Jordan length [4]). If L(P, �) is
bounded for all dissections P of [a, b], the length of a
curve � in the Jordan sense is as follows:

L(�) = supP L(P, �).

It is sufficient to obtain the length from a limit of a
sequence of partitions:
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Theorem 1 (Length as a limit [47]). If (Pn) is a se-
quence of partitions such that limn→∞ |Pn| = 0 then

L(�) = lim
n→∞ L(Pn, �).

This last theorem implies that the length is independent
of the choice of polygonal approximations as these get
finer and finer.

Definition 6 (Rectifiability [4]). A curve � is called
rectifiable if it has finite length in the Jordan sense.

Remark 2. It is interesting to see that the word Recti-
fiable derives from the Latin word rectus which means
Straight. In French, the expression Rectification d’une
Courbe means calculating the length of a curve as if it
were a straight line segment. Not being able to unfold a
curve into a straight line segment implies that the curve
is not rectifiable.

A few more results need to be mentioned. These
provide the invariance properties one would like for
the calculation of length and link a local notion (the
tangent) to a global one (the length):

1. Length and rigid body motions: the length of a curve
is invariant under rigid body motions, i.e., transla-
tions and rotations;

Figure 10. Two different partitions leading to two different approximations of the length of a simple Jordan curve. If the curve is rectifiable,
the finer the partition gets, the more accurate the estimate of length will be.

2. Length and arclength [45]: if the mapping � is dif-
ferentiable, then

L(�) =
∫ b

a
|�′(t)|dt

i.e., the notion of length as just presented corre-
sponds with the one of arclength in differential ge-
ometry;

3. Length and parametrization [6]: length L(�)

is independent of the parametrization (Fréchet-
independent), i.e., � ∼ �1 implies L(�) = L(�1).

3.3. Curve-like Sets in Geometric Measure Theory

As we mentioned before, we need a wider class of
objects as an underlying model for curve recovery.
Simple curves are too restrictive since they do not al-
low multiple curves and various kinds of discontinu-
ities that are key in our description and understanding
of the visual world. Even some of the simplest pat-
terns could not be expressed by the Jordan definition.
Mathematicians have however described a wider class
of objects which would be more suited for our needs
and these are called ‘curve-like sets’ (regular sets with
finite positive Hausdorff measure). Instead of consider-
ing a mapping, we will rather consider sets. The notion
of length will be kept implicit: it will be one of the
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basic requirements for these sets to exist. This section
is a brief introduction to curve-like sets. It starts with
the definition of the Hausdorff measure, and leads to
the one of 1-sets, or those with finite length. Then we
present density properties which will provide a hierar-
chy for one-dimensional sets. It is within this hierarchy
that the type of sets to be considered throughout this
paper arise: the curve-like sets. A fine study of the local
structure of curve-like sets will lead in the next section
to constraints on the distribution of tangents and dis-
continuities.

3.3.1. Hausdorff Measure. One way to compute the
length, area or volume of an object is to use the Haus-
dorff s-dimensional measure Hs , where, in the case of
a smooth rectifiable curve, s = 1, in the case of a sur-
face, s = 2 (classical references for this are [13, 41],
but one can also look at [11], a more readable presen-
tation). Consider the problem of defining the length
H1 of a set E in the plane. Hausdorff’s idea was to
cover the set with small circles and to take the sum of
the diameters (Fig. 11). If the balls are restricted to be
smaller than some given value δ > 0, and if the ‘most
economical’ covering is chosen, we get an approxima-
tion of the length of the set at resolution δ. Allowing
arbitrary covers, instead of covers by balls, gives us an
outer measure, and for δ > 0 we write

H1
δ (E) = inf

∑
i

|Ui |

Figure 11. Parametrization-free approximation of the length of a
set by a covering with δ-balls: a first step to the calculation of the
Hausdorff measure.

where |U | is the diameter of U , (i.e., |U | = sup{|x −
y| : x, y ∈ U }) and {Ui } is any sequence of sets of
diameter less than δ covering E . The infimum here
is taken over all (countable) δ-cover {Ui } of E . It
can be shown that Hδ(E) increases as δ decreases,
therefore:

Definition 7 (Hausdorff measure [11]). The one di-
mensional Hausdorff measure of E is given by

H1(E) = lim
δ→0

H1
δ (E) = sup

δ>0
H1

δ (E).

Since no confusion will arise in this paper, we will write
H for H1.

Remark 3. One can show that the Hausdorff mea-
sure is in fact a measure in the measure theoretic sense
[11]. It then can be used to define the notion of “al-
most”. In this paper we will use the terms “for almost
all x in E” and “almost everywhere” (sometimes de-
noted a.e.). This means that the property applies for
all x ∈ E , except maybe on a (very small) set G with
H(G) = 0. When writingH-almost everywhere, orH-
a.e., we want to emphasize that this is with respect to the
Hausdorff measure H, and not with respect to another
measure (the Lebesgue measure, | · |1, for instance).
The term “almost nowhere” (which is used only once
in this document) means that the property holds at most
on a set of measure 0.

One might wonder if the Hausdorff measure coin-
cides with the Jordan length for simple Jordan curves,
or with the Lebesgue one-dimensional measure for
Lebesgue-measurable subsets of the real line.

Theorem 2 (Hausdorff, Lebesgue and Jordan mea-
sures [11]). If � is a curve, and E a Leb-
esgue measurable subset of R then

1. the Jordan length L and the Hausdorff measure
coincide, i.e., H(�) = L(�).

2. the Lebesgue measure | · |1 and the Hausdorff mea-
sure coincide, i.e., H(E) = |E |1.

Hausdorff measure permits a classification of sets.
One of its most popular uses is as the basis for
Hausdorff dimension, an important construction which
was used as an abstract formulation for the concept of
dimension. Among other results, it led to the defini-
tion of a class of sets called ‘fractals’ [31]: sets with
non-integer Hausdorff dimension. In this section, we
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are not considering non-rectifiable curves and rather
concentrate on those with positive but finite measure:

Definition 8 (1-set [11]). An H-measurable set E
with 0 < H(E) < ∞, will be called a 1-set (origi-
nally called ‘linearly measurable set’ by Besicovitch
[1]).

3.3.2. Basic Density Properties. The notion of den-
sities for sets will be used in the definition of the local
approximation of a set (tangent). Intuitively, densities
indicate the local measure of a set compared with the
expected measure [11]. The definition is as follows:

Definition 9 (Density [11]). Let Br (x) denote the
closed ball of centre x and radius r . The upper and
lower densities of a 1-set E at a point x ∈ R2 are
defined as

Du(E, x) = lim sup
r→0

H(E ∩ Br (x))

2r

and

Dl(E, x) = lim inf
r→0

H(E ∩ Br (x))

2r

respectively. If Du(E, x) = Dl(E, x), we say that the
density of E at x exists and write D(E, x) for the com-
mon value.

Example 4. To better understand the previous def-
inition, let us consider the following subset of R2

Figure 12. Example of an set where the density is not always 1: the
truncated cone in R2. The cross is the set studied. The grey regions
are places where we wanted to focus attention for the density.

(Fig. 12):

E = {(u, v) ∈ Br ((0, 0)) : u2 = v2}

has density

D(E, x) =




1 for x ∈ E \ {(0, 0), end points},
0 for x /∈ E ,
1
2 for x ∈ {end points},
2 for x = (0, 0)

Note that in the last example the density is zero when
outside the set and non-zero otherwise. In fact, one of
the most interesting results about densities is that the
density is zero almost everywhere outside the set:

Proposition 1 [11]. If E is a 1-set in R2, then

1. D(E, x) = 0 at H-almost all x outside E, and
2. 2−1 ≤ Du(E, x) ≤ 1 at almost all x ∈ E.

The last proposition is used mainly in the structure
study of one-dimensional sets. Requiring Du(E, x) to
be greater than zero insures that we are almost surely
on the set E .

Definition 10 (Regular and irregular sets [11]).
A point x ∈ E at which Du(E, x) = Dl(E, x)

= 1 is called a regular point of E ; otherwise it is
called an irregular point. A 1-set is said to be regular if
H-almost all of its points are regular, and irregular if
H-almost all of its points are irregular.

Remark 4. Examples of irregular 1-sets in R2 include
constructions similar to the one of the Cantor set [11].
An example taken from Morgan [35] defines E ⊂ R2 by
starting with an equilateral triangle and removing tri-
angles at different scales. Start with E0, a closed equi-
lateral triangular region of side 1 (Fig. 13(a)). Let E1

be the three equilateral triangular regions of side 1/3
in the corners of E0 (Fig. 13(b)). In general let E j+1

be the triangular regions, a third the size, in the cor-
ners of the triangles of E j . Finally, let E = ⋂

E j (an
approximation is shown in (Fig. 13(e)).

E is a 1-set since the projection of each E j onto the
x-axis is the unit segment, therefore the projection of
E = ⋂

E j is also the unit segment which gives that
H(E) ≥ 1. As for the other inequality we have that
E j is covered by 3 j equilateral triangles of side

(
1
3

) j
,

therefore H(E) ≤ 1, confirming that E is a 1-set. The
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Figure 13. Example of an irregular 1-set in R2: the Sierpinski
triangle.

proof that E is irregular, i.e., that its density is different
than 1 H-a.e. on E , can be found in Tricot [46].

1-sets and regularity lead to the cornerstone defi-
nition for our work. They constitute the basic types
of objects to be studied within the rest of this paper.
Originally, they were called Y-sets by Besicovitch [1]
(and this nomenclature still persists in some books [11,
47]), but we decided to adopt the nomenclature used
by Falconer [12], since it fits more closely to intuition:

Definition 11 (Curve-like set; [12]). A 1-set con-
tained in a countable union of rectifiable curves will
be called a curve-like set.

This definition is more general than the one of
Jordan. It allows for multiple curves and these can in-
tersect. It does not require a parametrization, since it is
rather based on the notion of a set. Moreover

Theorem 3 (Regularity [12]). A curve-like set is a
regular 1-set.

This therefore assures us that curve-like sets are free
of the potential curve-free structures that the more gen-
eral class of 1-sets could contain. Curve-like sets will
suit our needs for edge detection, where we know that
some kind of curve structure is present, since the set to
be inferred will be provided by the output of oriented
line/edge operators.

Hierarchy for one-dimensional sets. In the contin-
uous domain, measures and densities have allowed
mathematicians to partition the space of one-
dimensional sets (not only the 1-sets), and to build a

Figure 14. Decomposition of a 1-set. This figure, after Falconer
(1990), illustrates the concept of decomposing a rectifiable one-
dimensional set into a regular “curve-like” part and an irregular
“curve-free” part.

hierarchy for them. The first distinction, a rather crude
one, is between those that have finite measure, the
1-sets, and those that have infinite length. Among the
1-sets, a finer subdivision provides regular (curve-like)
and irregular (curve-free) sets. One nice result, called
the decomposition theorem [12], enables a split of 1-
sets into a regular and an irregular part, as shown in
Fig. 14. It can be shown that each part from the set can
be analyzed separately and then recombined without
affecting density properties. The spirit of this decom-
position is similar to what we will do with the dis-
crete tangent map obtained though edge/curve detec-
tion. While our decomposition scheme will be different
than the one presented here, the underlying idea is very
similar. For vision applications, of course, further types
of structures will be important. This will be discussed
in detail in Section 3 of the companion paper [9]. Until
then, the reader should keep in mind what was shown
in Fig. 14.

3.3.3. Local Structure of Curve-like Sets. Before dis-
cussing the existence of tangents for curve-like sets, we
will present an alternate definition of a tangent that does
not rely on a parametrization of the set. This definition
is due to Besicovitch [1]: (c.f. Fig. 9):

Definition 12 (Tangent [11]). A curve-like set E has
a tangent TB(x) at x in the direction ±θ if

1. Du(E, x) > 0 and
2. for every angle φ > 0,

lim
r→0

H(E ∩ (Br (x)\Sr (x, θ, φ)\Sr (x, −θ, φ)))

r
= 0 (1)
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Figure 15. Illustrating the parametrization-free definition of tangents (Besicovitch tangent) at a point. Such definitions require that a significant
part of E lies near x , of which a negligible amount lies outside the wedges. In (a) we illustrate the Besicovitch tangent at one scale, adapted
from Falconer [12], and in (b) the tangent set (multiple tangents) at one point.

where Br (x) is the ball of radius r centered at
x , Sr (x, θ, φ) is the sector of radius r at angle θ

with opening φ, and Sr (x, −θ, φ) is the sector in
the opposite direction (it could have been written
Sr (x, θ + π, φ)).

Suppose x ∈ E , then this definition means that at x
the set E is locally concentrated around the line TB(x)

with orientation θ passing through x . The first condition
in this definition ensures that x is indeed on the set.
The second condition ensures that the concentration is
around the tangent line only. Figure 15(a) illustrates the
definition, namely that the second condition consists in
looking at the rate of growth of what is found outside the
local angular sector centered at x . If this rate of growth
is much faster than r , the curve is ensured (from the
first condition) to be concentrated around the line with
orientation θ at x .

How does this definition of tangent relate to the
usual definition of a tangent to a parametrized curve?
In his seminal work, Besicovitch [1] showed that this
parametrization-free definition was indeed equivalent
to the classical definition we presented in Section 3.2.

Theorem 4 (Besicovitch and classical tangent [1]).
Let E be a parametrized simple curve. If x ∈ E, and
if both T (x) and TB(x) exist, then the Besicovitch and
the usual definition of the tangent at x correspond, i.e.,
T (x) = TB(x).

Proof: The original proof can be found in
Besicovitch [1], but a modern presentation can be found
in Tricot [47]. ✷

Remark 5. Since we know now that the Besicovitch
tangent and the usual tangent to a parametrized curve
coincide, we will denote the tangent to a set E at x by
T (x) and always imply the Besicovitch construction.

One can now wonder if the Besicovitch tangent is
solving some of the problems encountered with the
classical definition for representing data obtained from
edge detection. We will focus here on line endings and
intersections. For this, let us recall Example 4 in which
one of the lines was at an angle θ1 = π/4, while the
other was at θ2 = 3π/4. Suppose we are at one of the
end points of the line with orientation θ1. The density
D(E, x) = 1/2 > 0, and the rate of growth outside a
sector is zero since

E ∩ (Br (x)\Sr (x, θ1, φ)\Sr (x, −θ1, φ)) = ∅

for all 0 < φ < π/8 and r > 0. A tangent at the end
points is thus defined with the same orientation as for
the rest of the line. At the intersection, i.e., for x =
(0, 0), the density D(E, x) = 2 > 0, but

H(E ∩ (Br (x)\Sr (x, θ1, φ)\Sr (x, −θ1, φ)))

r
= 1,
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for all r < 1 and 0 < φ < π/8, therefore the Besicovitch
tangent at x = (0, 0) fails to exist. Since these events
(curve intersections) are of paramount importance for
the description of an edge map, we will present in the
next section a wider representation for the local struc-
ture of a set than the Besicovitch tangent.

The study of the distribution of tangents for curve-
like sets will be based on this critical result about the
existence on tangents:

Theorem 5 (Tangent a.e [11]). A curve-like set E has
a tangent at almost all its points.

Sketch of proof: The proof has several steps and is
the subject of ([11], Chapter 3). First, one proves that a
rectifiable curve � has a tangent at almost all its points.
This can be done using the following

Lemma 1 ([11]). Ifφ > 0 and E is the set of points on
a rectifiable curve � that belong to pairs of arbitrarily
small subarcs of � subtending chords that make an
angle of more than 2φ with each other, thenH(E) = 0.

which characterizes the distribution of tangents for a
rectifiable curve. It says that on a rectifiable curve, the
chords defined by triples of points that are sufficiently
close should almost never make a large angle between
them. The existence of a tangent almost everywhere for
a single rectifiable curve then follows from the conti-
nuity of the mapping. Once one knows that a rectifiable
curve has a tangent almost everywhere, properties of
densities, together with Theorem 3 provide us with the
final result. ✷

Although for this paper the central theorem will be
Theorem 5, we end our review of the classical results
from geometric measure theory by the structure the-
orem, which constitutes a very deep result about the
structure of arbitrary subsets of Rn [35]. We will cite
here its one-dimensional version and a corollary that
partly follows from the previous theorem. Recalling
that a continuum is a compact connected set, we have

Theorem 6 (Structure theorem [11]). If E is a contin-
uum with H(E) < ∞, then it consists of a countable
union of rectifiable curves together with a set of H-
measure zero.

Corollary 1. If E is a continuum with H(E) < ∞,

then E is regular and has a tangent at almost all its
points.

Figure 16. T-junctions. When objects occlude one another, they
induce discontinuities in the edge map. T-junctions such as those
shown in this figure are one type of these occlusion discontinuities.
Reproduced from [Nitzberg, Mumford and Shiota [38].

The material we presented in this section so far is
standard in elementary differential geometry and in ge-
ometric measure theory. We have briefly established
links with relevant issues in computer vision, and have
presented the mathematical apparatus needed for the
development of our intermediate representation. The
rest of this section presents our original contributions.

3.3.4. Multiple Tangents. The Besicovitch tangent
must be extended for applications in computer vision.
This is due to the fact that when objects occlude, they
create discontinuities in bounding contours, leading to
T-junctions [17, 18, 38, 49] such as those presented
in Fig. 16. At these points of discontinuity in orienta-
tion, it is natural to represent “multiple tangents” [55].
Intuitively the rationale is as follows: in the limit, as
the discontinuity is approached from one side, one tan-
gent is obtained, while from the other side, the second
tangent is obtained. There is also an important moti-
vation from neurobiology, with multiple orientations
represented in the same orientation hypercolumn.

The following is an extension of the Besicovitch tan-
gent to allow the representation of multiple tangents at
a point:

Definition 13 (Multiple tangents). A curve-like set E
has a tangent set �(x) at x if Du(E, x) > 0 and for
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every angle φ > 0,

lim
r→0

H(E∩(Br (x)\(⋃θ∈�(x)[Sr (x, θ, φ)∪Sr (x, −θ, φ)])))
r = 0

(2)

but also, for each θ ∈ �(x), ∃ r0 and φ0 such that
∀0 < φ < φ0 and 0 < r < r0,

lim sup
r→0

H(E ∩ (Br (x) ∩ (Sr (x, θ, φ) ∪ Sr (x, −θ, φ))))

2r > 0

(3)

As in the definition of the Besicovitch tangent, the
density condition makes (almost) sure we are on the set.
The condition given by Eq. (2) prevents things from
being too crumpled around the point, while the third
(Eq. (3)) ensures that indeed there is something go-
ing on in the directions contained in the tangent set.
Equation (3) can be interpreted as the requirement that
the conical density around each tangent direction be
positive. In the case of the usual Besicovitch tangent
(Definition 12), we know that this is true (see for in-
stance [34]), therefore both definitions agree.

Remark 6. The value chosen for φ0 will be linked to
the orientation resolution of the operators when doing
curve detection, while r0 will be linked to their tangen-
tial extent (partly defining the scale of the operator).

Existence of multiple tangents. It is easy to build a set
with multiple tangents. The set E from Example 4, for
instance, has multiple tangents at x = (0, 0). In this
case �(x) = {π/4, 3π/4}. For both θ ∈ �(x), we
have for all r > 0 and 0 < φ < π/8

H(E ∩ (Br (x) ∩ (Sr (x, θ, φ) ∪ Sr (x, −θ, φ))))

2r
= 1 > 0,

while

E∩
(

Br (x)

∖ ( ⋃
θ∈�(x)

[Sr (x, θ, φ) ∪ Sr (x, −θ, φ)]

))

= ∅

which ends the verification.
Until now we did not put any constraint on the car-

dinality of the tangent set �(x) at a point. This first
result addresses part of the issue:

Corollary 2 (Unique tangent a.e.). If E is a curve-
like set and x ∈ E, then the set of tangents �(x) at x
is composed of a unique tangent for almost all x in E.

Proof: The proof follows from Theorem 5.

3.3.5. The Tangent Map. The definition of multiple
tangents allows us to define a new structure essential
for the development of our complexity measure. This
structure will give the orientation of the set at each of
its points:

Definition 14 (Tangent map). Given a curve-like set
E , the tangent map τ is

τ =
⋃
x∈E

(x, �(x)).

The tangent map will provide the mechanism for re-
lating geometric structure to visual structure. The links
will be provided by showing that the geometric struc-
ture is directly analogous to that obtained in computer
vision. Thus we must define the tangent map in the
discrete domain. This is how the structure we just de-
fined will be linked to the output of edge detectors.
The resulting intermediate representation will be the
one used to characterize the complexity of the tangent
(edge) map, and to provide a decision scheme for the
representation underlying the grouping process. Before
describing the discrete counterpart of the tangent map,
we will investigate the structure of the underlying tan-
gent map for continuous curve-like sets.

3.4. Tangent Separation Theorems

Rectifiability constrains the global and local distribu-
tion of tangents. Basically, for a one-dimensional set
to be rectifiable, it cannot be too crumpled and cannot
cut itself too often (Fig. 17). The following theorems
will try to capture this last statement, and will provide
constraints on the underlying local approximation to a
curve-like set. Recall that a set is totally disconnected
if no two of its points lie in the same connected compo-
nent. Thus, given any pair of points in the set, there is
a decomposition into two disjoint closed subsets, each
containing one of the points [11]. Now, looking in the
neighborhood of a tangent, in the normal direction for
instance, we get the following:

Theorem 7 (Separation of parallel tangents). Let E
be a curve-like set. Consider a point w on E with tan-
gent T (w). If N (w) is a line passing through w with
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Figure 17. Illustration of the tangents separation theorems. The key idea is that for a curve to be rectifiable, the parallel or the multiple tangents
cannot form a continuum. (a) illustrates the parallel tangents separation, where w ∈ E is the point with the circle around it. The tangent T (w) and
the normal N (w) are drawn and for this particular example the set D(w, E) is composed of all the other dots. (b) multiple tangents separation.

orientation different than T (w), then D(w, E) = {y ∈
E

⋂
N (w) : T (w) = T (y)} is a totally disconnected

set.

This result says that a curve can’t be squeezed into
itself too much, or a point may be reached where the
tangents become dense. At this point it will be difficult
to “walk” along the curve-like set, in the same sense as it
was difficult to walk along Paolina’s hair in Section 1.1.
Sets with tangents dense in the normal direction require
different representations for local to global transitions.

Proof: We will proceed by contradiction. Suppose
there exists a connected component C ⊂ D(w, E).
Since C ⊂ N (w) we have

L(C) = |C |1 = H(C) = diam(C) > 0

where |·|1 is the usual one-dimensional Lebesgue mea-
sure and L(·), the Jordan length. Take now any point z
inside C . For small enough ρ we get

H(C ∩ Bρ(z)) = 2ρ

Therefore, if θ is the angle for T (w), then we have for
all φ sufficiently small

lim
r→0

H(C ∩ (Br (z)\Sr (z, θ, φ)\Sr (z, −θ, φ)))

r
≥ 1

which shows that there is no tangent at that point.
This being true for all interior points of C , and since
diam(C) > 0, we have found a set of H-measure > 0
for which there does not exist a tangent. However E
being a rectifiable set, this contradicts the fact that it
should have a tangent almost everywhere. ✷

Now consider the distribution of multiple tangents.
More importantly, however, Theorem 8 will be the
equivalent of Theorem 7 but in orientation space rather
than in the spatial domain.

Theorem 8 (Separation of multiple tangents). If w

is a point on a curve-like set E, then �(w), the set of
multiple tangents at w, is a totally disconnected set.

Sketch of proof: Suppose there exists a connected
component C ⊂ �(w). We can then find a circular
arc in the neighborhood of w for which each point has
a multiple tangent. That means we would be able to
build a set of measure greater than zero with more than
one tangent everywhere, which contradicts Theorem 2
since E is rectifiable.

The above proofs of Theorems 7 and 8 show the
spirit of Poincaré’s cut dimension idea [40]. In both
proofs (using contradiction) we show that in order to
disconnect the set, we need a continuum; a straight
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line in the case of Theorem 7, an arc of circle in
Theorem 8. This leads to a contradiction because then
the object couldn’t be a rectifiable curve.

4. From Curve-like Sets to Edge Detection

One of the central features of the theory of curve-
like sets was the Besicovitch tangent formulated
in a parametrization-free manner. This is interest-
ing for computer vision, because it is analogous to
parametrization-free methods for estimating tangents,
namely edge detection. We shall place tremendous em-
phasis on this analogy. In particular, just as Besicov-
itch sought a dense collection of points within a cone,
“edge” operators seek a dense collection of pixels at
a certain contrast [5, 20, 32]. There are two important
differences, however, and these differences will moti-
vate the rest of this paper. First is the notion of scale.
The Besicovitch tangent was defined in the infinitesi-
mal limit, and is related to a classification of curves as
being either finite length (rectifiable) or infinite (non-
rectifiable). Those with finite length were called 1-sets.
The second difference is resolution. Orientation for the
Besicovitch tangent is a real variable, as is spatial lo-
cation; for any computation on a computer, these will
be quantized numbers.

To develop the analogy between Besicovitch tan-
gent sets and curve detection, we must face several
subtleties. Finite scale and finite resolution have deep
consequences, which we shall now attempt to illus-
trate. The result will both help us to frame the measure-
theoretic problems that are appropriate for vision, and
will lead to a statement of what we seek formally: dis-
crete curve-like sets. To avoid the impression that all the
mathematical questions are resolved, we also switch to
a more informal style of presentation.

4.1. From Edge Detection to Discrete
Curve-like Sets

Finite scale and finite resolution, as they arise in edge
detection, make the definition of discrete curve-like
sets a very delicate one. Since edge operators are all
band limited, the inferred objects will all be finite,
and the subtlety lies in their organization. Returning to
Fig. 2(c), we see that the tradeoff between finite scale
and finite resolution results in a distribution of tangents
that is more elongated than thick, but it is still a dis-
tribution. This certainly captures the spirit of the Besi-

covitch construction, provided the limiting process is
stopped at a finite cone. However inside the hair texture
the tangent distribution is more turbulent (Fig. 2(d)).
Even though the length of the detected hair is finite,
many orientations are seen in a dense neighborhood.
This is a situation that required a modification of the
pure Besicovitch construction which we called the tan-
gent set. The multiple tangents separation theorems
(Theorem 7 and Theorem 8) lead to the observation
that, while more than one tangent can exist at a point,
not all tangents can exist at all positions, even for a
complicated object like a bowl of spaghetti. Rather, in
the “spaghetti” case, the structural criterion will be not
how well the tangents continue “along” the curve, but
how they fall orthogonally to it. As we show in Sec-
tion 3 of the companion paper [9], the classification of
discrete curve-like sets at finite scale and resolution is
much richer for vision than abstract rectifiability.

As non-rectifiable curves at a given detection scale
and resolution are uninteresting for vision, we assume
that there exists a (rectifiable) curve-like set project-
ing into a quantized image, in a way such that each
pixel through which the curve passes is a discrete trace
point. The union of these trace points defines the full
trace T . Further, suppose a tangent set is given at each
of these trace points by a curve detection scheme. In
our examples we used logical/linear operators [24] fol-
lowed by relaxation labeling [23, 55], but the abstract
requirement is that multiple orientations at a point can
be represented. We then have

Definition 15 (Discrete tangent map). Let I denote
an image, letT be a subset of its domain, and let x̂k ∈ T .
Then the discrete tangent map τ̂ will be:

τ̂ = {(x̂k, θ̂ ) | θ̂ ∈ �̂(x̂k)}

k = 1, 2, . . . , where θ̂ is a quantized orientation at the
discrete image coordinate x̂k .

Any entry in the map in fact corresponds to an
equivalence class of curves passing through the cell
x̂k = (xi , yi ) with orientation θ̂ . To illustrate the previ-
ous definition, we will show the discrete tangent maps
for our test patterns. For the Kanizsa pattern, the dis-
crete tangent map was approximated. This could be
done because the tangent set was known at every point,
therefore we only needed to discretize position and ori-
entation. This approach is justified since the structure
of the underlying set is relatively simple: the set was
aligned with the grid, curve intersections were sparse,



Part I: The Curve-like Representation 77

Figure 18. Discrete tangent map for the Kanizsa pattern (Fig. 4(a)). (a) tangent map on the whole pattern, (b) and (c) are close-ups at the upper
left corner of the previous pattern (the blow-up in (c) is shown shaded in (b)). Notice the place where there are multiple tangents at the corner
as shown in (c).

and the spacing between the lines was known a pri-
ori, therefore the resolution could be chosen to be high
enough to allow the discrimination of the individual
curves in the grating.

Example 5 (The Kanizsa pattern DTM). The discrete
tangent map (DTM) for the Kanizsa pattern was ob-
tained by first embedding the pattern in the unit square
and then discretizing orientation and position. For this
example, the chosen resolution was 100 × 100, with
eight discrete orientations. The corresponding discrete
tangent map is shown in Fig. 18. Most points on the
set have a unique tangent, therefore, for these, the tan-
gent set is composed of a unique element. Interest-
ing places are the four corners of the rectangle, where
the tangent set has two elements (tangents) at perpen-
dicular orientations (see Fig. 18(c)), and the ends of
lines.

For the other examples, the discrete tangent maps
will be inferred through the output of edge/line detec-
tors. For the Ullman patterns, we used negative con-
trast line detectors (seeking dark lines on a light back-
ground) based on logical/linear (L/L) operators. The
kernels for the convolutions supported Nθ = 8 orienta-
tions classes, and the difference between adjacent di-
rections was 22.5◦. The operators had a size of about
10 × 10 pixels (depending on the orientation), had a
tangential support of σT = 2.0, and normal (lateral)
support of σN = √

2/2 pixels. This ensures that all
curves are localized to connected regions with width
≤ 2 pixels [24]. Although these operators could have
also provided curvature estimates, these were not con-
sidered for this study. A complete description of the
detection algorithm can be found in either [23] or [24].

Example 6 (The Ullman pattern DTM). The discrete
tangent map as computed by edge/line detection for
the Ullman pattern is shown in Fig 19. Once more,
zooms of regions on the global maps are presented in
the bottom blowups. The lower two blowups are of
significant interest since they reproduce this effect of
broadening of tangents. Notice the orientation ambigu-
ity in the DTM clearly shown in the two figures. These
are due to either high curvature, line crossings, or the
incapacity of representing a given orientation due to
the discretization process.

The discretization process has a dramatic effect on
the discrete tangent map. In this paper we used a square
lattice, which leads to the question of how to represent
a point on the digitization grid: it might fall at the inter-
section of pixels. The same line of reasoning applies for
tangents: they might fall in between two discrete ori-
entations. How should these cases be represented? For
the Kanizsa pattern, the lines were intentionally aligned
with the lattice, making the generation of the discrete
tangent map very straightforward. For the Ullman pat-
terns, when the curves do not align with the grid (which
is almost always the case) we saw that they induce both
spatial and orientation smearing of the tangents.

For the Paolina image, this time we used the edge
operators (seeking places where there is a significant
change between light and dark regions). The original
image was processed with L/L operators with 8 orien-
tations and 5 curvatures. The output was then processed
with three iterations of relaxation labeling [23, 56] and
only the compatibilities greater than 5% of the max-
imum were kept. A complete description on how the
tangent map was generated for this image can be found
in [23].
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Figure 19. Discrete tangent maps for the Ullman figures (Fig. 6).
Top left: discrete tangent map for the pattern in Fig. 6(a); top right:
discrete tangent map for Fig. 6(b). The grey regions in upper panels
indicate the extent of the close-ups shown underneath. As opposed
to the previous two examples, this time the local structure needed to
be inferred and was obtained from edge/line detection.

Example 7 (The Paolina image DTM). The tangent
map for the Paolina image was given in Fig. 2(f) and
was used as a motivation for our introductory state-
ments for this paper. One of the main observations
pointed out is that not all orientations can be “on” at
the same time. Moreover, the distribution of tangents
varies throughout the image: at some places it is very
dense, as in the hair region, at others it is very sparse,
as on the back.

The discrete tangent map is thus a reasonable in-
terpretation of the output for certain early visual pro-
cesses. Theoretically, there is a compelling analogy be-
tween the first stages of curve detection, which lead to
local representations, and a discretized, extended ver-

sion of the Besicovitch tangent. As the above compu-
tational experiments show, the analogy is useful practi-
cally as well. But perhaps most importantly, it provides
a formal suggestion of how to proceed from a central
local-to-global integration in early vision: curve detec-
tion is based upon discrete curve-like sets; i.e., those
sets that are obtained from the integration of the dis-
crete tangent map:

Definition 16 (Discrete curve-like sets). Recalling
the property of curve-like sets that a tangent exists
H-almost everywhere, the discrete analog—discrete
curve-like sets—are those sets of discrete points at
which a discrete tangent set is defined. From the above
definition this is identified as the set of discrete trace
points.

For computer vision applications, it is this definition
that we take to be primitive. The Besicovitch structure
and the multiple tangents extension provide the math-
ematical rationale for it. Its usefulness is demonstrated
by the framing of the following question.

4.1.1. Transversality or Quantization? In the contin-
uous domain, tangent maps were defined in a way that
allowed multiple tangents at the same position, to rep-
resent those discontinuities that can arise at, e.g. points
where one object occludes another. A key concern for
discrete tangent maps is how to distinguish this situ-
ation from the multiple tangents that can arise due to
finite scale and quantization. This is the problem of
differentiating transversality from quantization. If at a
particular position there are several tangents, how can
we decide if these correspond to a quantization arti-
fact or to the fact that two lines are actually crossing
at that position (as was shown in the lower panels of
Fig. 19)? The standard solution to the problem of spa-
tial broadening is to apply thinning before grouping,
this however is bound to destroy the information at ori-
entation discontinuities (as an example, one can look at
Fig. 16 in [7], at the intersection between the circle and
the vertical line). The standard approach to discontinu-
ity detection is completely different. Typically, a deci-
sion process is defined, based on a “corner” model with
noise, and a statistical assessment attempted [14]. The
problem of corner detection has not previously been
considered to be related to quantization artifacts.

Our solution to this issue is two-fold. First, we chose
a representation to allow the representation of multiple,
spatially coincident edges. The L/L operators not only
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respond stably in the neighborhood of multiple coinci-
dent curves [24], but are also able to adequately repre-
sent them within the discrete tangent map. Second, the
distinction between transversality and quantization at
places where multiple tangents occur will be detected
from the normal complexity of the discrete curve-like
set as will be shown in Section 3 of the companion
paper [9].

4.2. Discrete Equivalent to the Tangent
Separation Theorems

Theorem 7 has its discrete equivalent: if there is a dis-
crete tangent at position x̂ , then there is a limit on the
number of tangents that can be locally parallel to it
(i.e., with the same orientation). The same applies at a
single image location, where all tangents cannot exist
at a point, giving a discrete equivalent to Theorem 8.
The detection of edges or lines therefore constrains the
discrete tangent map: not all tangents can be on, even
if the image is of a bowl of spaghetti.

In the continuous domain, this constraint was defined
as the fact that, given an orientation θ , one cannot find
an interval in a direction different from θ for which
one would have tangents with the same orientation θ .
Two key changes need to be considered for the discrete
equivalent:

• different orientation: Suppose the discrete orienta-
tions considered are θ1, θ2, . . . , θNθ

, and that a dis-
crete tangent θi is on at a given position x̂ . An orien-
tation θ j will be said to be “different” if d(θ j , θi ) ≥ 2
where

d(θi , θ j ) = |(θi − θ j ) modc r |
π/Nθ

and where r = π for lines, and r = 2π for edges.
Here the x modc y operation is a centered modu-
lus, with the output values restricted to the inter-
val (−y/2, y/2]. Details about this distance between
orientation cells can be found in [23];

• interval: The discretization induces a lateral spread-
ing of tangents as we saw earlier e.g., in the Ullman
DTM’s. An interval here will therefore be defined
as a set of M adjacent (8-connected) pixels within a
given orientation. It is the value that M will take that
will define the minimum size of contiguous pixels
to be considered as an interval. For instance, if the
resolution of the image is N , then a discrete inter-
val is definitely smaller than N . To refine this asser-

tion, we will need to use the scale of the operator
σ = (σN , σT ).

Both these notions then lead to a conjecture about
the size of the largest neighborhood over which infor-
mation can spread laterally:

Conjecture 1 (Separation of discrete parallel tangents).
Let I be an image with spatial resolution N . Let τ̂ be
its discrete tangent map obtained through a bank of
L/L operators for Nθ orientations with normal scale
extent σN < N . If the response at x̂ for orientation θi

is positive, then there exists a constant k such that the
set of parallel tangents in direction θ j cannot be wider
than �kσN � contiguous pixels whenever d(θi , θ j ) ≥ 2.

A proof for this conjecture must involve several
different ideas. First, the continuous version must be
factored into discrete equivalence classes, formalizing
the notions of discrete positions (traces) and orienta-
tions. Moreover, this factorization must remain consis-
tent with geometric measure theory, so discrete con-
centrations of Hausdorff measure and distribution can
be obtained. Finally, properties of the curve detection
system must be taken into account, which defines a
type of scale σ = (σN , σT ). Letting M = �kσN �, one
needs to show that if there were more than M lines in
density, then the response would not be positive. But
if there were only M − 1 parallel tangents, then there
could exist a pattern for which the response would be
significant. To illustrate this for the operators we used,
we know that �kσN � is larger than 3 pixels. This is illus-
trated in Fig. 20 which is showing the discrete tangent
map for a line segment at 45◦. Notice there the lateral
spreading of tangents over 3 pixels wide connected lin-
ear neighborhoods. In this paper, we will take the limit
M for discrete parallel tangent separation to be 5 pix-
els (i.e. we can have 4 parallel tangents, but not 5).
More generally, one would expect that such a conjec-
ture will hold for any edge/tangent inference scheme
with a bound on normal direction focus.

One of the characteristics of linear/logical opera-
tors is to allow the coexistence of tangents at a given
point. This was needed to allow the representation of
T-junctions, and other types of discontinuities. The fol-
lowing is the discrete counterpart of the original con-
tinuous result:

Conjecture 2 (Separation of discrete multiple tangents).
Let I be an image with spatial resolution N . Let τ̂ be
its discrete tangent map obtained through a bank of
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Figure 20. Discrete tangent map for a line segment at an orienta-
tion θ = 45◦ obtained from L/L operators. Notice the spreading of
tangents over a 3 pixels connected linear neighborhood: i.e. drawing
a line at 0◦ orientation can hit 3 contiguous tangents.

L/L operators for Nθ orientations at scale (σT , σN )

with σN < σT < N , then there exists a constant k such
that the set of discrete tangents at a point x̂ cannot have
more than �kσT /σN � contiguous elements.

As above, the proof of this conjecture will be in-
volved. Let us set M = �kσT /σN �. We believe much
of the proof will be common with the previous one: we
would need to show that it is not possible to have M
contiguous tangents at one point with positive response,
but there could exist a pattern where the operator would
provide the coexistence of M − 1 contiguous tangents.
What needs to be understood out of this conjecture
is that at a given pixel, not all tangents (orientations)
should have significant response at the same time.

This type of analysis of image operator’s behavior is
not completely new. Canny’s [5] original analysis pre-
sented something along these lines when trying to char-
acterize xzc, the mean distance between zero-crossing
of f ′ and xmax, the distance between adjacent maxima
in the noise response to the filter f . This was used as a
constraint to limit the number of peaks in the response.

5. Conclusions

Grouping is a process that inherently involves a local-
to-global transition, and in this paper we studied that

transition for edge elements into bounding contours.
Differential geometry provides the formal framework
for this problem, and we reviewed the classical con-
structs of (local) tangents and (global) curves to identify
the need for segmentation of curves from textures. To
support the tangent interpretation, we introduced clas-
sical structures from geometric measure theory, and
showed how the Besicovitch tangent is analagous—
at an infinitesimal scale—to edge detection (at a
finite scale). Hausdorff’s dimension construction then
enabled us to prove an extension of the Besicovitch
structure theorem that limits the density of tangents
in position and orientation space ( 2 × S1); in effect
this means that, for curve-like sets, not all tangents can
be present at all positions in all orientations. This is
the explicit way in which complexity enters the situ-
ation: if the tangent distribution is too complex—i.e.,
too dense—it cannot be arising from a curve-like set.
Some other representation is required.

In the companion paper [9] we show how to compute
estimates of this complexity for actual edge responses.

Notes

1. Throughout this work, when referring to curve, edge or boundary
detection, we imply the process just described here.

2. Actually in this example the length of the sticks is random.
3. Note that the placement of the figures is a deliberate strategy we

adopted to make the task harder: having to flip from one page to
another, helps to make our point unambiguous.

4. ftp://ftp.cim.mcgill.ca/pub/people/leei/loglin.tar.gz
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