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Non-Linear Scale-Spaces Isomorphic to the Linear Case
with Applications to Scalar, Vector and Multispectral Images
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Abstract. A basic requirement of scale-space representations in general is that of scale causality, which states
that local extrema in the image should not be enhanced when resolution is diminished. We consider a special
class of nonlinear scale-spaces consistent with this constraint, which can be linearised by a suitable isomorphism
in the grey-scale domain so as to reproduce the familiar Gaussian scale-space. We consider instances in which
nonlinear representations may be the preferred choice, as well as instances in which they enter by necessity.
We also establish their relation to morphological scale-space representations based on a quadratic structuring
function.
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1. Introduction

A scale-space representation [7, 9, 11, 14, 17, 22, 24,
25] is an embedding of an image into a parametrised
family, in which the parameter encodes scale or res-
olution (coarse/fine scale means low/high resolution,
respectively). Koenderink has argued that in order for
such an embedding to be a sensible one it must sat-
isfy a basic causality condition: Local extrema should
not be enhanced as resolution is diminished. In other
words, if image intensity is locally maximal (mini-
mal), its derivative with respect to scale should be
nonpositive (nonnegative, respectively). (This poses
no constraint on the number of extrema. In particular,
extrema may be created as resolution is diminished,
as long as they satisfy the non-enhancement prop-
erty). He subsequently narrows down the solution space
by imposing plausible symmetry constraints, notably
isotropy, homogeneity, and linearity. This uniquely es-
tablishes a linear representation known as Gaussian
scale-space.

In this article we consider generalised represen-
tations by relaxing the additional demands, notably
linearity, and discuss a number of potential applica-

tions in which the standard Gaussian case may not be
appropriate or may even be inconsistent. The theory is
applicable to scalar, vector and multispectral images.
We also establish a relationship between the result-
ing nonlinear representation for scalar images and par-
ticular types of scale-space constructs encountered in
mathematical morphology, viz. those obtained by ero-
sion and dilation by quadratic structuring functions of
variable width.

2. Theory

Let f (x) be an image defined on some compact subset
of R

n , and consider its embedding into a family of
functions of the type u(x; s) with (x; s) ∈ R

n × R
+,

such that lims↓0 u(x; s) = f (x), say. Let us assume for
the moment that the fiducial origin corresponds to a
local extremum of u at some arbitrary level of scale. In
order to enforce the scale causality condition, the scale
derivative (at the origin) must be such that the value of
u is not enhanced.

If u is continuously differentiable with respect to s
and twice continuously differentiable with respect to
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x , then the osculating paraboloid to an iso-surface in
scale-space at a spatial extremum—the origin, say—is
given by

s = 1

2
xTQx with Q = − 1

us
H . (1)

Here, H is the Hessian matrix of u evaluated at the
origin, with entries uij, i, j = 1, . . . , n (second order
spatial derivatives of u), and us is the scale derivative
of u. Note that in an extremum the Hessian eigenvalues
are either all positive or all negative, so that the corre-
sponding surface is indeed a paraboloid. At the origin
its normal coincides with the normal to the original
iso-surface, and points towards increasing scale if and
only if

us�u > 0. (2)

To see this, note that the sign of all Hessian eigenvalues
equals that of their sum, i.e. the Laplacean. Vice versa,
if us�u > 0 at extrema irrespective of the image, then
us has locally the same signature as (each eigenvalue of)
the Hessian matrix, so that Eq. (1) defines a paraboloid
pointing upward.

The simplest linear p.d.e. that realises the constraint
Eq. (2) is the isotropic diffusion equation. Endowed
with initial condition the scale-space defining p.d.e.
system then becomes

{
∂su = �u,

lim
s→0

u = f, (3)

but note that the addition of terms of the form O(∇u)

on the r.h.s. of the p.d.e. does not violate the causal-
ity principle. Equation (3) has a closed-form solution,
viz. u can be obtained from f by convolving it with
a normalised Gaussian of width σ = √

2s. This is an
important observation that will be exploited in all sub-
sequent considerations.

Suppose that we have reasons to consider an alter-
native parametrisation,

u
def= γ (v) with γ ′ > 0 (4)

say. (From a mathematical point of view there
is no compelling reason to prefer any particular
parametrisation in view of isomorphism, but there may
be physical arguments to do so, v.i.) Let the functional
γ Q denote the coefficient matrix of Eq. (1) evaluated

for the reparametrised image, i.e. γ Q[γ inv(u)] = Q[u].
Then clearly γ Q = Q at the location of a critical point
(∇u = 0). In particular we may conclude that at ex-
trema the convex side of a scale-space iso-surface still
points in the direction of increasing scale. In other
words, monotonic grey-scale mappings of the type
u = γ (v) preserve the causality property. Combining
Eq. (4) with Eq. (3) yields the following nonlinear
initial value problem for v:

{
∂sv = �v + µ‖∇v‖2,

lim
s→0

v = g.
(5)

in which the nonlinearity is defined by

µ
def= (ln γ ′)′ , (6)

and the initial condition by

g
def= γ −1( f ). (7)

To see this, substitute Eqs. (4) into (3), and divide by γ ′,
which is allowed by virtue of the monotonicity prop-
erty. The right hand side of the p.d.e. in Eq. (5) gener-
alises the familiar Laplacean by taking the parametrisa-
tion degree of freedom of its operand v into account via
the nonlinearity µ. In arbitrary metric spaces and ex-
pressed in parametrisation independent (“covariant”)
form the Laplacean is also known as the Laplace–
Beltrami operator, cf. Kimmel et al. (1999). The co-
variant form of the p.d.e. in Eq. (5) is given by the
following corollary, valid in an arbitrary parametri-
sation.

Corollary 1 (Covariant Formulation). If we account
for an arbitrary parametrisation and general choice of
metric, Eq. (5) can be written as

∂tv = 1√
η
∇α

(√
ηηαβ∇βv

) + µ ηαβ∇αv∇βv,

in which ηαβ are the components of the metric tensor,
with inverse ηαβ and determinant η.

Proof: If we take ηαβ = δαβ , i.e. 1 if α = β and 0
otherwise (the usual Euclidean metric), and if we set
t = √

η s, then the above equation takes the form of
Eq. (5). Since the r.h.s. of the equation in the corol-
lary is a tensor (cf. Misner et al., [19] for details), it
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is valid in any coordinate system. In fact, it can be
generalised to any metric space by taking an appropri-
ate choice of metric ηαβ , not necessarily Euclidean (in
that case its form cannot be reduced to that of Eq. (5)
however). ✷

The first term on the right hand side in Corollary 1 is
the spatial coordinate independent Laplace—Beltrami
operator acting on the image function, the second term
generalises it so as to make it greyvalue parametrisation
independent in addition.

We have the following commuting diagram:

γ
u ←−−−− v

↑ ↑
Eq. (3) | | Eq. (5)| |

γ −1
f −−−−→ g

(8)

Note that if γ tends to an affine transformation, i.e.
µ → 0 implying γ (v) = α + βv, one reobtains the
linear equation. This is as one would expect, since the
affine group is in fact precisely the invariance group of
Eq. (3) under grey-scale point mappings.

One might conjecture that Eq. (5) is no longer invari-
ant under affine grey-scale transformations. However,
one should not fail to notice that the parameterµ and the
image v are dimensionally dependent, so that the affine
group also affects µ. Indeed, (v; µ) → (α +βv; µ/β)

with β �= 0 is the full invariance group correspond-
ing to affine grey-scalings in the new representation
defined by Eq. (4).

In order to cope with the nonlinear schemes one may
exploit the commuting diagram of Eq. (8).

Proposition 1. Let � denote correlation, i.e.

f � φ(x)
def=

∫
dz f (x + z) φ(z).

If φ is the Green’s function of Eq. (3) then the solution
of Eq. (5) is given by

v
def= γ −1(γ (g) � φ).

Recall that the Green’s function of Eq. (3) is the
normalised Gaussian,

φ(z; σ)
def= 1√

2πσ 2
n exp

(
−1

2

‖z‖2

σ 2

)
, (9)

in which the inner scale parameter σ is related to the
evolution parameter s of Eq. (3) by σ = √

2s.

We henceforth assume that the initial image f is nor-
malised to the unit interval, and that γ : [0, 1] → [0, 1]
preserves this range. It is then easily seen that confine-
ment to the unit interval is preserved under evolution
by Eq. (5).

The fact that Eq. (5) is a generalisation of linear
scale-space defined in terms of an infinite-dimensional
function space adds more flexibility to the way
Gaussian scale-space theory can be used in practical
applications. As opposed to general nonlinear diffusion
schemes all rigorous results known for the linear case
still hold in some precise form. We discuss a number
of concrete possibilities below.

2.1. Scalar Images

We first consider the case in which we are given a
single image, and discuss the relevance of the theory for
image processing, front-end vision, image analysis, and
edge detection.

2.1.1. Image Processing. Recall Eqs. (5–8). Of all
possible non-affine transformations, one class is par-
ticularly simple and somewhat special, viz. the one for
which the coefficientµ is a global constant. A particular
case arises in the limits µ → ±∞. A perturbative ap-
proach reveals that one then obtains first order evolution
equations, which can be regarded as the morphological
counterparts of Eq. (3):{

∂tv = ±‖∇v‖2,

lim
t→0

v = g.
(10)

See e.g. Boomgaard et al. [2–5] and Dorst et al. [6]
for details. We will return to these limiting cases
below.

The general case is of interest in the development of
generalised multiscale techniques beyond the standard
linear and morphological methods based on Eqs. (3)
and (10), respectively [8]. More specifically, it is in-
teresting for its potential role in finding a balance be-
tween these extremal cases that brings out the best of
two worlds. For instance, the linear theory is appreci-
ated for its robustness due to its regularising property
(cf. Nielsen et al. [20]), whereas the morphological the-
ory is often preferred in cases where discontinuities are
considered essential.

The transformation corresponding to finite constant
µ depends on the choice of two integration constants
and is given by the following lemma.
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Lemma 1. Consider the parametrised transforma-
tion u = γµ(v) given by

γµ(v) =

β

eµv − 1

µ
+ α if µ �= 0,

βv + α if µ = 0.

This transforms Eq. (3) into Eqs. (5–6) with a constant
coefficient µ ∈ R. Apart from µ there are two degrees
of freedom in the transformation, α ∈ R and β ∈ R

+.

Note that the constants α = γµ(0) and β = γ ′
µ(0)

are actually independent of µ. There is no loss of gen-
erality in the discussion that follows if we fix suitable
values for α and β. It is, however, more realistic to re-
strict image values to the unit interval, and to maintain
this range regardless of the mapping, because raw im-
ages always have a finite range. This boils down to a
combination of suitable integration constants that does
depend on µ, viz. α = 0 and β = µ/(eµ −1) if µ �= 0,
β = 1 otherwise. This observation has significant im-
plications for the morphological limits, as will be seen
later.

Definition 1. By means of a suitable affine transfor-
mation we henceforth restrict the isomorphism of
Lemma 1 to the unit interval: γµ(0) ≡ 0 and γµ(1) ≡ 1.
That is,

γµ(v) =



eµv − 1

eµ − 1
if µ �= 0,

v if µ = 0.

As a consequence of this definition all image quan-
tities, f , g, u and v, as well as the parameter µ appear
dimensionless. It is not difficult to reintroduce appro-
priate units if desired. We have

γ −1
µ (u) =




1

µ
ln(1 + (eµ − 1)u) if µ �= 0,

u if µ = 0.

(11)

Both γµ as well as γ −1
µ are continuously differentiable

for all µ ∈ R, in other words, the isomorphism is even a
diffeomorphism. This observation may be important in
view of techniques or proofs that exploit the commuting
diagram of Eq. (8).

We have the following limiting cases (χI is the in-
dicator function on I , i.e. χI (x) = 1 if x ∈ I , other-
wise χI (x) = 0; [a, b[ denotes the half-open interval

including a but excluding b, etc.) :

lim
µ→+∞ γµ(v) = 1 − χ[0,1[(v), (12)

lim
µ→+∞ γ −1

µ (u) = χ]0,1](u), (13)

respectively

lim
µ→−∞ γµ(v) = χ]0,1](v), (14)

lim
µ→−∞ γ −1

µ (u) = 1 − χ[0,1[(u). (15)

Convergence is pointwise, not uniform. In particular
one observes that the limiting pairs are no longer each
other’s inverse and fail to be isomorphisms.

Combination of Eq. (9) and Definition 1 leads us to
consider

vµ(x; σ) = 1

µ
ln

∫
dz eµg(x+z) φ(z; σ) , (16)

in which the inner scale parameter σ is related to the
evolution parameter s of Eq. (3) by σ = √

2s. For
every µ ∈ R this formula gives us the explicit nonlin-
ear filtering procedure for obtaining a particular mul-
tiscale representation of the raw image g correspond-
ing to a member of a 1-parameter family of pseudo-
linear scale-spaces governed by the control parame-
ter µ. The integral is always well-defined by virtue of
the normalisation of grey-values: 0 ≤ g(z) ≤ 1 for
all z. It is easily seen that confinement to the unit in-
terval is preserved at all scales and for all parameter
values.

Let us return to the aforementioned limiting cases.

Proposition 2 (Linear Scale-Space). Recall Eqs. (9)
and (16). The limit

u
def= lim

µ→0
vµ

exists and reproduces linear scale-space filtering:

u(x; σ) =
∫

dz g(x + z) φ(z; σ).

Convergence is uniform.

According to Eq. (7) and Definition 1 we can identify
g = f .

Proof: Observe that vµ = g � φ + O(µ) as µ → 0,
with g = f + O(µ). ✷
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It will turn out that for nonzero parameter µ a scale
different from “linear scale” σ will show up in the anal-
ysis.

Proposition 3 (Morphological Scale-Spaces). Recall
Eqs. (9) and (16). For given linear scale σ ∈ IR+ and
nonlinearity parameter µ ∈ IR we define the “nonlin-
ear scale” parameter τ ∈ IR+ as follows:

τ
def= σ

√
|µ|,

and consider uµ(x; τ) ≡ vµ(x; σ). Keeping τ fixed,
the limits

u±∞
def= lim

µ→±∞ uµ

exist and are given by

u+∞(x; τ) = sup
z∈IRn

[g(x + z) + q+(z; τ)],

u−∞(x; τ) = inf
z∈IRn

[g(x + z) + q−(z; τ)],

with

q±(z; τ)
def= ∓1

2

‖z‖2

τ 2
.

Convergence is pointwise.

Note that in these limiting cases we can no longer
use Eq. (7) Definition 1 to relate the initial images f
and g. In mathematical morphology the functions u+∞
and u−∞ obtained according to this recipe are known
as the dilation, respectively the erosion of g by q = q+.
The function q is known as the quadratic or parabolic
structuring function [2–6, 16, 23], which, by the recipe
of Proposition 3, induces a multiscale representation
of g known as the dilation, respectively erosion scale-
space, with “morphological scale” τ .

Proof: The idea is to keep τ fixed in a physical rep-
resentation:

uµ(x; τ)
def= 1

µ
ln

{ ∫
dz eµg(x+z)φ(z; σ)

}
,

in which it is understood that σ = τ/
√|µ|. To this

end we rewrite the r.h.s.—using the explicit formula
for the normalised Gaussian, Eq. (9), and writing µ̂ for

the sign of µ—as

1

µ
ln

{√
|µ| n

∫
dz eµ[g(x+z)+qµ̂(z;τ)]

}

= 1

µ
ln

∫
dz eµ[g(x+z)+qµ̂(z;τ)] + O

(
ln |µ|

µ

)

as µ → ±∞. The latter term vanishes in either limit,
and the result follows from the standard formulas (using
continuity and monotonicity of the logarithm)

lim
µ→+∞

{ ∫
dz ϕµ(z)

} 1
µ

= sup
z∈�

ϕ(z),

lim
µ→−∞

{ ∫
dzϕµ(z)

} 1
µ

= inf
z∈�

ϕ(z),

which hold for positive and bounded ϕ ∈ C(�) ∩
L1(�) with support �. ✷

The proof brings out the significance of the rescal-
ing introduced in Proposition 3. In terms of the
evolution parameters of corresponding initial value
problems we have a rescaling t = |µ| s, in which
2s = σ 2, 2t = τ 2 (modulo offset determined by the ini-
tial scale of the data). If we apply this to Eq. (5) we
obtain 

 ∂t uµ = 1

|µ| (�uµ + µ ‖∇uµ‖2),

lim
t→0

uµ = g,
(17)

which indeed reproduces both Eq. (3) as well as
Eq. (10) in the respective limits, but at the same time
shows that the associated scale parameters are related
in a nontrivial way, viz. by a renormalisation, i.e. an
“infinite rescaling”. The ultimate justification for such
an awkward procedure is the law of scale invariance
(cf. the “Pi Theorem” [21]). This implies that entities
existing at whatever (finite) morphological scale per-
tain to structures in the input image at infinite spatial
resolution, regardless of their measure. This introduces
a hyper-sensitivity which obviously poses problems if
data are not carefully prepared or preprocessed (think
of “noise spikes” that are negligible in L1-norm yet of
appreciable size in L∞-norm).

Renormalisation also implies that we cannot com-
pare linear and morphological scale-spaces on a slice-
by-slice basis along scale axes. One is compelled
to maintain the distinction between morphological
scale on the one hand—scale in the sense of the
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Figure 1. Pseudo-linear scale-space representations of MRI image, obtained according to Eqs. (5–7) for constant µ. Scale σ = √
2s varies

exponentially in vertical direction: σ = 2k pixels, with k = 0, 1, 2, 3 (bottom up). The parameter µ varies in horizontal direction: from left to right
we have µ = −8, −4, 0, 4, 8, respectively. Dark regions are pronounced in erosion-like schemes (µ < 0) whereas bright regions are emphasised
in dilation-like schemes (µ > 0).
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Figure 2. Image used in the comparison of pseudo-linear scale-spaces. Left: synthetic image showing a few blobs, 64 × 64 pixels, 1 byte per
pixel. Right: same image perturbed with additive pixel-uncorrelated Gaussian noise with variance 1000, i.e. a standard deviation equal to 12.4%
of the global intensity maximum (255). This perturbed image is the one actually used in the computations.

renormalised parameter τ—versus linear scale σ on
the other. Scales can no longer be synchronised as op-
posed to the pseudo-linear case.

According to previous observations, the following
definition of a pseudo-linear scale-space representation
appears to be the natural one.

Definition 2. Recall Eqs. (9) and (16). For every µ ∈
R\{0} we define the pseudo-linear scale-space

uµ(x; τ) = 1

µ
ln

∫
dz eµg(x+z) φ(z; τ/

√
|µ|).

In this formulation linear and pseudo-linear scales have
been synchronised according to Proposition 3.

By slick choice of units, starting out from any inter-
mediate value µ �= 0, ±∞, we can always replace an
isolated member of the µ-family by one of two canon-
ical forms:

u±1(x; τ) = ± ln
∫

dz e±g(x+z) φ(z; τ). (18)

However, in practice one will need some operational
criterion for tuning the nonlinearity, based on a physical
interpretation of µ [8].

Figure 1 illustrates the pseudo-linear scale-spaces
one obtains for finite values of µ. To highlight the effect
on topology, we consider the synthetic image shown in
Fig. 2. Figure 3 shows contourplots of corresponding
slices from pseudo-linear scale-space representations
obtained for this input image for several values of the
parameter µ.

Correspondence entails the existence of an isomor-
phism, which has been shown to require a definite cou-
pling of “linear” and “pseudo-linear scales” according
to τ = σ

√|µ|. In Fig. 3 we have kept σ fixed. One may
observe that although grey-value tags of iso-contours
are mapped by the isomorphism, their geometry is left
unaffected, as expected. Note also that positive values
of µ encourage grey-level segregation in dark regions,
whereas negative values show the opposite tenet. This
bias is a familiar phenomenon in the limiting dilation
and erosion schemes, and can be exploited in prac-
tical applications such as object segmentation if spe-
cific priors on the histogram are available (e.g. knowl-
edge of signal production caused by specific tissues in
medical imaging, blood dyeing in Digital Subtraction
Angiography, histological colouring in microscopy,
etc.).

Correspondence in the strict sense of isomorphism
ceases to hold in the morphological limits µ → ±∞,
but a formal correspondence with the linear theory
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Figure 3. Pseudo-linear scale-space images all evaluated at fixed isotropic “linear scale” σ = 4 pixels. From top left to bottom
right we have parameter values µ = −8, −4, −2, −1, 0, 1, 2, 4, 8, respectively, corresponding to “pseudo-linear” scales τ = 11.3, 8.0, 5.7,

4.0, 0.0, 4.0, 5.7, 8.0, 11.3 pixels, cf. the definition of τ in Proposition 3. The computation confirms that these scale-slices indeed appear
isomorphic; the iso-contours have the same geometry in all images.

via renormalisation or suitable limiting procedures—
and consequently the analogies implied by this1—
is maintained as explained in the previous section.
This means that certain axioms that hold in the lin-
ear/morphological domain will continue to hold in the
morphological/linear limits, viz. those that do not rely
on uniform convergence.

Figure 4 illustrates that if one keeps τ fixed, in this
case τ = 4 pixels, one indeed obtains image represen-
tations that differ topologically for different values of
µ. For larger |µ| one observes higher resolution details,
again as expected.

For large parameter values we may interpret the
pseudo-linear scale-space representation as a fuzzy
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Figure 4. Pseudo-linear scale-space images all evaluated at fixed isotropic “pseudo-linear” scale τ = 4 pixels. From top left to bottom
right we have parameter values µ = −8, −4, −2, −1, 0, 1, 2, 4, 8, respectively, corresponding to “linear scales” σ = 1.4, 2.0, 2.8, 4.0, ∞,

4.0, 2.8, 2.0, 1.4 pixels, cf. the definition of τ in Proposition 3. The degenerate case in the middle corresponds to zero resolution, i.e. to an overall
grey-scale averaging. These scale-slices are clearly not isomorphic.

dilation (µ � 0), respectively a fuzzy erosion (µ � 0)
by the quadratic structuring element q(z; τ). This
should, however, not be confused with the definition of
fuzziness proposed by Bloch and Maı̂tre [1]. Their goal
was to provide a generic framework capturing various
existing fuzzy methods in mathematical morphology,
while insisting on certain basic demands that hold for

the classical, i.e. non-fuzzy case. One such basic de-
mand is idempotency, which explains their use of sup
and inf operators (in addition to a “triangular norm”).
However, idempotency does not hold in the (general)
case of linear processing, nor in the pseudo-linear
theory presented here, except trivially for the morpho-
logical limits. Rather, our notion of fuzziness pertains
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Figure 5. Craik–O’Brien–Cornsweet illusion: The region x � 0 appears brighter than the region x � 0 (x = 0 is in the middle). Both have
equal grey-tone, however; the effect is induced by the profile of the transient layer x ≈ 0, which becomes apparent by covering it with your
finger.

to the compromise between classical, non-fuzzy mathe-
matical morphology (based on the quadratic structuring
function) and intrinsically fuzzy, linear processing. In
view of the constructed isomorphism it remains an in-
triguing question whether both types of fuzziness could
be joined into a single concept by, say, relaxing the con-
dition of idempotency, and possibly introducing other
fundamental demands that do not exclude the linear
case from the outset.

2.1.2. Front-End Vision. Apart from the fact that
Eqs. (5–7) and Lemma 1 yield scale-spaces that are
in some precise sense “in-between” the familiar lin-
ear and morphological ones, which is of interest in its
own right, they may also provide a valuable model for
front-end visual processing, as they account for a log-
arithmic compression of the raw input distribution f
(the photon flux impinging onto the retina), as well as
for multiple scales. Note that, for instance, Weber’s and
Fechner’s laws [10] arise naturally for values of u that
are well above threshold. For suppose that µ � 0, then
a least noticeable perceptual difference dv corresponds
to a logarithmic increment µ−1 du/u of photon flux.
One could interpret v0 = µ−1 as a psychophysical unit
of dimension for the quantity v. The constant u0 may
be adaptive to ambient light conditions to the extent
that the potentially available range of v-values (neu-
ral firing patterns in-between threshold and saturation
frequencies) is actually realized for a steady stimulus.
For µ ≈ 0 we find a linear correspondence dv = du
instead.

The Weber–Fechner law holds only within an in-
terval of physical photon fluxes of a few orders of
magnitude. Threshold and saturation phenomena can,
however, be accounted for by the same token, in

which case the mapping γ is still one-to-one (for each
distinguishable perceptual brightness level there is a
unique physical irradiance), but no longer onto (irradi-
ances beyond threshold and saturation cannot be seg-
regated). A way to achieve this is to replace the un-
bounded mapping γ above by γχ = γ ◦ χ for some
suitably chosen psychophysical function χ , such that
χ inv is bounded and monotonic, say χ inv : R → (0, 1).
This amounts to a replacement of the nonlinearity co-
efficient µ → µχ = µχ ′ + χ ′′/χ ′.

Isomorphism between retinal irradiance and
perceived brightness is of course merely an idealisa-
tion that holds only within certain physical limits and
if lateral interactions can be ignored. An example of
significant lateral interaction arises in the so-called
Craik–O’Brien–Cornsweet illusion; adjacent regions
of identical luminance separated by a narrow region
with a particular transient luminance profile induce dis-
tinct brightness percepts: Fig. 5.

2.1.3. Image Analysis. The general case, Eqs. (5–7),
is of interest in the development of specialised multi-
scale techniques. More specifically, since the mapping
introduces a particular bias in the grey-value domain,
it is interesting for its potential role in accounting for a
priori knowledge that warrants such a bias.

One way to obtain a monotonic mapping is as fol-
lows:

γ (v) =
∫ v

0
dy �(y), (19)

in which �(y) is some positive measure, normalised
such that γ (1) = 1 (say). This measure could be the
image’s grey-value histogram, or any other histogram
inspired by some tissue/image model (v.i.). However,
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one should be a bit careful and take into account
that error propagation is governed by the Jacobian of
the mapping, i.e. γ ′(v) = �(v), so that an error δu in
the u-domain corresponds to an error δv = δu/�(v)

in the v-domain. If for some values of v the measure
�(v) is nearly zero this obviously becomes problem-
atic. A hack around this problem could be to replace
�(y), if it is problematic, by �ε(y) = �(y) + ε, for some
0 < ε � 1 (of course one should then renormalise �ε(y)

again to unit weight). This guarantees that the Jacobian
always exceeds ε, thus tempering the errors. A similar
effect is obtained if one restricts grey-values to a sub-
interval in which �(y) > ε (although one may then
loose information it may not be a problem depending
on one’s task, e.g. segmentation of one particular tis-
sue type in medical imaging). A similar regularisation
effect could be obtained by blurring the measure �(y)

in the y-domain [15]. A natural scale for this could be
the quantisation error of the initial image or the noise
amplitude in the case of additive noise. Perhaps a bet-
ter way to avoid problems is to simply remain cautious
and take error propagation into account throughout the
analysis.

Applying Eqs. (6–19) one obtains a nonlinearity co-
efficient that is given by

µ = (ln �)′. (20)

From this we see that at critical points of the histogram
measure, i.e. if �′ = 0 (assuming � �= 0), the non-
linearity coefficient vanishes and the blurring becomes
linear. On the other hand, if � = 0 (while �′ �= 0), the
nonlinearity coefficient becomes degenerate.

A possible way of exploiting Eq. (20) is to enhance
image evidence for a particular tissue type of which the
a priori histogram is known. If the appropriate modal-
ity is used such a histogram is typically unimodular, so
that Eq. (19) will indeed produce an invertible mapping
within a subinterval of grey-values. Of course the bias
introduced by the mapping will also enhance other tis-
sue types insofar as their grey-value histograms overlap
with that of the desired one. See Fig. 6.

2.1.4. Edge Detection. By virtue of the nonlinearity
degree of freedom, the pseudo-linear Laplacean on the
r.h.s. of Eq. (5) may be of some interest in itself as
an adaptable edge detector akin to the classical one
proposed by Marr and Hildreth [18]. Note that it is
important to account for the dimensional discrepancy
between �v and ‖∇v‖2, in other words, for the fact

Figure 6. The prior distribution �(v) of grey-values (solid curve)
induced by a particular tissue type is usually unimodular, at least
for bulk material. Its primitive γ (v) (dashed curve) is consequently
strictly monotonic within the grey-value interval of interest (i.e. in-
between the shaded regions), and may therefore serve as an admis-
sible transformation. Information pertaining to the shaded regions is
lost, while uncertainty increases towards the boundaries.

that µ is actually a dimensionful parameter. In this case
we normalise the image to the unit interval (as before)
prior to edge detection. In fact, one ought to consider
the general form �v + µ‖∇v‖2 instead of �v as this
is the image’s Laplacean in case one is in lack of addi-
tional knowledge or some explicit hypothesis on grey-
scale parametrisation that warrants the assumption that
µ = 0. If no such knowledge or hypothesis is available
one should consider µ as an essentially undetermined
function of the image v, recall Eq. (6).

As a particular case, it is relevant to consider the be-
haviour of the pseudo-linear Laplacean when used as
an edge detector as a function of µ (taken to be a con-
stant real number). Figures 7–8 illustrate the behaviour
of the zero-crossings defined by �v +µ‖∇v‖2 = 0 as
µ is varied.

Note that for all ε with 0 < ε � 1 there exists
a sufficiently large parameter threshold M > 0 such
that for µ > M (µ < −M), the total volume enclosed
by all (closed) zero-crossing contours does not ex-
ceed ε. The only zero-crossings surviving the limit
M → ∞ are sets of measure zero satisfying ∇v = and
�v = 0. Thus at almost all scales σ the zero-crossings
will eventually vanish as one increases (decreases) the
value of µ, the only residuals being isolated critical
points in scale-space.

2.2. Multi-Component Images

Next we consider a possible extension to deal with
multi-component images. One has to distinguish
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Figure 7. Eye region of “Lena” image, size 84 × 74 pixels.

between vector-valued images and multispectral im-
ages (which may not be part of a vector, i.e. linear
space).

2.2.1. Vector-Valued Images. Suppose we have a
vector-valued raw image g(x) with components gµ(x)

relative to a coordinate basis, i.e.2 g(x) = gµ(x)eµ,
for which we would like to define a scale-space exten-
sion v(x; s) = vµ(x; s)eµ. Let us furthermore assume
that u is some scalar field obtained from v, e.g. the
scalar product v ·v. Since this is a scalar it is not unrea-
sonable to require that it satisfies the linear diffusion
equation, Eq. (3), although any other scalar that can
be constructed from v would be an equally legitimate
choice (i.e. any power of the scalar product, such as
the magnitude ‖v‖). For reasons of generality let us
assume that the scalar of interest is given by

u = γ (v). (21)

By substitution into Eq. (3) one then finds that the com-
ponents of v must satisfy

γµ∂sv
µ = γµ�vµ + γνρ∇αvν∇αvρ, (22)

in which γµ and γνρ are first and second order deriva-
tives of γ . If the Jacobian has maximal rank we can use
the γµ, µ = 1, . . . , n, as a basis, and we can write

γνρ = µµ
νργµ, (23)

for some (n +1)-tensor with components µµ
νρ(v). Sub-

stituting this into Eq. (22) we then obtain

{
∂sv

µ = �vµ + µµ
νρ∇αvν∇αvρ

lim
s→0

vµ = gµ.
(24)

which prescribes the scale-space representation for the
individual components gµ of the raw vector field g,
consistent with the linear representation of Eq. (3) for
the scalar f = γ (g). Eqs. (23–24) are the vector ana-
logues of Eqs. (5–6), with the scalar nonlinearity µ(v)

replaced by the nonlinearity tensor µµ
νρ(v).

As an example, suppose u = γ (v) = √
v · v, i.e. we

take the magnitude of the vector field as the scalar that
we wish to subject to a linear scale-space representa-
tion. In this case the components of the nonlinearity
tensor are given by

µµ
νρ(v) = 1

‖v‖2

(
ηνρδ

µ
σ − 1

2

(
ηνσ δµ

ρ + ηρσ δµ
ν

))
vσ ,

(25)

in which ηµν are the components of the Euclidean met-
ric tensor (in a Cartesian coordinate system equal to 1
if and only if µ = ν, otherwise 0), and δν

µ are the in-
variant components of the Kronecker tensor (similarly
defined in an arbitrary coordinate system). It should be
noted that the tensor is completely parameter free.

Example 1. Consider a 2D vector field v = (v, w),
e.g. a multiscale motion field. If the components are
subject to the following system of coupled nonlinear
diffusion equations,


∂sv = �v − 1

v2 + w2
(w∇v − v∇w) · ∇w

∂sw = �w − 1

v2 + w2
(v∇w − w∇v) · ∇v,

then the magnitude image u = ‖v‖ = √
v2 + w2

satisfies the linear scale-space equation, Eq. (3).

Note that the denominator on the right hand side
of Eq. (25) or Example 1 is strictly positive if the
high resolution vector image is not globally zero, since
its square root satisfies the isotropic linear diffusion
equation with nonnegative (nonzero) initial condition.

Example 2. If the vector field of Example 1 is a
gradient field, v = ∇ψ say, then a straightforward
computation shows that it satisfies the vector-valued
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Figure 8. Pseudo-linear Laplacean zero-crossings, �v + µ‖∇ v‖2 = 0, computed for the image shown in Fig. 7. First and second derivatives
have been computed as linear scale-space derivatives at an arbitrarily chosen scale σ = 2 pixels, i.e. by convolution using corresponding derivatives
of a normalised Gaussian of width σ = 2. The original image has been normalised to the unit interval prior to edge detection. From top left to
bottom right we have parameter values µ = −8, −4, −2, −1, 0, 1, 2, 4, 8, respectively. Observe how the topology of the zero-crossings changes
with µ.

diffusion equation

∂sv = (I� + X)v,

in which I is the 2×2 identity matrix and X is the matrix
defined in terms of the gradient v = ∇ψ and Hessian
H = ∇∇Tψ as follows:

X = 1

‖v‖2
H̃H̃T,

or

X = 1

ψ2
x + ψ2

y

(
ψ2

xy + ψ2
yy −�ψψxy

−�ψψxy ψ2
xx + ψ2

xy

)

Here, Ã denotes the (transposed) cofactor matrix of
(symmetric) A.

2.2.2. Multispectral Images. Now suppose we have
a collection of multispectral images gα , α = 1, . . . , N ,
for which we would like to define a consistent
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multiscale representation. Consistency pertains to the
presumption that all these images have been obtained
by sampling a single source spectrum � according to
N different protocols. If we now postulate that Eq. (3)
should hold for the unbiased source field

u =
∫

dλ �(λ), (26)

then the multiscale representations vα of gα must be
constrained accordingly.

To be more specific, let us assume that each compo-
nent vα is the output of a probing procedure in λ-space
that entails two steps: (i) a linear λ-superposition of
the spectrum, and (ii) a nonlinear monotonic resam-
pling of the result. That is, if γα is the inverse of the
latter resampling function, then3

γα(vα) =
∫

dλ�α(λ). (27)

It is convenient to introduce the efficiency function ηα

for channelα, which takes values in the unit interval and
together with the other channels constitutes a partition
of unity:

�α(λ) = ηα(λ)�(λ) and
N∑

α=1

ηα(λ) = 1. (28)

Consequently, the “unbiased” field u is essentially the
result of a superposition:

u = γ (v)
def=

N∑
α=1

γα(vα), (29)

and we can apply the techniques of the previous section.
Since the derivative of γ (v) with respect to vα depends
only on vα , the channels are effectively decoupled:

{
∂svα = �vα + µα‖∇vα‖2,

lim
s→0

vα = gα .
(30)

in which µα corresponds to the only nontrivial compo-
nent µα

αα of the tensor of Eq. (25):

µα = γ ′′
α

γ ′
α

, (31)

i.e. we have N equations similar to Eqs. (5) and (6) for
the scalar case.

To determine the form of the nonlinearity coeffi-
cients µα one needs to have knowledge of image forma-
tion details for the corresponding imaging modalities
or protocols, so that one can fill in the missing details
of Eqs. (26–29), notably the transfer function γα for
each channel α.

3. Conclusion

Gaussian scale-space is just the simplest multiscale
representation consistent with the scale causality con-
dition that prohibits enhancement of local extrema as
scale (resolution) is increased (decreased). Many non-
linear representations exist, which are isomorphic to
the linear one (“pseudo-linear scale-spaces”), or related
to these by some limiting procedure (morphological
scale-spaces).

The theoretical relationship established between lin-
ear scale-space based on the Gaussian convolution ker-
nel on the one hand and non-linear, morphological di-
lation and erosion scale-spaces based on the quadratic
structuring function on the other hand is of interest in
itself. The pseudo-linear representations, which have
been argued to be in a precise sense “in-between” lin-
ear and morphological scale-spaces, can be used to bal-
ance pros and cons of these well-established limiting
cases, and to establish their interconnections.

Pseudo-linear scale-spaces appear to provide the
natural multiscale representations in the context of
front-end vision, as they potentially account for the
non-linearities inherent in retinal mechanisms (Weber–
Fechner law). Moreover, they may play an important
role in image analysis, as they allow one to introduce
grey-scale biases reflecting a priori knowledge of im-
age formation or task. As a particular case it has been
argued that the classical Marr–Hildreth Laplacian-of-
Gaussian edge detector should be generalised in the
absence of such knowledge.

Finally, it has been pointed out that non-linearities
are essential when dealing with multi-component im-
ages, such as vector-valued or multispectral images.
Consistent multiscale representations for the compo-
nent images have been proposed. Their scale-space
properties are still to be investigated.

Notes

1. Deductive proofs are likely to reflect renormalisation in the form
of constrained limiting procedures for σ, τ, µ.
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2. Summation convention is used throughout: Repeated spatial
indices—with values in the range 1, . . . , n in n-dimensional
space—are dummies over which a summation is implied.

3. In expressions with only lower indices summation convention
does not apply.
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