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On modern computers, the performance of programs is often limited by memory
latency rather than by processor cycle time. To reduce the impact of memory
latency, the restructuring compiler community has developed locality-enhancing
program transformations such as loop permutation and tiling. These transfor-
mations work well for perfectly nested loops (loops in which all assignment
statements are contained in the innermost loop), but their performance on codes
such as matrix factorizations that contain imperfectly nested loops leaves much
to be desired. In this paper, we propose an alternative approach called data-cen-
tric transformation. Instead of reasoning directly about the control structure of
the program, a compiler using the data-centric approach chooses an order for
the arrival of data elements in the cache, determines what computations should
be performed when that data arrives, and generates the appropriate code. At
runtime, program execution will automatically pull data into the cache in an
order that corresponds approximately to the order chosen by the compiler; since
statements that touch a data structure element are scheduled close together,
locality is improved. The idea of data-centric transformation is very general, and
in this paper, we discuss a particular transformation called data-shackling. We
have implemented shackling in the SGI MIPSPro compiler which already has
a sophisticated implementation of control-centric transformations for locality
enhancement. We present experimental results on the SGI Octane comparing
the performance of the two approaches, and show that for dense numerical
linear algebra codes, data-shackling does better by factors of two to five.

KEY WORDS: Locality enhancement; restructuring compilers; caches;
program transformation.
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1. INTRODUCTION

The memory system of modern computers is hierarchical in organization.
Since the latency of data accesses may increase by an order of magnitude
or more from one level of the hierarchy to the next, programs run well
on such machines only if most of their accesses are satisfied by the faster
levels of the memory hierarchy. For this to happen, a program must exhibit
locality of reference. If accesses to a memory location are clustered together
in time, the program is said to exhibit temporal locality, which is beneficial
since it is likely that all these accesses other than the first one will be
satisfied by the faster levels of the memory hierarchy. If the addresses of
memory locations accessed successively by a program are close to each
other, the program is said to exhibit spatial locality, which is beneficial
because the unit of transfer between different levels of the memory hierarchy
is a line or block, so successive memory accesses to addresses that are close
to each other are likely to be satisfied mostly by the faster levels of the
memory hierarchy.

For many applications, straight-forward coding of standard algorithms
results in programs that exhibit poor locality of reference. Unfortunately,
taking locality into consideration when writing programs complicates the
task of programming enormously. One solution is to write optimized,
machine-specific routines only for certain core operations, and code all
other applications in a high-level language, invoking these routines when
appropriate. This achieves high performance without sacrificing portability
of the application code. The numerical analysis community has followed
this approach by hand coding machine-specific programs for the Basic
Linear Algebra Subroutines (BLAS), (1) and layering all other dense
numerical linear algebra software on top of these routines. However, most
applications have to be recoded at a fundamental level to use such libraries.
To exploit the BLAS for example, the numerical analysis community has
had to invest considerable effort in designing block algorithms and
implementing them in the LAPACK library, (2) as described in Section 3.
Furthermore, these libraries are not useful in writing other applications
such as PDE solvers that use explicit methods since these codes cannot be
restructured to expose BLAS operations.

The compiler community has explored a more general-purpose approach
in which locality is enhanced by automatic program transformation. To
explain this technology, it is necessary to introduce the following definitions.

Definition 1. A perfectly nested loop nest as a loop nest in which
all assignment statements are contained an the innermost loop of the loop
nest. The matrix multiplication code shown in Fig. 1e as in example.
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Fig. 1. Basic linear algebra subroutines.

An imperfectly nested loop nest is a loop nest in which one or more
assignment statements an contained an some but not all of the loops of the
loop nest. The triangular solve code in Fig. 1d is an example.

An instance of a statement is an execution of that statement for par-
ticular index values of its surrounding loops.

For perfectly nested loops, there is an elegant matrix-based theory for
synthesizing linear loop transformations for locality enhancement.(3�12)

These transformations, followed by loop tiling, (13) are performed routinely
by many production compilers such as the SGI MIPSPro. The theory of
loop transformations is much less developed for imperfectly nested loops.
Some compilers use transformations like jamming, distribution and state-
ment sinking(13, 14) to convert imperfectly nested loops into perfectly nested
loops, and enhance locality by suitably transforming the resulting perfectly
nested loops. However, there is no systematic theory for determining the
order in which these imperfectly nested loop transformations must be
applied, and the quality of the final tiled code may depend critically on this
order, as we explain in Section 4.

The approach described in the previous paragraph can be called
control-centric program transformation because it reasons about the control
structure (loop structure) of the program and modifies this control struc-
ture to enhance locality. In this paper, we describe a different approach to
locality enhancement called data-centric program transformation which
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addresses some of the limitations of control-centric approaches. Instead of
reasoning directly about the control structure of the program, a data-cen-
tric approach fixes an order of traversal through data structure elements,
and determines which computations should be performed when a data
structure element is touched. Intuitively, the compiler chooses an order for
the arrival of data elements in the cache, determines what computations
should be performed when that data arrives, and generates the appropriate
code. At runtime, program execution will automatically pull data into the
cache in an order that corresponds approximately to the order chosen by
the compiler; since statements that touch a data structure element are
scheduled close together, locality is improved.

The idea of data-centric transformation is very general, but in this
paper, we focus on a particular data-centric transformation called data-
shackling which was designed for locality enhancement of dense numerical
linear algebra codes. The traversals allowed are along the co-ordinate axes
of the array (that is, left-to-right and top-to-bottom, and reversals of
these), and code scheduling is done by choosing a data-centric reference for
each statement, which determines when its instances are executed. The
array itself is not physically copied to make the storage order of elements
the same as the traversal order chosen by the data-shackle, although this
can be done if the overhead of copying the array is small compared to the
resulting performance enhancement.

The rest of this paper is organized as follows. In Section 2, we describe
the dense numerical linear algebra codes that constitute the work-load for
our research, These codes are divided into the Basic Linear Algebra Sub-
routines (BLAS) such as matrix multiplication and triangular solves, and
matrix factorizations such as Cholesky and LU factorization. The advan-
tage of this work-load is that hand coded versions of these programs are
available publicly for most platforms, so it is possible to compare the per-
formance of compiler-generated code with that of good hand-tuned code.
This is not possible with other work-loads such as the SPEC and Perfect
benchmarks. In Section 3, we describe blocking which is the approach
taken by the numerical analysis community to improve the performance of
these codes on memory hierarchies. In Section 4, we describe control-
centric approaches to locality enhancement by program transformation. In
Sections 5�7, we describe the data-centric approach.

Data-shackling has been implemented in SGIs MIPSPro compilers for
the Octane work-station line by one of the authors (Kodukula). This imple-
mentation incorporated a number of heuristics for choosing various param-
eters required for data-shackling. These heuristics are described in Section 8;
since compile time is an issue for production compilers, the heuristics are
relatively simple. Experimental results based on this implementation are
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described in Section 9. Finally, Section 10 describes ongoing work in data-
centric compilation.

2. WORK LOAD AND EXPERIMENTAL PLATFORM

We now describe the dense numerical linear algebra codes that con-
stitute our workload. Following the numerical analysis literature, we divide
these codes into the Basic Linear Algebra Subroutines (BLAS) and matrix
factorizations.(1) The BLAS contain simple codes like inner-product of
vectors, matrix vector product, triangular solve, and matrix matrix multi-
plication. The important matrix factorizations are Cholesky, LU and QR
factorizations. We also describe the hardware on which all experiments
were performed.

2.1. Basic Linear Algebra Subroutines

The following five operations occur frequently in applications.(1)

v Dot product: Given two column vectors x and y, computes the inner
product xTy.

v Saxpy: Given a scalar : and column vectors x and y, computes the
column vector z equal to : V x+ y.

v Matrix Vector Product: Given an m_n matrix A and a column
vector x, computes y=A V x.

v Triangular solve: Given a square lower triangular matrix L with
nonzero diagonal elements and a column vector b, solve the system
Lx=b.

v Matrix Multiplication: Given an m_p matrix A, an p_n matrix B
and an m_n matrix C, computes C=C+A V B.

Figure 1 shows pseudo-code for each of these core routines.
Three important properties of each of these core routines are (i)

amount of data touched; (ii) the number of floating point operations;
and (iii) the average amount of data reuse (which is the ratio of the two
previous quantities). Table I summarizes this information for each of the
core operations.

The information in Table I provides a guide to the potential perfor-
mance of BLAS on a machine with a memory hierarchy. Dot product, called
a Level-1 BLAS, performs 2 V n floating-point operations on 2 V n data
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Table I. Behavior of Some BLAS

Operation Data touched Computation Algorithmic reuse Level

z=: V x+ y O(n) O(n) x, y, z: O(1) 1
A V x O(n2) O(n2) x: O(n), A: O(1) 2

C=C+A V B O(n2) O(n3) A, B, C: O(n) 3

elements. On the average, one data item must be touched for each floating-
point operation that is performed, so there is little reuse of data even in the
algorithm. The characteristics of saxpy are similar. Matrix vector product
performs 2 V n2 operations on n2+2 V n data, so the amount of data
touched per floating-point operation is half of that in the case of Level-1
BLAS. There is no reuse of matrix elements but each of the vectors exhibits
O(n) amount of reuse. Matrix vector product and triangular solve are
called Level-2 BLAS. Finally, matrix multiplication performs O(n3) opera-
tions on O(n2) data and is called a Level-3 BLAS operation. Clearly, there
is significant algorithmic reuse of data in matrix multiplication, and
exploiting this reuse is the key to good performance on a machine with a
memory hierarchy.

2.2. Matrix Factorizations

We will consider the following matrix factorization codes: (i) Cholesky
factorization; (ii) LU factorization; and (iii) QR factorization.

2.2.1. Cholesky Factorization

Cholesky factorization is used to solve the system of equations Ax=b,
where A is a symmetric positive-definite matrix, by factorizing A into the
product LLT, where L is lower-triangular, and solving the two resulting
triangular systems. To save space, the lower triangular part of A is over-
written with the factor L.

Cholesky factorization, like matrix multiplication, has three nested
loops although these loops are imperfectly nested. All six permutations of
these loops are legal, and distributing the loops in one of these versions
gives a total of seven versions of Cholesky factorization that we discuss
in this paper. Pseudocode for one of these versions is shown in Fig. 2;
pseudocode for the other versions are shown in Figs. 18�24.

The most commonly described version is the so-called kij version (also
known as the right-looking version), and it is shown in Fig. 2. This version
processes the columns of the matrix in left to right order as follows: the
square root of the diagonal element of the current column is computed, the
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Fig. 2. kij-fused version of Cholesky factorization.

portion of this column below the diagonal is scaled with this value and the
outer-product of this portion of the column with its transpose is used to
update the lower triangular portion of the matrix to the right of the current
column. These are known as the square root, scale, and update steps respec-
tively. For obvious reasons, this version of Cholesky factorization is also
known as right-looking column Cholesky factorization. Distributing the i
loop over the scale step and the update loop produces another kij version
of Cholesky factorization, shown in Fig. 18. Permuting the two update
loops in the code of Fig. 18 gives the kji version shown in Fig. 20.

Right-looking Cholesky factorization performs updates eagerly in the
sense that the columns to the right of the current column are updated as
soon as that column is computed. An alternative is to perform the updates
lazily, which means that a column is updated only when it becomes
current. This leads to the left-looking column Cholesky factorization code
(also called the jki version) shown in Fig. 22 which applies updates from all
columns to the left of the current column before performing the square root
and scaling steps. Permuting the i and k loops gives the jik version shown
in Fig. 21.

Finally, there are two versions of Cholesky factorization called the ijk
and ikj versions that process the matrix by row rather than by column.
These are shown in Figs. 23 and 24. The ijk version performs inner-
products, so it is also known as dot Cholesky while the ikj version in con-
trast is rich in saxpy operations.

2.2.2. LU Factorization

LU factorization is used to solve linear systems when the matrix is not
guaranteed to be symmetric positive definite. To improve the stability of
this process, an operation called partial pivoting is performed during the
factorization. LU factorization, like Cholesky factorization and matrix
multiplication, has three nested loops that may be permuted to produce a
number of versions. One version of LU factorization is shown in Fig. 3.
The k loop, which is outermost, walks over the columns of the matrix. In
each iteration of this loop, the entries in column k below the diagonal of
the matrix are examined, and the row that contains the element of largest
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Fig. 3. kij version of LU with pivoting.

magnitude is determined (call it row m). If m and k are distinct, the por-
tion of row of k to the right of the diagonal is swapped with the corre-
sponding portion of row m (this is called partial pivoting). Scale and
update steps are then performed as in Cholesky factorization, but the
update is applied to the sub-matrix below and to the right of the diagonal
element A(k, k). Note that the i and j loops in the update step can be inter-
changed, giving rise to two different versions of LU factorization with
pivoting.

This version of LU factorization is called right-looking LU factoriza-
tion. As in the case of Cholesky factorization, there are two left-looking
versions in which updates to a column are delayed until that column
becomes current. Interactions between updates and pivoting are sufficiently
complex that there is no direct analog of row Cholesky factorization for
LU factorization with pivoting. It is possible to perform LU factorization
row by row, but this code must do column pivoting, and is therefore a
different algorithm than the left- and right-looking column versions. We do
not consider this version in this paper.

2.2.3. QR Factorization

QR factorization, shown in Fig. 4 is used in eigenvalue computations,
and it factorizes A into a product Q*R where Q is an orthonormal matrix
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and R is upper triangular. The Householder variant of QR factorization
proceeds through the matrix A column by column. For each column,
a Householder vector is determined such that when the corresponding
Householder reflection is applied, the portion of the current column strictly
below the diagonal contains only zeros. For a vector x, if e1 represents the
unit vector with a 1 in the first entry, and zeros in all other entries, v=
(x&&x&2 V e1)�&(x&&x&2 V e1)& represents a unit-length Householder vec-
tor such that on applying a Householder reflection to x, all entries except
the first are zeroed out. Once a Householder vector v has been determined
for the current column, a Householder reflection can be applied to the rest
of the matrix. Conceptually, a Householder reflection can be thought of as
multiplying the rest of the matrix by (I&2vvT), which would take O(n3)
operations for v of length n. However, this reflection can actually be accom-
plished in O(n2) operations by using a two-step process. The key observa-
tion is that for a matrix B, (I&2vvT) V B=B&2v V vT V B=B&2v V w,
where w=vT V B. Thus the first step computes w using a matrix vector
computation and the second step updates the rest of the matrix using an
outer product update computation.

2.3. Hardware Platform

The experimental results reported in this paper were obtained on an
unloaded Octane workstation with an R10000 processor running at 195 MHz.
The R10K can perform one load�store operation and two floating point
operations per cycle, giving it a theoretical peak performance of 390

Fig. 4. QR factorization.
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MFlops. The processor has 32 logical registers and 64 physical registers.
The workstation was equipped with separate first-level (L1) instruction and
data caches of size 32Kb each, and a second-level (L2) unified cache of size
1MB. The L1 cache is nonblocking with a miss penalty of 10 cycles, and
it is organized as a two-way set associative cache with a line size of 32
bytes. The L2 cache is also nonblocking with a miss penalty of 70 cycles,
and it is organized as a two-way set associative cache with a line size of 128
bytes. Therefore, the four highest levels of memory hierarchy are the
registers, the L1 and L2 caches and main memory.

3. LIBRARY APPROACHES

In this section, we discuss the approach taken by the numerical linear
algebra community to produce high-performance codes for the work-load
described in Section 2, and argue that it is difficult for a restructuring com-
piler to mimic this approach directly.

The numerical linear algebra community has taken a layered approach
to the problem of implementing portable, high-performance code for
matrix applications.

1. Machine-specific code is written for each of the BLAS. These codes
are not portable since the performance optimizations in these
codes are machine-specific.

2. Matrix factorizations are expressed as block algorithms rather than
as point algorithms. The restructuring of point algorithms to block
algorithms exposes BLAS-3 like matrix multiplication and tri-
angular solve with multiple right-hand sides which are executed by
invoking machine-specific BLAS. This is the approach followed in
the LAPACK library.(2)

The upshot of this strategy is that only the BLAS are not portable;
the matrix factorization codes are layered on top of the BLAS, and are
machine-independent.

3.1. BLAS Routines

We use matrix multiplication to discuss how the BLAS are implemented.
The naive version in Fig. 1e does not exploit data reuse effectively; for
example, for every iteration of the outermost loop, the matrix B is read in
its entirety. If the matrices are much larger than the cache, none of the
reuse of B is exploited. The solution is to use a block algorithm that per-
forms a sequence of small matrix multiplications, each of which multiplies
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Fig. 5. Blocked code for matrix multiplication.

a submatrix of A with a submatrix of B, accumulating the result in a sub-
matrix of C, as shown in Fig. 5. If these submatrices are small enough to
fit into the cache, the number of capacity misses decreases substantially.

How big the submatrices should be clearly depends on the size of the
cache and is therefore machine-specific, but it can conveyed as a parameter
to the block code. The need for machine-specific code arises because a good
code for matrix multiplication must pay careful attention to register alloca-
tion of array elements. If the k loop is innermost in the submatrix multi-
plication code, C(i, j) can be held in a register, reducing the number of
loads and stores in each inner loop iteration by 2. This can improve perfor-
mance for two reasons: (i) register accesses are faster than cache accesses;
and (ii) most microprocessors have a small number of pipes to memory, so
having many loads and stores in an inner loop can throttle the perfor-
mance of the processor pipeline. On the other hand, it is also advantageous
to have the i and j loops innermost since B(k, j) and A(i, k) respectively
become invariant in the innermost loop, and can be read once and stored
in a register. The solution to these conflicting demands is to register tile the
submatrix multiplication itself, and choose the size of the tiles so that array
values can be read and written in registers in the innermost loop. In addi-
tion to register tiling, the innermost loop must be software pipelined to
reduce the effect of load latencies. These considerations mandate the use of
very machine-specific code in writing high-performance BLAS.

Detailed information regarding the implementation of BLAS on a
modern high-performance computer can be found (see Agarwal and
Gustavson(15)). Figure 6 shows the performance of handcoded BLAS on
the SGI Octane. These routines were implemented by Mimi Celes at SGI.

3.2. Block Matrix Factorizations

From Fig. 6, it is easy to see that the point versions of matrix fac-
torization codes will perform poorly on a machine with a memory
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Fig. 6. Performance of computations from levels 1, 2 6 3.

hierarchy. For example, in the kij version of Cholesky factorization shown
in Fig. 2, the innermost loop performs a saxpy operation (notice that
A(i, k) is invariant in this loop, and its value is used to scale a portion of
the kth column of A which is then added to a portion of the ith row of A).
Since BLAS-1 operations perform poorly on a memory hierarchy, we
would expect that this point version of Cholesky factorization would per-
form poorly as well. This is in fact the case, as we show in Section 9.
Fortunately, it is possible to restructure the computation to expose BLAS-3
operations. To illustrate this, we show that the block algorithm in the
LAPACK library can be derived from the point version by program
restructuring.

It can be shown that the perfectly nested loop shown in Fig. 7 per-
forms Cholesky factorization, and that the three loops are fully permutable.
This perfectly nested version of Cholesky factorization can be generated
from the kij-fused version shown in Fig. 2 by repeated application of code-
sinking.(16)

The first step in generating the block-j version of Cholesky used in the
LAPACK library is to stripmine the j loop in blocks of size B, and inter-
change loops to produce the code shown in Fig. 8.

Fig. 7. A fully permutable loop nest for Cholesky factorization.
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Fig. 8. Stripmine-and-interchange of code in Fig. 7.

Next, we simplify the loop bounds to get rid of min's and max's by
index-set splitting the i and k loops. The index-set of the i loop is split into
two ranges B*js+1 to B*js+B, and B*js+B+1 to n. The index set of
the k loop is split into the two ranges 1 to B*js, and B*js+1 to i. Simpli-
fying the predicates then gives us the code shown in Fig. 9. A pictorial
representation of this code is shown in Fig. 10.

To get good performance, the matrix multiplications and triangular
solve must be performed by calling the appropriate BLAS.

Similar block algorithms can be derived for LU with pivoting and QR
factorization. For LU with pivoting, the block algorithm in LAPACK

Fig. 9. Index-set splitting of code in Fig. 8.
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Fig. 10. Pictorial view of code in Fig. 9.

exploits the fact that row permutations commute with updates, while the
block QR factorization exploits associativity of matrix products.

The performance of LAPACK factorization codes on the SGI Octane
is shown in Fig. 11. Cholesky factorization runs at roughly 250 MFlops
while QR and LU with pivoting run at roughly 200 MFlops.

3.3. Discussion

It is seems unlikely that a compiler can mimic the steps outlined earlier
for deriving block Cholesky code from point Cholesky. Transforming the
kij-fused version of Cholesky factorization into the fully permutable loop
nest of Fig. 7 by code sinking is reasonably straight-forward, but it should
be noted that there are many ways to apply code sinking to the program
in Fig. 2, and each of these produces different perfectly nested loops. For
example, in Fig. 7, the square root and scale steps can be done when

Fig. 11. Performance of Cholesky, QR, and LU
factorization codes from LAPACK.
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(j==k+1) without changing the semantics of the program. Moreover,
generating the perfectly nested version from other versions of Cholesky
factorization is non-trivial. In the kji version for example, the j and i loops
must be interchanged, then the two i loops must be fused, after which code
sinking can be applied to generate the fully permutable version. It is not
clear what would drive a compiler to make these choices.

Once the perfectly nested loop is generated, another sequence of trans-
formations is required to extract the BLAS-3 sub-computations from the
fully permutable loop nest. As before, it is not clear how one might automate
this sequence of transformations.

The approach of restructuring code to expose BLAS-3 operations and
executing these operations using machine-tuned BLAS has been used suc-
cessfully to produce high-performance library code, but we believe that it
is difficult for a compiler to imitate this strategy directly.

4. EXISTING COMPILER APPROACHES

The compiler community has developed many techniques for enhanc-
ing locality by restructuring perfectly nested loops. In contrast, much less
is known about locality enhancement in imperfectly nested loops.

4.1. Perfectly Nested Loops

The most effective transformation is loop tiling, preceded if necessary
by linear loop transformations like permutation and skewing.(16�19) For
example, consider a nested loop that adds the elements of a two-dimen-
sional array stored in column-major order. If the code is written so that the
array is accessed by row, spatial locality is enhanced by permuting the
loops so that the innermost loop walks over the array with unit stride. This
example demonstrates the use of linear loop transformations for locality
enhancement, but it does not require tiling. In codes like matrix multiplica-
tion, locality can improved by moving any one of several loops into the
innermost position, as discussed in Section 3.1. Tiling is beneficial for such
codes since it gives the effect of interleaving the iterations of these loops,
thereby providing most of the benefits of having all these loops in the
innermost position. Matrix multiplication therefore demonstrates the need
for tiling. Tiling is not always legal, so the most general strategy is to apply
linear loop transformations to convert a loop nest into a fully permutable
loop nest which can be tiled. A critical parameter in tiling a loop nest is tile
size which must be chosen so that cache misses are as small as possible
during the execution of the tile. Many heuristics for choosing good tile sizes
have been developed.(4, 7, 20)
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A very sophisticated implementation of these techniques can be found
in the SGI MIPSPro compiler for the Octane workstation.(14) This com-
piler converts singly nested loop nests into perfectly nested loop nests using
code sinking, and then tiles the resulting perfectly nested loop nest.

Definition 2. A singly nested loop (SNL) is an imperfectly nested
loop in which there is at most one loop nested immediately inside every
loop.

The triangular solve code in Fig. 1 and the kij-fused version of
Cholesky factorization in Fig. 2 are SNL's while the kij version of the
Cholesky factorization code in Fig. 18 is an example of an imperfectly
nested loop that is not an SNL. All the BLAS codes are SNL's, so the SGI
MIPSPro compiler achieves good performance on these code, as can be
seen in Fig. 12. The performance of the compiled code is roughly equal to
that of handwritten code for BLAS-1 and BLAS-2; for BLAS-3, the hand-
written version is moderately better. The structure of the compiled code for
BLAS-3 is identical to that of the handwritten code, but the handwritten
version does a better job of choosing block sizes.

4.2. Imperfectly Nested Loops

Matrix factorization codes are imperfectly nested and only the kij-
fused version of Cholesky factorization is an SNL.

The MIPSPro compiler attempts to perform loop transformations like
fusion and distribution to transform these codes into perfectly nested loops
that can be tiled, but it is successful in doing this only for the kij-fused

Fig. 12. Performance of handwritten and compiled
BLAS.
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version of Cholesky factorization. Therefore, the performance of compiled
code for matrix factorizations is quite poor, as we discuss in detail in
Section 9.

A number of approaches for enhancing locality in imperfectly nested
loops have been proposed in the research literature. Carr and Kennedy
analyzed block factorizations such as Cholesky and LU, and showed that
sequences of loop transformations such as index-set splitting, loop distri-
bution and stripmine-and-interchange can produce blocked codes from
unblocked ones.(21) This is like the approach we took in Section 3, but it
does not require conversion to a fully permutable, perfectly nested loop
nest as an intermediate step since imperfectly nested loop transformations
such as index-set splitting are applied directly. However, it is not clear what
would drive a compiler to synthesize such sequences of transformations. In
addition, their work considered only the kij version of Cholesky factoriza-
tion; other versions of Cholesky factorization require different sequences of
transformations. To block LU factorization with pivoting, they propose to
introduce pattern matching into the compiler to permit it to recognize that
row permutation commutes with updates. This work was extended by Carr
and Lehoucq(22) to QR factorization, although the blocked version they
developed is different from the one in LAPACK.

Ramanujam and Schreiber(23) used a combination of code sinking and
loop fusion to convert some of the imperfectly nested variants of Cholesky
to the fully permutable, perfectly nested intermediate form of Fig. 7. Their
strategy works well for the kij and kij-fused versions of Cholesky factoriza-
tion, but it cannot be applied to other versions because loop fusion is not
legal in these codes.

McKinley et al.(24) present a cost model for memory accesses and use
it to determine the best version of Cholesky factorization, but they do not
consider tiling.

More recently, Song and Li developed a technique for tiling imper-
fectly nested loops that arise in relaxation codes.(25) However, this techni-
que is very specific to relaxation codes, and cannot be used to improve
locality in matrix factorization codes for example.

5. DATA-CENTRIC TRANSFORMATION

We now describe data-shackling, a locality enhancement technique
designed to be applicable to imperfectly nested loops. In data-shackling,
the compiler picks an order in which data structure elements should be
brought into the cache at runtime, and it restructures code so that state-
ment instances that access a given element are scheduled close together in
time. When the transformed program is executed, data structure elements
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will be brought into the cache in approximately the order chosen by the
compiler. In this way, the locality enhancement problem is converted to a
scheduling problem in which the schedule of statement execution is
matched to the schedule of data movement chosen by the compiler.

5.1. Data-Shackling

The key concept in data-shackling is the idea of a data-shackle.

Definition 3. A data-shackle is a specification in three parts.

1. One of the arrays in the program is divided into blocks using sets
of parallel, equally spaced cutting planes. Each set of cutting
planes is specified by an orientation and a pitch.

2. An order for visiting the blocks of data is specified.

3. One reference to that array is selected for each statement in the
program. This reference is called the data-centric reference for that
statement.

Intuitively, the data-shackle specifies an order in which blocks of the
array are touched, and the data-centric reference is used to determine
which iterations of each statement get performed when that block of the
array is touched��code is generated to perform all iterations of that state-
ment for which the data-centric reference touches data within the current
block.

We illustrate this with matrix multiplication. One data-shackle is
obtained by dividing C into two-dimensional 25_25 blocks using horizon-
tal and vertical sets of cutting planes, as shown in Fig. 13a. These blocks
can be visited in left-to-right, top-to-bottom order. C(i, j) is the only reference
to this array in the assignment statement, and it is chosen to be the data-
centric reference for that statement.

Figure 13b shows naive code generated by using this data-shackle.
There are two outermost loops which enumerate over the blocks of C. For
each block, the entire initial loop nest is executed, and two conditionals
are inserted at the innermost level to ensure that the data touched by the
data-centric reference lies within the current block. This code generation
strategy is reminiscent of the runtime resolution code generation strategy
which is used in compiling shared-memory programs for distributed-memory
machines.(26) This code is shown only to illustrate the high-level idea of a
data-shackle. In the implementation, standard integer linear programming
tools are used to fold the bounds of the data blocks into the inner loop
bounds, producing the optimized code shown in Fig. 13c. Notice that
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Fig. 13. Code produced by shackling C in matrix-multiply.

within the context of a single block, iterations are done in the same order
as in the original code (these are called intra-block iterations), but in the
program as a whole, the order in which iterations are performed is different
from their order in the source program. Therefore, shackling is not always
legal. In Section 6, we show that the determination of whether a data-
shackle is legal can be reduced to the standard problem of determining the
emptiness of the union of certain polyhedra, a problem for which many
algorithms exist.

This shackle does not produce the standard block matrix multiplica-
tion code discussed in Section 2.1. For a given block of C, the data-shackle
specified above constrains the i and j loop indices, but does not constrain
the k index in any way, as can be seen in Fig. 13d. This results in poor
locality for the A(i, k) and B(k, j) references. This problem can be
addressed by composing shackles, as explained in Section 7.

A more complicated example is data-shackling of the kij-fused version
of Cholesky factorization. The array A can be blocked into 64_64 blocks
in a manner similar to Fig. 13a. When a block is scheduled, all statements
that write to that block can be executed in program order. In other words,
the reference chosen from each statement of the loop nest is the left-hand
side reference in that statement. The code obtained after simplification with
polyhedral algebra tools is shown in Fig. 14. The reader who wants some
insight into the structure of this code should study Fig. 15. Data-shackling
regroups the iteration space into four sections. Initially, all updates to the
diagonal block from the left are performed (Fig. 15(i)). This is followed by
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Fig. 14. Data-shackling applied to right-looking Cholesky fac-
torization.

a small Cholesky factorization(1) of the diagonal block (Fig. 15(ii)). For
each off-diagonal block, updates from the left (Fig. 15(iii)) are followed by
interleaved scaling of the columns of the block by the diagonal block, and
local updates (Fig. 15(iv)).

As in the case of matrix multiplication, this code is only partially
blocked, compared to the block factorization code in the LAPACK library.
Although all the writes are performed into a block when that block is
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Fig. 15. Pictorial view of code in Fig. 14.

visited, reads are not localized to blocks but are distributed over the entire
left portion of the matrix. As with matrix multiplication, this problem is
solved by composing shackles.

5.2. Discussion

By shackling a data reference R in a source program statement S, we
ensure that the memory access made from that data reference at any point
in program execution will be constrained to the ``current'' data block.
Turning this around, we see that when a block becomes current, we perform
all instances of statement S for which the reference R accesses data in that
block. Therefore, this reference enjoys perfect self-temporal locality.(12) Con-
sidering all shackled references together, we see that we also have perfect
group-temporal locality for this set of references; of course, references out-
side this set may not necessarily enjoy group-temporal locality with respect
to this set. As mentioned earlier, we do not mandate any particular order
in which the data points within a block are visited. However, if all dimen-
sions of the array are blocked and the block fits in cache (or whatever level
of the memory hierarchy is under consideration), we obviously exploit spa-
tial locality, regardless of whether the array is stored in column-major or
row-major order. An interesting observation is that if stride-1 accesses are
mandated for a particular reference, we can simply use cutting planes with
unit separation which enumerate the elements of the array in storage order.
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Enforcing stride-1 accesses within the blocks of a particular blocking can be
accomplished by composing shackles as described in Section 7.

The code shown in Fig. 14 can certainly be obtained by a (long) sequence
of traditional iteration space transformations like sinking, tiling, index-set
splitting, distribution etc. As we discussed in the introduction, it is not clear
for imperfectly nested loops in general how a compiler determines which
transformations to carry out and in what sequence these transformations
should be performed.

6. LEGALITY OF DATA SHACKLING

Since data-shackling reorders statement instances, we must ensure that
it does not violate dependences. An instance of a statement S can be iden-
tified by a vector i

�
which specifies the values of the index variables of the

loops surrounding S. The tuple (S, i
�
) represents instance i

�
of statement S.

Suppose there is a dependence from (S1, i1) to (S2, i2) and suppose that
these two instances are executed when blocks b1 and b2 are touched respec-
tively. For the data-shackle to be legal, either b1 must be touched before
b2 , or b1 and b2 must be identical (note that if b1 and b2 are identical, the
code generation strategy in Section 5 ensures that the statement instances
are executed in original program order). In this case, we say that the data-
shackle respects that dependence. A data-shackle is legal if it respects all
dependences in the program. Since our techniques apply to imperfectly
nested loops like Cholesky factorization, it is not possible to use dependence
abstractions like distance and direction to verify legality. Instead, we solve
integer linear programming problems, as we discuss in this section.

6.1. An Example of Testing Legality

To understand the general algorithm, it is useful to consider first a
simple example distilled from the Cholesky factorization code of Fig. 14. In
the source code, there is a flow dependence from the assignment of A(k, k)
in S1 to the use of A(k, k) in S2. We must ensure that this dependence is
respected in the shackled code shown in Fig. 14.

We first write down a set of integer inequalities that represents the
existence of a flow dependence between an instance of S1 and an instance
of S2. Let S1 write to an array location in iteration kw of the k loop, and
let S2 read from that location in iteration (kr , ir) of the k and i loops.
A flow dependence exists if the following linear inequalities have an integer
solution:(16)
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kr=kw (same location)

n�kw�1 (loop bounds){n�kr�1 (loop bounds) (6.1)

n�ir�kr+1 (loop bounds)

kr�kw (read after write)

Next, we assume that the instance of S1 is performed when a block
(b11 , b12) is scheduled, and the instance of S2 is done when block (b21 , b22)
is scheduled. Finally, we add a condition that represents the condition that
the dependence is violated in the transformed code. In other words, we for-
mulate the condition that block (b21 , b22) is touched strictly before block
(b11 , b12). These conditions are represented as:

Writing iteration done in (b11 , b12)

b11 V 25&24�kw�b11 V 25

b12 V 25&24�kw�b12 V 25

Reading iteration done in (b21 , b22)
(6.2)

b21 V 25&24�kr�b21 V 25

b22 V 25&24�ir�b22 V 25

Blocks visited in bad order

(b21<b11) 6 ((b11=b21) 7 (b22<b12))

If the conjunction of the two sets of conditions (6.1) and (6.2) has an
integer solution, it means that there is a dependence, and that dependent
instances are performed in the wrong order. If so, the data-shackle violates
the dependence and is not legal. This problem can be viewed geometrically
as asking whether the union of certain polyhedra contains an integer point.
This problem can be solved using standard polyhedral algebra tools.

Such a test can be performed for each dependence in the program. If
no dependences are violated, the data-shackle is legal.

6.2. General View of Legal Data-Shackles

The formulation of the general problem of testing for legality of a
data-shackle becomes simpler if we first generalize the notion of blocking
data. A data blocking such as the one shown in Fig. 13a can be viewed
simply as a map that assigns co-ordinates in some new space to every data
element in the array. For example, if the block size in this figure is 25_25,
array element (a1 , a2) is mapped to the co-ordinate (((a1&1) div 25)+1,
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Fig. 16. Testing for legality.

((a2&1) div 25)+1) in a new two-dimensional space. Note that this map
is not one-to-one. The bottom part of Fig. 16 shows such a map pictorially.
The new space is totally ordered under lexicographic ordering. The data
shackle can be viewed as traversing the remapped data in lexicographic
order in the new co-ordinates; when it visits a point in the new space, all
statement instances mapped to that point are performed.

Therefore, a data-shackle can be viewed as a function M that maps
statement instances to a totally ordered set (V, O). For the blocking shown
in Fig. 16, C: (S, I) � A maps statement instances to elements of array A
through data-centric references, and T: A � V maps array elements to block
co-ordinates. Concisely, M=T b C.

Given a function M: (S, I) � (V, O ), the transformed code is obtained
by traversing V in increasing order, and for each element v # V, executing
the statement instances M&1(v) in program order in the original program.

Theorem 1. A map M: (S, I) � (V, O ) generates legal code if the
following condition is satisfied for every pair of dependent statements S1
and S2.

v Introduce vectors of unknowns i1 and i2 that represent instances of
dependent statements S1 and S2 respectively.

v Formulate the inequalities that must be satisfied for a dependence to
exist from instance i1 of statement S1 to instance i2 of statement
S2. This is standard.(16)
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v Formulate the predicate M(S2, i2)OM(S1, i1).

v The conjunction of these conditions does not have an integer solution.

Proof. Obvious, hence omitted. K

6.3. Discussion

Viewing blocking as a remapping of data co-ordinates simplifies the
development of the legality test. This remapping is merely an abstract
mathematical device to enforce a desired order of traversal through the
array, and the physical array itself is not necessarily reshaped. For example,
in the blocked matrix multiplication code in Fig. 13, array C need not be
laid out in block order to obtain the benefits of blocking this array. This
is similar to the situation in BLAS�LAPACK where it is assumed that the
FORTRAN column-major order is used to store arrays. Of course, nothing
prevents us from reshaping the physical data array if the cost of converting
back and forth from a standard representation is tolerable. Automatic data
reshaping has been explored by other researchers.(27, 28)

7. PRODUCTS OF SHACKLES

We now show that there is a natural notion of taking the Cartesian
product of a set of shackles, and that this notion is the data-centric equiv-
alent of loop nesting.

The motivation for this operation comes from the matrix multiplica-
tion code of Fig. 13c, in which an entire block row of A is multiplied with
a block of column of B to produce a block of C. The order in which the
iterations of this computation are done is left unspecified by the data-
shackle (the default code generation scheme of Section 5 will execute these
iterations in original program order). Note that the shackle on reference
C(I, J) constrains both I and J, but leaves K unconstrained; therefore, the
references A(I, K) and B(K, J) can touch an unbounded amount of data in
arbitrary ways during the execution of the iterations shackled to a block of
C(I, J)). Instead of C, we can block A or B, but this still results its uncon-
strained references to the other two arrays. To get BLAS-style blocked
matrix multiplication, we need to block all three arrays. We show that this
effect can be achieved by taking Cartesian products.

Informally, the notion of taking the Cartesian product of two shackles
can be viewed as follows. The first shackle partitions the statement instan-
ces of the original program, and imposes an order on these partitions.
However, it does not mandate an order in which the statement instances in

343Data-Centric Transformations for Locality Enhancement



a given partition should be performed. The second shackle refines each of
these partitions separately into smaller, ordered partitions, without reor-
dering statement instances in different partitions obtained from the first
shackle. In other words, if two statement instances are ordered by the first
shackle, they are not reordered by the second shackle. The notion of
a binary Cartesian product can be extended the usual way to an n-ary
Cartesian product; each extra factor in the Cartesian product gives us finer
control over the granularity of data accesses.

A formal definition of the Cartesian product of data-shackles is the
following. Recall from the discussion in Section 6 that a data-shackle for a
program P can be viewed as a map M: (S, I) � V, whose domain is the set
of statement instances and whose range is a totally ordered set.

Definition 4. For any program P, let

{M1 : (S, I) � V1

M2 : (S, I) � V2

be two data-shackles. The Cartesian product M1_M2 of these shackles is
defined as the map whose domain as the set of statement instances, whose
range is the Cartesian product V1_V2 and whose values are defined as
follows: for any statement instance (S, i

�
), (M1_M2)(S, i

�
)=(M1(S, i

�
),

M2(S, i
�
)) .

The product domain V1_V2 of two totally ordered sets is itself a
totally ordered set under standard lexicographic order. Therefore, the code
generation strategy and associated legality condition are identical to those in
Section 6. It is easy to see that for each point v1 _v2 in the product domain
V1_V2 , we perform the statement instances in the set (M1_M2)&1 (v1 , v2 )
=M1

&1(v1 ) & M2
&1(v2 ).

In the implementation, each term in an n-ary Cartesian product con-
tributes a guard around each statement. The conjunction of these guards
determines which statement instances are performed at each step of execu-
tion. Therefore, these guards still consist of conjuncts of affine constraints.
As with single data-shackles, the guards can be simplified using any
polyhedral algebra tool.

Note that the product of two shackles is always legal if the two shack-
les are legal by themselves. However, a product M1_M2 can be legal even
if M2 by itself is illegal. This is analogous to the situation in loop nests
where a loop nest may be legal even if there is an inner loop that cannot
be moved to the outermost position; the outer loop in the loop nest
``carries'' the dependence that causes difficulty for the inner loop.
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7.1. Examples

In matrix multiplication, it is easy to see that shackling any of the
three references (C(I, J), A(I, K), B(K, J)) to the appropriate blocked array
is legal. Therefore, all Cartesian products of these shackles are also legal.
The Cartesian product MC_MA of the C and A shackles produces the
code in Fig. 5. It is interesting to note that further shackling with the B
shackle (that is the product MC_MA_MB) does not change the code that
is produced. This is because shackling C(I, J) to the blocks of C and shack-
ling A(I, K) to blocks of A imposes constraints on the reference B(K, J) as
well. A similar effect can be achieved by shackling the references C(I, J)
and B(K, J), or A(I, K) and B(K, J).

A more interesting example is the Cholesky code. In Fig. 2, it is easy
to verify that there are six ways to shackle references in the source program
to blocks of the matrix (choosing A(K, K) from statement S1, either A(I, K)
or A(K, K) from statement S2 and either A(I, J), A(I, K) or A(J, K) from
statement S3). Of these, only two are legal: choosing A(K, K) from S1,
A(I, K) from S2 and A(I, J) from S3, or choosing A(K, K) from S1,
A(K, K) from S2 and A(I, K) from S3. The first shackle chooses references
that write to the block, while the second shackle chooses references that
read from the block. Since both these shackles are legal, their Cartesian
product (in either order) is legal. It can be shown that one order gives a
fully-blocked left-looking Cholesky, similar to the blocked Cholesky algo-
rithm in LAPACK, while the other order gives a fully-blocked right-looking
Cholesky. The left-looking code produced by shackling is shown in Fig. 27.

7.2. Discussion

Taking the Cartesian product of data-shackles gives us finer control
over data accesses in the blocked code. As discussed earlier, shackling just
one reference in matrix multiplication (say C(I, J)) does not constrain all
the data accesses. On the other hand, shackling all three references in this
code is over-kill since shackling any two references constraints the third
automatically. Taking a larger Cartesian product than is necessary does
not affect the correctness of the code, but it introduces unnecessary loops
into the resulting code which must be optimized away by the code genera-
tion process to get good code. In Section 8, we explain how our implemen-
tation of data-shackling determines when to stop composing data-shackles.

8. HEURISTICS USED IN IMPLEMENTATION

Sections 5�7 described the mechanisms that underlie data shackling.
An implementation of data-shackling must make certain policy decisions
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as well. One of the authors (Kodukula) has implemented data-shackling in
the SGI MIPSPro compiler. In this section, we describe the policies
implemented in this compiler. In a production compiler, the time taken
to compile programs must be kept small, so these policies are based on
heuristic choices that are simple to implement. Their effectiveness for our
workload is discussed in Section 9. We believe that our heuristics are
reasonable, although it is certainly easy to invent other plausible ones.

8.1. Policy Decisions

An implementation of shackling must address the following questions.

1. What is the program unit to which data-shackling is applied?

2. How are the parameters for a single data-shackle chosen?

(a) Which array is shackled?

(b) What is the orientation of the cutting planes?

(c) What is the order of traversal of blocks?

(d) What is the separation of cutting planes (block sizes)?

(e) How are data-centric references chosen?

3. How many shackles are composed?

One approach to answering many of these questions is to treat them
as classical optimization problems, and try to find optimal solutions in the
context of an accurate model. However, this approach is impractical in a
production compiler, so we developed heuristics instead.

8.2. Program Unit for Shackling

Shackling is applied to one imperfectly nested loop at a time. Shackling
is essentially statement scheduling, so it can be applied in principle to mul-
tiple imperfectly nested loops or even to entire programs, but we do not
have enough experience at this point to do this effectively.

8.3. Determining the Parameters of a Single Shackle

We now describe the decisions that must be made to determine a
single data-shackle.

Picking an array for the shackle: Arrays are ordered by the following
criteria.
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Fig. 17. Choosing an array for shackling.

v What is the largest row rank of a data access matrix4 of an
unconstrained reference to the array?

v How many unconstrained references of this rank are there?

v Has the array already been used in a shackle?

If two or more arrays are tied according to one criterion, we attempt
to break the tie using succeeding criteria. If there are multiple choices at the
end of this process, the tie is broken arbitrarily. The rationale for this
heuristic is that an array to which there are multiple unconstrained references
of large rank is likely to be a major participant in cache traffic.

For example, in Fig. 17, array A is given highest priority for shackling
because there are two unconstrained references of row-rank two to this
array. Note that array B has only one reference of rank two, while array
s has three references, all of rank one.

Orientation of cutting planes: Cutting plane orientations are always
chosen to be parallel to the data co-ordinate axes. Dongarra and Schreiber
have explored the use of skewed blocks for locality enhancement,(7) but
skewed blocks are likely to produce variable trip-count inner loops which
are detrimental to subsequent phases in the compiler such as software
pipelining (the MIPSPro compiler does not use loop skewing for the same
reason).

Order of traversal of blocks: An n-dimensional array is blocked by
choosing n sets of cutting planes; for example, a two-dimensional array is
blocked along both rows and columns. The order of traversal of blocks is
chosen to be a lexicographic order on block co-ordinates. For a two-
dimensional array, the blocks are visited from left to right, and within a
given block column, from top to bottom. If this order is not legal, the
compiler tries a right to left order, and also a bottom to top order. If none
of these four orders of traversal is legal, the compiler tries to block only

347Data-Centric Transformations for Locality Enhancement

4 If all array access functions are linear functions of loop variables (if the functions are affine,
the constant terms can be dropped), an array access function can be written as F V I

�where F is the data access matrix(9) and I
�

is the vector of iteration space variables of loops
surrounding this data reference.



rows or only columns. If that fails as well, the imperfectly nested loop is
not shackled.

Choice of data-centric references: Picking a data-centric reference for
each statement is a two step process. In the first step, all candidate data-
centric references for a statement are determined. The second step is simply
an exhaustive enumeration of all candidate data-centric references for each
statement, searching for a legal shackle. We focus on the first step in the
following discussion.

After an array has been picked for a shackle, data-centric references to
this array must be selected for each statement. At the one extreme,
candidate references for a statement could be limited to references to the
array that actually occur in that statement. This causes difficulties in
programs like the one in Fig. 17 because statement S2 does not contain a
reference to array A which is the array chosen for shackling. At the other
extreme, all references to the shackled array in the entire imperfectly nested
loop can be candidate references for every statement, but this may result in a
combinatorial explosion in the number of possibilities that must be considered.

Our implementation chooses an intermediate position which is easy to
understand by considering the program in Fig. 17. There is a flow depen-
dence from statement S2 to S3 because S2 writes to the scalar variable r
while S3 reads from it. This dependence may not be respected if the data-
centric references chosen for the two statements are different (for example,
if the data-centric reference for S2 is A(i, 2j+1) and the data-centric
reference for S3 is A(i, 2j)). Therefore, candidate data-centric references for
S2 should be candidates for S4 and vice versa.

Our implementation therefore divides statements into equivalence
classes such that two statements are in the same equivalence class if and
only if there is a dependence between them that is induced by a scalar or
an array that will not be shackled. For example, if there are dependences
from S1 to S2 and from S1 to S3, all three statements are placed in the
same equivalence class even if there is no dependence from S2 to S3. The
candidate references for a statement are all references to the shackled array
that occur in the statements in its equivalence class. For the program in
Fig. 17 for example, all statements will be placed in the same equivalence
class, so all array references in the loop will be candidate references for all
statements.

Our implementation then tries each candidate reference for each state-
ment, and checks if the resulting program is legal. If legality is violated
because of a dependence due to a scalar, our implementation performs
scalar expansion to eliminate the problem. Array expansion of low-dimen-
sional array that cause this problem is possible in principle, but we have
not implemented this.
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Finally, we mention that all assignment statements within a condi-
tional statement are placed in the same equivalence class because they are
all control dependent on the predicate.

Block Size Determination: To determine block sizes, we used a sim-
plified version of the algorithm used in the MIPSPro compiler for deter-
mining tile sizes when it tiles perfectly nested loops. This algorithm
estimates the amount of data touched in computing a tile (this is called the
footprint of the tile), and chooses a tile size such that this footprint is a
certain fraction of the cache size called the effective cache size (between
5�100). It might appear that cache misses are minimized when the effec-
tive cache size is equal to the cache size, but experience has shown that the
use of a smaller effective cache size reduces conflict misses without much
impact on capacity misses.

We adapted this model to shackling by computing the block size at
which the footprint of the intra-block iterations of the shackled code was
equal to the effective cache size. The computation of this footprint was
done as follows.

In the first step, a set of references with large contributions to the foot-
print are identified in each statement. For statements that are not most
deeply nested in the imperfectly nested loop, this set is defined to be empty.
For statements that are most deeply nested, this set is defined to be all the
references from that statement with the highest (row)-ranked access
matrices. For example, in matrix multiplication, A(i, k), B(k, j) and C(i, j)
all correspond to access matrices of row-rank 2, and are all chosen in this
step. In Cholesky factorization, the update statement is most deeply nested,
and the three references chosen from it are A(i, j), A(i, k), and A(j, k).

The second step performs the following computations for each state-
ment. The references chosen in the previous step are partitioned into
groups��two references to the same array fall into the same group if their
access matrices have the same linear part, but possibly different affine parts.
References belonging to two different arrays always fall into different
groups. For example, in matrix multiplication, A(i, k), B(k, j), and C(i, j)
all fall into different groups. Similarly, in Cholesky factorization, A(i, j),
A(i, k) and A(j, k) fall into different groups. On the other hand, two
references of the form A(i, j) and A(i+1, j) will be assigned to the same
group. The assumption is that all references assigned to the same group
enjoy perfect reuse, while references assigned to different groups enjoy no
reuse. Finally, two groups from two different statements referring to the
same array are merged if the references in the two groups have the same
linear part, and the two statements under consideration have identical
data-centric references. The assumption is that if the data-centric references
for the two statements are identical, instances of the two statements that
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touch the same data will be scheduled close enough together that they will
enjoy perfect reuse. If E represents the effective size of the cache and g
represents the number of groups, then each group is allowed to have a
footprint as large as E�g.

The last step involves computing the footprint of every group for a
single instance of a composite shackle. Two simplifications are applied to
this computation

(i) the footprint of a group is approximated by the footprint of a
single reference picked at random from the group, and

(ii) it is assumed that the footprint of the group is identical for all
instances of the data loops introduced by the shackle.

The first simplification is justified by the assumption that all references
in a group enjoy perfect reuse, and the second simplification is justified
since boundary effects are not significant when array sizes and loop bounds
are large. The reference picked for each group is called the representative
reference.

Evaluating the footprint of a single reference for the intrablock itera-
tions of shackled code is straightforward, and variations of this problem
have been addressed in the literature.(29) A single instance of the composite
shackle is completely specified by a specific set of values for the block coor-
dinates for each level of a composite shackle��for the sake of simplicity,
each of the block coordinates can be assumed to be 0. In addition, we only
consider square blocks, so for every array a, a single unknown parameter
Ba denotes the block size for that array. A system of linear integer equa-
tions expressing the localization constraints corresponding to the com-
posite shackle is assembled for the statement containing the representative
reference. The number of distinct elements touched by the representative
reference under this system of equations is multiplied by the size of each
element to yield a polynomial in a single parameter for the footprint for
this reference. Determining the number of distinct elements touched by the
representative reference is thus reduced to the problem of counting the
number of integers inside a convex polyhedron. In our current implementa-
tion, this is estimated by counting the number of integer solutions inside
the bounding box of the convex polyhedron. More sophisticated approaches
such as Ehrhart Polynomials(30) can potentially be used to obtain better
solutions in practice, but it is not clear whether this improvement in
accuracy leads to better overall performance.

We implemented shackling only to improve performance of the L2
cache; the miss latency for the L1 cache is small enough that we decided
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not to shackle for the L1 cache. Therefore, block sizes were determined
using the size of the L2 cache.

8.4. How Many Shackles are Composed?

Composing data-shackles provides finer control over data accesses in
the blocked code. As discussed earlier, shackling just one reference in
matrix multiplication (say C(i, j)) does not constrain all the data accesses.
On the other hand, shackling all three references in this code is over-kill
since shackling any two references constraints the third automatically.
Applying too many levels of composition does not affect the correctness of
the code, but it introduces unnecessary loops into the resulting code which
must be optimized away by the code generation process to get good code.
The following obvious result is useful to determine how far to carry the
process of taking Cartesian products.

Theorem 2. For a given statement S, let F1 ,..., Fn be the access
matrices for the shackled data references in this statement. Let Fn+1 be the
access matrix for an unshackled reference in S. Assume that the data
accessed by the shackled references are bounded by block size parameters.
Then the data accessed by Fn+1 is bounded by block size parameters iff
every row of Fn+1 is spanned by the rows of F1 ,..., Fn .

Stronger versions of this result can be proved, but it sufficed for pur-
poses of the implementation. For example, the access matrix for the
reference C(i, j) is [ 1

0
0
1

0
0]. Shackling this reference does not bound the

data accessed by row [0 0 1] of the access matrix [ 0
0

0
1

1
0] of reference

B(k, j). However, taking the Cartesian product of this shackle with the
shackle obtained from A(i, k) constrains the data accessed by B(k, j),
because all rows of the corresponding access matrix are spanned by the set
of rows from the access matrices of C(i, j) and A(i, k). Composition is
applied if even a single assignment statement from the loop nest under con-
sideration stands to benefit as a result.

8.5. Discussion

Once all shackles have been determined, localization constraints must
be folded into loop bounds (for example, we must generate the code shown
in Fig. 13c rather than the code in Fig. 13b). This code generation step has
been implemented in polyhedral algebra tools like PIP and Omega. Our
implementation uses a simple version of these techniques to generate the
shackled code quickly. The interested reader is referred to Kodukula's
thesis.(31)
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9. EXPERIMENTS

We present experimental results showing the performance of different
versions of Cholesky, LU, and QR factorizations. The performance of com-
piler-generated BLAS codes was shown in Fig. 12.

9.1. Cholesky Factorization

Like matrix multiplication, Cholesky factorization has three nested
loops, but these loops are imperfectly nested. All six permutations of these
three loops are legal and one of these permutations comes into two versions,
giving a total of seven versions of the Cholesky program. Figures 18�24
show pseudo-code for these versions. Ideally, a restructuring compiler
would be able to generate the best code for Cholesky factorization from
any of these versions of Cholesky factorization, just as many state-of-the-
art restructuring compilers do not care which one of the six permutations
of matrix multiplication is given as input. As we show below, the perfor-
mance of code generated by the control-centric approach implemented in
the MIPSPro compiler depends quite critically on which version of
Cholesky is given as input. In principle, the data-centric approach does
not care which version of Cholesky is given to it. However, since our

Fig. 18. Performance of Cholesky factorization: kij version.
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Fig. 19. Performance of Cholesky factorization: kij-fused version.

Fig. 20. Performance of Cholesky factorization: kji version.
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Fig. 21. Performance of Cholesky factorization: jik version.

Fig. 22. Performance of Cholesky factorization: jki version.
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Fig. 23. Performance of Cholesky factorization: ijk version.

Fig. 24. Cholesky factorization: ikj version.

355Data-Centric Transformations for Locality Enhancement



implementation of the data-centric approach performs intra-block com-
putations in the same order as in the input program, the performance of
the shackled code does depend on which version is given as input although
as we show below, the variation is less than it is for control-centric trans-
formations.

As discussed in Section 2, the LAPACK version of Cholesky factoriza-
tion runs at 260 MFlops for matrix sizes between 400 to 1200.

We implemented shackling only to improve performance of the L2
cache; the miss latency for the L1 cache is small enough that we decided
not to shackle for the L1 cache. The shackled code produced by the com-
piler was generated by composing two shackles. In both shackles, the array
was divided into rectangular blocks (the compiler heuristic chose 70_70
blocks), and these blocks were visited in left-to-right, top-to-bottom order.
In the outer shackle, the compiler chose the left-hand side reference from
each assignment statement for shackling, while in the inner shackle, the
compiler selected a reference from the right-hand side of each statement:
A(k, k) for the square root statement, and A(i, k) for the scale and update
statements. The same shackle was used for all other versions of Cholesky
factorization as well.

The shackled code performs better than the tiled code in both versions
of kij Cholesky, as shown in Figs. 18 and 19. Figure 18d shows that the
miss ratio for the tiled code increases rapidly with array size, showing that
tiling in the SGI compiler is not effective; in contrast, the miss ratio of the
shackled code is almost independent of array size. The kij-fused version in
Fig. 19 is an SNL, so the SGI compiler is more successful in enhancing
locality in this version. These figures also show the relative contributions of
shackling (for the L2 cache) and of register tiling to overall performance.
With neither of these locality optimizations, the performance of the
baseline code drops to about 10�20 MFlops! Register tiling eliminates
many loads and stores of array locations and boosts the performance of the
shackled code from 110 MFlops to 175 MFlops. This is consistent with
other reports in the literature about the importance of register tiling.(5)

Figures 18c and 19c show the effect of varying the block size in the
shackled code. It can be seen the optimal block size is 30_30 rather than
the 70_70 chosen by the compiler. With this block size, the performance
of the shackled code is boosted to 240 Mflops which is very close to
LAPACK performance. These figures suggest that the heuristic for choos-
ing block sizes needs to be improved.

Permuting the two update loops in the kij version gives the kji version
shown in Fig. 20. This version is not an SNL, so tiling is not effective.
Fusing the scale loop with the outer update loop is illegal. The only way
to get an SNL is to interchange the two update loops and then fuse the
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new outer update loop with the scale loop, generating the code of Fig. 19,
but this is too complicated for the MIPSPro compiler's imperfectly nested
loop transformation heuristics to reason about. Therefore, cache tiling has
little benefit as is evident in Fig. 20b. The performance of the baseline code
(no cache or register tiling) is modestly better than that of the baseline kij
versions because of better spatial locality in the update loops. This also
explains why the shackled code performs a little better than the shackled
code from the kij version.

Figure 21 shows the performance of a left-looking version of Cholesky
factorization. The loop nest is not an SNL, but the computational work in
the update loops is essentially a matrix-vector product which is performed
by the MIPSPro compiler by accumulating the updates to A(i, j) in a
register. The shackled version exploits reuse at all loop levels and outper-
forms the tiled code substantially except when the array size is around 950.
This sudden drop in performance is caused by conflict misses. Figure 21c
shows that choosing the block size adaptively to reduce conflict misses is
one solution. However, the current implementation of shackling does not
choose block sizes adaptively. In the jik version, all the updates to an ele-
ment of the current column are performed before succeeding elements are
updated. Permuting the i and k loops gives the jki version. The MIPSPro
compiler interchanges the update loops in the jki back to the jik version,
so the performance of the baseline and tiled versions is identical to the per-
formance of the jik versions. There is no difference in the performance of
the shackled code either.

Finally, Figs. 23 and 24 show the performance of row-Cholesky ver-
sions. The ijk version performs inner-products, so it is also known as ddot
Cholesky while the ikj version is rich in saxpy operations. Figure 23b shows
that while the shackled code outperforms the tiled code, it performs poorly
compared to LAPACK code. To understand why, note that Fig. 23d shows
that the L2 cache miss ratios are similar to those of Fig. 18, but Fig. 24b
shows that register tiling is not effective in this code. The shackled code for
the ikj version performs better, but it too appears exploits register tiling to
a limited extent. Improving the performance of the ikj and ijk versions
requires closer integration of shackling with register tiling.

9.2. LU Factorization

Figure 25 compares the performance of shackling and tiling for LU
factorization with pivoting. As mentioned before, the entire loop nest is not
an SNL, and therefore cannot be tiled. However, the update loop nest can
be tiled, and this has a small benefit because it permits spatial locality to
be exploited.

357Data-Centric Transformations for Locality Enhancement



File: 828J 172040 . By:XX . Date:02:05:01 . Time:09:11 LOP8M. V8.B. Page 01:01
Codes: 2348 Signs: 1802 . Length: 44 pic 2 pts, 186 mm

Fig. 25. LU factorization with partial pivoting.

Using simple data-flow analysis, it can be determined that for the LU
factorization code in Fig. 25, the scalar m needs to be expanded. The data
shackle chosen by the compiler divides array A into block columns with
block sizes ranging from 10 to 25 depending on the size of the problem.
For the scale and update statements, the shackling references are chosen to
be A(i, k) and A(j, 1) respectively. For the three statements implementing
the row permutations, the shackling references are A(k, j), A(k, j) and
A(ipvt(k), j) respectively, and for all the other statements, the shackling
reference is A(i, k). We finally note that in this particular example, the
expansion of m can be completely free, since ipvt(k) represents precisely a
scalar expanded m; however this analysis is not currently implemented.

While the performance of the shackled code beats the performance of
the tiled code, it is still slower than the LAPACK version by a factor of 2.
This is because the LAPACK code uses information about the com-
mutativity of permutations and row-updates; this permits it in essence to
use two-dimensional blocking rather than block columns, which results in
better code. Restructuring based on dependence analysis does not change
the order of writes to a given memory location, so we believe that it is
unlikely that a compiler that uses dependence analysis alone can deduce
this commutativity condition automatically. We have recently shown that
fractal symbolic analysis can solve this problem.(32)

9.3. QR Factorization

QR factorization performs orthogonal factorization of a matrix A into
the product QR where Q is an orthonormal matrix and R is upper tri-
angular. It is a key kernel in eigenvalue calculations. Figure 26 compares

358 Kodukula and Pingali



File: 828J 172041 . By:XX . Date:02:05:01 . Time:09:11 LOP8M. V8.B. Page 01:01
Codes: 2159 Signs: 1661 . Length: 44 pic 2 pts, 186 mm

Fig. 26. QR factorization using householder reflec-
tions.

the performance of shackling and tiling on QR factorization using
Householder reflections.(1) As in the case of LU factorization with partial
pivoting, the array A is partitioned into block columns because a two-
dimensional blocking is not legal. QR is similar to LU factorization except
that in this case, array expansion of the vector x is required for legality. The
necessary array expansion has not yet been implemented, so we modified
the standard code for QR factorization to perform array expansion.
Figure 26 shows this program. The need to expand x raises an important
profitability question��scalar expansion is usually quite cheap, however
expanding x creates an array as large as A in this case. Although shackling
once again outperforms tiling, the performance of the shackled code is a
factor of 2 worse than that of the LAPACK code which obtains roughly
225 MFlops on this code. The LAPACK code uses a number of deep
properties of matrices, such as associativity of matrix product, to generate
efficient code. It is conceivable that a compiler could exploit some of this
information if the input program were written in a language like MATLAB
or FORTRAN-90 in which array operations are primitives.

10. CONCLUSIONS

In this paper, we introduced the data-centric approach to optimizing
scientific programs to improve cache performance, described an implemen-
tation of this approach within the SGI MIPSPro compiler, and compared
the performance of data-centric code with that of code generated by more
conventional control-centric techniques.
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The key insight behind the data-centric approach is that it is often
easier for a compiler to perform locality-enhancing transformations if it
reasons about data structure traversals rather than control structure trans-
formations. Intuitively, the compiler determines a schedule for the arrival of
data structure elements in the cache, determines what computations should
be performed when that data arrives, and generates the appropriate code.
At runtime, program execution will automatically pull data into the cache
in roughly that order, and the hit ratio should improve because statements
that touch the same data are scheduled together.

We discussed a particular implementation of the data-centric approach
called data-shackling which was designed for locality enhancement of dense
numerical linear algebra codes. The traversals allowed are along the co-or-
dinate axes of the array (that is, left-to-right and top-to-bottom, and rever-
sals of these); for each statement, a data-centric reference is chosen heuristi-
cally which determines the instances of that statement that are executed
when a given data structure element is brought into the cache. The array
itself is not physically copied to make the storage order of elements the
same as the traversal order chosen by the data-shackle, although this can
be done if it is deemed to be profitable.

This work can be extended in many ways.
As the experimental results in Section 9 show, data-shackling does not

generate code competitive with LAPACK library code for LU factorization
with pivoting and QR factorization. The blocked code in the LAPACK
library for LU factorization with pivoting exploits the fact that row per-
mutations commute with updates (see the code in Fig. 3). A compiler that
uses dependence analysis preserves the order of reads and writes to a given
memory location in the original program, so better analysis techniques
must be developed. We have recently invented a technique called fractal
symbolic analysis that addresses this problem(32) but its use in automatic
locality enhancement remains to be explored. Blocking QR factorization
requires the exploitation of domain-specific information like the associa-
tivity of matrix multiplication, and it is not clear how a compiler could be
given such information or how it would use such information.

Our current implementation does not change the storage order of
blocks of the array to make it the same as the traversal order chosen by
the data-shackle, but nothing prevents us from reshaping the physical data
array if the cost of converting back and forth from a standard represen-
tation is tolerable. Automatic data reshaping has been explored by other
researchers, (27, 28) and it would be interesting to see what benefits this
would have in our context.

Data-centric transformations other than data-shackling need to be
explored. For example, Pugh and Rosser have proposed a data-centric
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Fig. 27. Doubly-blocked Cholesky factorization code
produced by data shackling.
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transformation called iteration space slicing(33) which can be viewed as a
more systematic way of using dependences than the heuristics described in
Section 8 for finding data-centric references. A backward slice for a variable
at a given point in the program is the portion of the program that affects
the value of that variable at that program point.(34) Given an order in
which array elements are to be computed, iteration space slicing produces
a program that is effectively the sequence of incremental slices of successive
elements of the array. However, computing incremental slices is computa-
tionally expensive, and the performance advantage over simple heuristics is
unclear.

Finally, large computational science problems usually involve sparse
matrices produced by the applications of methods like the finite-element
method. Sparse matrix programs cannot be restructured or optimized by
compilers because array accesses in these programs involve indirect sub-
scripts that are difficult for a compiler to reason about. We have shown
that this problem can be circumvented by using the data-centric approach
to synthesize sparse matrix programs from dense matrix programs and
specifications of sparse formats.(35) The sparse format is specified in part by
describing efficient traversal orders for enumerating the elements of the
matrix, and the restructuring compiler attempts to use one of these data
element traversal orders to perform the specified computation.

APPENDIX

Figure 27 shows the code produced by the product of shackles dis-
cussed in Section 7.
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