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We describe an approach in which stateful computations can be expressed
within the framework of a functional language. We consider algorithms with
nondeterministic intermediate results and a deterministic final result which is
obtained for any series of intermediate values of some variable shared among
parallel tasks or, in other words, the ordering of updates to the variable does
not matter. Functional languages normally abstract away from explicit syn-
chronization and exploit parallelism between separate uses of a variable. But in
some cases we can relax that requirement with both parallelism and determinate
computation. To increase its expressiveness and efficiency for this important
class of problems, we propose to extend the Sisal language with state variables
encapsulated within stateful functions. We have used Centaur to specify and
construct a semantic-based environment. We illustrate the proposed language
extension with analysis of several examples, and comparison with other
languages.
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1. INTRODUCTION

Due to the high cost of complex data-flow architectures, the execution
model for exploiting fine-grain parallelism has evolved gradually from the
data-driven to the multiprocess execution model.(1) The advantage of
functional languages is the ease of parallelism extraction.(2) Functional
languages can be used to write programs for multiprocess systems because
they can expose a high degree of parallelism. The processing power of multi-
process architectures is useful only when the programming language can
effectively take advantage of it.

We consider, for a moment, some characteristics of ``imperative'' and
``functional'' programming languages.

Since imperative languages derive from a sequential machine model,
they are not easily compiled for parallel execution.(3) In the general case,
any variable in an imperative language program is updatable over the
whole program. An imperative language program cannot be executed in
parallel on a multiprocessing system without using complex synchroniza-
tion mechanisms to avoid, for example, access conflicts to shared variables.

For example, in the following imperative program segment, a single
variable a is used, in two distinct parts of the program, and is updated at
each use.

�* chunk�1: *�
a=1; b=2; c=3; delta=b72&4*a*c;

. . .
�* chunk�2: *�

a=5; y=f(a); ...

Assume that the first chunk of commands is scheduled in processor P, and
the second chunk of commands is scheduled in processor Q. These two
code sequences cannot be executed in parallel without synchronization
between P and Q, otherwise arbitrary interleaving of the code sequences is
possible, raising the possibility that either P or Q may use an incorrect
value of a: P may see the value of a as 5, and Q may see it as 1. In fact,
the variable a as used in chunk�1 is logically independent of the variable
a in chunk�2: the same storage location is used for both, necessitating
special coordination code for use of that location by parallel processes.

On the other hand, in a functional language, single-definition rules
ensure that this situation is avoided, and thus the processes in P and Q can
be executed in parallel without interfering with each other.

Sisal and Haskell are examples of general purpose functional
languages without program constructs which would induce side-effects.(4)

As indicated earlier, this property can be exploited to yield quite straight-
forward algorithms for detection of parallelism in functional programs, and
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generation of parallel code. In many cases, such techniques can be utilized
very effectively to produce high performance programs.(5)

Nonetheless, there are some classes of program where purely func-
tional programming can hinder rather than enhance expression and
analysis of parallelism. We examine some such programs in this paper, in
particular, for algorithms (for example, shortest path) where it is natural to
define a single shared variable to record the best solution (such as the
length of the shortest path) found so far, but where we can allow parallel
processes to update that variable in any order; provided that the update
operation is itself atomic, it is not necessary for any further coordination
of accesses. Functional languages normally abstract away from explicit syn-
chronization by insisting that each separate use of a variable be separately
identified, and then exploiting parallelism between those separate uses. But
in some cases we can relax that requirement and still have parallelism and
determinate computation of the overall program result.

We discuss an extension of Sisal with a form of stateful computation,
so that both expression and performance of such applications can be
improved.(6, 7) From the specifications of the syntax and semantics of the
language, (8, 9) a development and visualization environment for extended-
Sisal programming is produced.

This paper demonstrates how a functional language can be extended
with stateful computations to improve both the programmability and the
performance of real world applications, while keeping the ease of parallel
execution that comes naturally with functional languages.

Section 2 reviews related work. Section 3 offers the motivation for our
work. Our methodology and the extended features are described and dis-
cussed in Section 4. The implementation of extended Sisal is described in
Section 5: syntax and semantic specifications are shown and discussed.
Programs for some parallel applications and the performance evaluation
are presented in Section 6. Finally, conclusions are presented in Section 7.

2. RELATED WORK

Several attempts have been made to include stateful computations in a
functional language and still maintain ease of extraction of parallelism.(10�12)

The languages Scheme(13) and ML(14) each support both functional and
imperative programming; we do not consider them in detail here, as our
emphasis is on approaches that can be considered as occasional departures
from a primarily functional base. In this section, some earlier approaches to
stateful computations in functional programming languages are discussed.
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2.1. Id

Id(15) designers provide a series of abstractions for the declarative expres-
sion of different paradigms of programming, beginning with a functional core,
then I-structures(16) as write-once structures with determinate nonstrict evalua-
tion, accumulators(17) to provide a style of programming similar to logic
programming, whereby a variable reaches its final value incrementally,
through separately specified refinements. Finally, M-structures(18) provide
high-level specification of updatable structures, allowing multiple assignments.

Solutions based on accumulators are quite concise and readable, and
are potentially amenable to implementation as updates without unne-
cessary sequentialization. However, central to the notion of accumulator is
the definition of its result in terms of a list comprehension; the sequen-
tialization implied by this comprehension can make it difficult to realize
such an implementation, and the necessity to specify accumulation by a
binary operator is somewhat restrictive: greater generality is provided by
both M-structures, and the stateful functions introduced in this paper.

M-structures are intended to provide a high-level, yet efficient, description
of updateable structures. M-structure primitives rely on implicit synchroniza-
tion to provide atomicity of operations, and strictness of evaluation context to
ensure that such operations are ordered correctly, and that reads and writes are
balanced: one read must be matched by exactly one write. As Id assumes non-
strict, eager, parallel semantics by default, a barrier construction is introduced
into the language to provide explicit sequencing where necessary. The state
variables introduced later are in some ways similar to M-structures, but we
believe that programming with state variables is less complex because we can
statically determine synchronization requirements, and automatically generate
the necessary code, rather than require explicit specification of synchronization.

Id programming with M-structures is based on the notation of comprehen-
sions. It is our goal in this paper to provide a similar convenient, appropriately
constrained abstraction of state variables, but in an idiom natural to Sisal.

2.2. Monads

The concept of monads is an important tool for functional programmers
because it provides a framework for describing a wide range of programming
features, including I�O and state.(4, 10, 19, 20)

Wadler(20) shows that, under certain conditions, operations on a
monad can be described using the notation of comprehensions. The com-
prehension provides a mechanism for selecting and operating on elements
of the monad. The commonly-used list comprehension is a concise and
powerful mechanism for generating and filtering lists; analogously, in the
more general case of a monad, a comprehension provides a layer of
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abstraction beneath which more complex and interesting behaviors can be
encapsulated. It also provides an ordering of operations on the monad.

A monad can be defined to encapsulate state. Monad laws ensure
(as indicated earlier) that the state is handled in an appropriate way.(20)

Hence, programs using monads can be reasoned about using referential
transparency, in the usual way as in a pure functional language.

Monads simplify the programming of state manipulation in a func-
tional manner. Consider the use of a counter to generate unique names. An
impure program (in C, for example) can simply update a variable. A purely
functional program must represent the state explicitly: it can mimic a
counter by passing the value of the counter into every function which uses
or changes it, and returning as a result the new value of the counter. This
has the advantage that all uses of state in a program are exposed, but
the ``plumbing'' of all state components through all functions that use
them can be very tedious. Monads preserve the functional semantics of
state manipulation, but hide the details of plumbing under a higher level
abstraction.

Clearly, in this name-generation application the programmer needs a
global counter and that is implemented as an implicit state.

Although a monadic program is an elegant and powerful way of using
state (the counter), while maintaining referential transparency, it has the
following limitations. First, it is difficult for the implicit state method to
express more than one state component (e.g., two counters). Secondly, the
implicit state method is an abstract form of passing around parameters,
and thus inevitably imposes an artificial serialization in the program. Note
that such serialization is not always inherent in the applications. Indeed, no
order of new names is predetermined in the algorithm.

In this paper, we propose a representation of state manipulation,
augmenting a strict functional language, that imposes minimal serialization
of operations, and allows expression of a high level of parallelism in
applications over irregular structures in which ordering of operations does
not matter in producing the final result. Our representation differs from the
monad-based approach in that it admits non-functional constructions, but
in a manner that clearly identifies stateful aspects, and can be used and
understood orthogonally to the functional core of the language.

3. MOTIVATION

Access to high-level abstractions and implicit parallelism allow func-
tional language programmers to concentrate on the implementation of the
applications without being concerned with low-level execution details.
However, for applications with stateful computations, the expressive power
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of functional languages is frequently insufficient. Functional languages
remove some of the burden of managing parallelism, but several types of
computations are difficult to express without state. We found that many
problems caused by such limitations of the functional programming can be
ameliorated by allowing a form of update on a small number of variables.
We thus introduce an extension to the functional programming paradigm.

In Section 2, we considered the example of a counter generating
unique names, and observed that, in both a purely functional program and
its more concise monad-based equivalent, artificial serialization is imposed,
and extraction and exploitation of parallelism thus made more difficult.

We now consider another example, in which the efficient parallel
execution of the branch-and-bound application (Fig. 1) is facilitated by
using a single variable, visible to all participating processes. In this applica-
tion, we try to find the shortest path from starting node A to goal node J.

Suppose that initially there are three parallel execution processes. The
first execution process performs the calculation for the path: A � B � E � J.
The second execution process performs the calculation for the path:
A � C � } } } , and the third execution process performs the calculation for
the path: A � D � } } }

Assume the following scenario: when the first execution process ter-
minates, the value of a global variable M, representing the minimum so far,
is assigned 5. Then the second process performs the calculation until it
reaches node F. The accumulated path length is 7, which already exceeds
the value of M. The whole subtree rooted at F can thus be pruned. When
J is reached through G, the calculated result is 4, which is less than the
current value of M, so M is reassigned 4.

This is an example of an algorithm with nondeterministic intermediate
results and a deterministic final result, in that the same final result is

Fig. 1. Branch-and-bound application.
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obtained for any series of intermediate values of M: in other words, the
ordering of updates to M does not matter.

Thus, we see that the use of a shared variable, greatly facilitates ease
of programming and reduction of wasteful computation for this applica-
tion. Such use of a shared variable cannot be programmed directly in a
pure single-assignment language. Further, such a scheme cannot be
achieved by directly applying monads, I-structure or M-structures in the
programs.

4. THE STATEFUL EXTENSION

4.1. Principles

Here, we describe an extension to the language Sisal that will allow
ease of programming and efficient implementation of algorithms like those
discussed previously. In so doing, our goal is to maintain consistency with
Sisal idioms, and to not compromise its primary goal of determinate
parallel programming.

While adding state to a single assignment language such as Sisal, one
has to respect its philosophy. We introduce declaration of state through an
extension of the notion of function, and update of state in a manner similar
to the notion of re-binding already present in the language.

First, we summarize Sisal scope rules. Sisal does not permit any data
values to be imported from any enclosing function definition; in other
words, data is presented to a function by the explicit data flow of param-
eter passing. Function names themselves are inherited by all nested func-
tion definitions, while redefinition of function names inherited from an
outer scope is not permitted. We want to change that as little as possible.

The stateful extension is introduced by mean of state variables, which
are declared with the keyword state:

function h (returns integer,...)
state

s1, s2 : integer
. . .

end state;
. . .

end function

We call any function declaring a state variable a stateful function. An
intuitive description of the syntax and semantics of state variables and
stateful functions follows, with more detail in the next section.
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We adopt two important principles:

1. a stateful function can be written without any restriction (any legal
Sisal definition is legal in a stateful function), and

2. state variables retain their values between each function invocation.

The first principle is motivated by our desire to write definitions within
stateful functions in the same way as we write definitions in conventional
Sisal functions. The second expresses the state-oriented behaviour of these
functions.

State variables are accessible only via a stateful function. The stateful
function defines, for each of its state variables, both an initial value, and a
rule for updating the state variable. An update is expressed as a re-binding
of the variable to a new value, using the same notation as for re-binding
a Sisal loop variable.

Figure 2 gives a few examples of stateful functions with state variables.
They comply with static Sisal scoping rules. Sharing of a state variable is
effected by having its definition only in the stateful function where it is
declared; it is not a global variable. This is consistent with the earlier
analysis of the shortest path algorithm, where the requirement is not that
the variable be global, but that it be shareable among the processes par-
ticipating in the computation of the minimum; the mechanism used con-
fines visibility of state variables to those functions that need them. Stateful
functions require special treatment with respect to parallel execution. This
will be further detailed in the next section.

Fig. 2. State variables example.
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4.2. Parallel Executions

In this section we specify in more detail the parallel semantics of
stateful functions and indicate how they can be exploited in a parallel
execution.

We use as guidance in defining the semantics of state variables, the
existing semantics of Sisal loops. We can see in Fig. 3 a very simple Sisal
loop in which a loop variable n is first initialized, then rebound to an
updated value at each iteration (using its old value at the previous
iteration).

In the proposed extension, the function body specifies a series of one
or more updates to each of its state variables. Each such update takes the
form of a re-definition of the state variable, in a manner similar to the
re-definition of a loop variable. One such definition specifies a transition
from one value of the state variable to the next. The function body can
specify several such transitions, as a series of updates to the state variables,
that can be executed in parallel. Later, we discuss the precise mechanism.
The body of the stateful function can be either a single definition, specifying
an updated value of the state variable, or a loop, used as the mechanism
for specifying a series of state transitions. The body of the loop specifies a
single update of each state variable.

Each updating definition is of the form (for state variable v)

v :=Exp;

where Exp represents an arbitrary expression defining the computation of
the updated value.

In the expression that defines the updated value, the previous value is
bound to old v, and the actual variable v itself is undefined. Outside that
expression, v refers to the updated value, and old v to the previous value.
Here, each invocation of a stateful function corresponds to a new binding
of the state variable.

The initial value is specified separately, within the variable declaration
with the keyword initial:

Fig. 3. A simple
Sisal loop.
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function h (returns integer,...)
state

s1, s2 : integer
initial

s1 :=. . .;
s2 :=. . .

end state;
. . .

end function

The semantics being that initial statements are executed exactly once upon
the first invocation of a stateful function. The variables introduced by the
state construct have the scope of the current function. Within the initial
construct, the visible names are, as defined by standard Sisal rules, visible
function names and formal parameters of the current function. Of course,
stateful variables cannot be used in the right-hand side part of the con-
struct. One and exactly one initial value must be given to a state variable.

We now look in more detail at some aspects of the semantics. Our
model of a stateful function assumes that it defines an update, or transition,
from one state to another. However, if the update merely preserves the
value (such as v :=old v), its specification may be omitted.

The expression component of an update rule, from the point-of-view of
translation to parallel execution, is regarded as atomic. An implementation
can then treat each individual update as a critical section, and schedule
them appropriately. If the hardware has a concurrent coordination primitive
such as fetch-and-add, (21) then these updates can be executed in parallel,
thereby providing a highly efficient implementation of a series of updates in
which the order does not matter.

We stipulate, in the interest of keeping update code simple, that the
update rule should not include any call to another stateful function, nor
any (mutual) recursion onto the stateful function itself. Reading the value
of a state variable is, of course, assumed to be atomic. The update rule of
a state variable can include the use of other state variables, namely those
declared within the same stateful function.

For an array declared as a stateful variable (a stateful array), whatever
the dimension of the array, each element is considered to be a stateful
variable by itself. In other world, the granularity of mutual exclusion for a
stateful array is each cell of the array. Such a structure can be implemented
by using a mechanism similar to I-Structures(16) or a memory architecture
with element level synchronization as in the Tera supercomputer.(22)

Figure 4 presents a stateful function returning and storing a maximum
value. In this example, stateful function Gmax encloses a special variable
max, initialized to argument v. The body of Gmax incorporates the update
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Fig. 4. A stateful function collecting a maximum value.

rule for max: if the argument v is larger, max is updated to that value,
otherwise it does not change. In the context of, for example, a branch-and-
bound algorithm (see later), Gmax may be invoked many times by the
parallel tasks of the computation. This mechanism ensures efficient realiza-
tion of these unserialized update operations.

5. SPECIFYING STATEFUL FUNCTIONS

We have extended the Sisal language with user-declared state
variables. A state variable is to be treated as a state variable within the
scope of the function in which it has been declared. One of the benefits of
functional languages��easy parallel processing��is kept, because only the
state variables are of concern in terms of nondeterminacy; this can be easily
singled out and taken care of. This extension of the Sisal language has been
formally described using previous work(8, 9) on the formal definition (both
syntax and dynamic semantics) of the Sisal language(5) using the Centaur
system.(23) In the following, we first detail how we extended the syntactic
constructs in order to introduce state variables, and then how this influences
the formal semantics of the language.

5.1. Scope and Goal of the Specification

As in our previous work, we assume that the Sisal program is correct
with respect to static semantics (such as enforcement of the scoping rules
and type-checking), and we consider here only dynamic semantics. For
instance, it is statically checked in the program that a state variable cannot
be used outside its scope (the scope of its function definition). Static seman-
tics also addresses the check that updates of stateful variables do not
include calls to stateful functions, nor any direct or indirect recursion in the
current stateful function. Another role of static semantics is to provide
unique names for state variables. A variable is named according to the
nesting of the function in which it is defined. For example, a state variable v,
defined in a function f, itself defined in g, will be named g*f*v after static
checking, ready for interpretation using dynamic semantics.
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A formal definition permits to fully express our extension without
omission or ambiguity, without contradicting the existing language definition
for Sisal. The Sisal reference manual(5) defines (informally) the language
but does not define its parallel execution; our semantics defines (formally)
the stateful Sisal extension but does not provide a parallel execution model.
Indeed, our formal semantics captures the meaning of a Sisal program
(i.e., the results it produces). The strategy that we are actually using in the
semantics (for both Sisal and stateful Sisal), is a sequential eager left-to-
right evaluation. Formal semantics does not capture the parallelism that
can be extracted from the program (it is independent from any parallel
evaluation strategy). To specify the parallelism that can be extracted, one
needs a specific model (e.g., IF1(24) and IF2(25)), which then could be used
to specify parallelism with respect to state variables. IF2 is a refinement of
IF1, incorporating a model of storage used primarily for expressing trade-
offs between storage and parallelism. However, such a precise and formal
definition of a parallel evaluation strategy is outside the scope of the
current paper. One difference between Sisal and Extended Sisal regarding
nondeterminism is that, whatever the evaluation strategy is, the result of a
Sisal program is always the same. On the other hand, one can write a state-
ful Sisal program that produces nondeterministic results; in that case our
semantics just reflects one of them. The intent is that programmers use the
stateful functions to write programs that still have a deterministic result. Of
course, this cannot be checked.

Finally, our approach��design and definition��was successful in the
sense that the formal definition had an impact on the design of extension
itself (on the scoping rules of state variables for instance); the formalization
also validates the extension within the scope of our existing formal semantics.
We believe that all this makes our stateful extension elegant and simple.

Within the Centaur system, Metal is a meta-language used to specify
the syntax of programming languages. Writing a Metal specification for a
given language is the first step towards specifying this language and con-
structing its environment. Typol is a programming language that imple-
ments Natural Semantics.(26) Semantic specifications are operational, using
a logical style (inference rules over typed sequents), both high-level and
executable. We describe and comment the syntactic and semantic specifica-
tions in the following sections.

5.2. Syntactic Specifications

In Metal, one can specify the concrete syntax of the language, an
abstract syntax, and building rules from the former to the latter (how to
build an abstract syntax tree during parsing).
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A programmer with stateful functions can insert declarations of state
variables between a function header and the associated function body. This
is expressed in the following extended definition of a function definition:

<Function�Def> ::="function" <Function�Header>
<Opt�State�Variable�List>
<Expression�List>

"end" "function";
function�def(<Function�Header>,

<Opt�State�variable�List>,
<Expression�List>)

The <Opt�State�variable�List> nonterminal needs to be further
specified in the Metal specification. The first part of the definition
expresses concrete syntax, including keywords. The second part describes
how to build an abstract syntax tree for function definition. This operator
function�def is now extended with a (possibly empty) new subtree (denoting
the optional list of declared state variables) as follows:

function�def&>Function�header State�variables Expressions;

Some more Metal rules describe the construction of the State�variables
subtree in the case of the declaration of zero, one or more state variables;
each state variable has a type and one and exactly one initial value, the
result of the evaluation of the corresponding expression. Initialization
expressions are usual Sisal expressions except only constants and param-
eters can be used as leaves.

The associated abstract syntax for State�variables is the following:

State�variables&>State�variable *;
State�variable&>Identifier Type Expression;

A list of state variables is made of triples of identifier, type, and expression.
Type is the declared type for the state variable, and Expression is the
expression denoting its initial value.

The design of extended Sisal is intended to make the task of program-
ming easier by allowing higher expressiveness. More convenience for
programmers conversely means more challenges in semantic specifications.
We will show semantic specification for state variables in the following section.

5.3. Semantic Specifications

We do not detail here the semantic definition of Sisal (the reader can
refer to Attali et al.(8, 9)). We just recall the principles: specifications are
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organized in modules, each of which deals with similar concerns. The start-
ing point of the semantics is to evaluate the main function body given its
name and its arguments. The result of the semantics is then a list of values.

Values in Sisal are either constants (boolean, integer, real, complex,
double, character, string, errors), or arrays, union, records, streams, or
closures, which are pairs of *-expression (representing the function body)
and environment.

Environments are necessary to manage the binding between identifiers
and values since the value of an expression depends on the values of iden-
tifiers that occur free in it, including bindings for function names, when
they are declared via an assignment in a let or a for construct. We define
an environment as a list of pairs composed from a name and a value.
Because standard Sisal is a purely functional language, this environment
appears in most predicates as a parameter but is not modified during
expression evaluation. This is formalized in the predicates by the fact that
the environment is not returned as a result. Introduction of state variables
requires to build a specific environment for these variables: we build
STATE�ENV as a list of pairs made of Identifier and Expression�or�
Value. This is almost the abstract syntax for State�Variables except that
we omit the type of state variables.

In the state variables environment, identifiers of state variables are first
associated with the initialization expression. On the first invocation of the
corresponding stateful function, this expression is evaluated into a value
which then updates the expression in the environment. This is why the
second element in the pair can be either an expression or a value Type
Expression�or�Value.

Moreover, as state variables will be updated throughout execution, the
STATE�ENV environment also appears in predicates as a result.

The semantics of an extended Sisal program is expressed in the following
starting inference rule, updated for our extension as follows:

main�rule:
function�definition(FNAME |& PROG : true(),

function�def(function�header(�,FOR�PARAMS,�),
STATE�ENV,
EXPS)) H

bind�parameters(FOR�PARAMS,
EFF�PARAMS&>BIND�PARAMS) H

function�execution(SYSTEM, BIND�PARAMS, STATE�ENV
|& EXPS: VALUES, STATE�ENV$)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FNAME, EFF�PARAMS |& PROG : VALUES;
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Given a name and actual parameters, the result of the semantics is a list of
values, provided that the function is actually defined in the current
program. The binding between formal and actual parameters is accom-
plished in the bind�parameters predicate. The function is then executed
( function�execution predicate) in the environment reduced to this binding
(BIND�PARAMS), and the state variables environment (STATE�ENV).
Execution of the function may update state variables (which then results in
STATE�ENV$).

The following rules show how the relationship between the calling
function and the called function is handled with regard to state variable
environments.

first�invocation:
function�definition(NAME |& PROG : true(),

function�def(function�header(NAME,
FOR�PARAMS, T),
STATE�ENV$,
EXPS)) H

eval�expression�list(PROG, ENV, STATE�ENV
|& EXP�LIST&>VALUES, STATE�ENV1) H

bind�parameters(FOR�PARAMS, VALUES&>BIND�PARAMS) H

init�state�variables(STATE�ENV$, BIND�PARAMS&>STATE�ENV$$) H

appendtree(STATE�ENV1, STATE�ENV$$&>STATE�ENV2) H

function�execution(PROG, BIND�PARAMS, STATE�ENV2
|& EXPS : VALUES$, STATE�ENV3)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SYSTEM, ENV, STATE�ENV

|& invocation(NAME, EXP�LIST) : VALUES$, STATE�ENV3;
provided stateful(NAME) H first�call(NAME);

other�invocations:
function�definition(NAME |& PROG : true(),

function�def(function�header(NAME,
FOR�PARAMS, T),

�,
EXPS)) H

eval�expression�list(PROG, ENV, STATE�ENV
|& EXP�LIST&>VALUES, STATE�ENV1) H

bind�parameters(FOR�PARAMS, VALUES&>BIND�PARAMS) H

function�execution(PROG, BIND�PARAMS, STATE�ENV1
|& EXPS : VALUES$, STATE�ENV3)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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SYSTEM, ENV, STATE�ENV
|& invocation(NAME, EXP�LIST) : VALUES$, STATE�ENV3;
provided stateful(NAME) H not�first�call(NAME);

These two inference rules for function invocation of stateful functions can
be explained as follows:

1. two cases occur depending if it is the first invocation of the func-
tion or not ( first�call predicate);

v on the first invocation, initialization expressions are evaluated
into values and used to make a specific state variable environment;

v on following calls, the state variables declared in the stateful
function are already stored in the state variable environment; we
do not need to retrieve the corresponding subtree in the function
definition (use of the anonymous variable ``�'');

2. the function has been defined as a stand-alone unit: the function�
definition predicate returns true and the actual definition for func-
tion of name NAME;

3. the environment (for standard variables) in which the function
body will be evaluated only comprises the binding between its
formal and actual parameters (BIND�PARAMS, result of the call
to the bind�parameters predicate);

4. evaluation of effective parameters (eval�expression�list predicate)
may result in an update of the current state variable (STATE�
ENV1);

5. the computation of the current state variables environment for the
function execution differs in the two rules:

v on the first invocation, initial values of state variables are com-
bined with the current state variable environment (appendtree
predicate);

v on following calls, the current state variables environment is
directly used;

6. execution of function NAME is handled in the two following
environments: BIND�PARAMS and the current state variables
environment (STATE�ENV2 or STATE�ENV1, depending on first
invocation or not). This execution ( function�execution predicate)
results into a list of values VALUES$ and updates the state
variable environment into STATE�ENV3.
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The let and for constructs are used to assign variables (either conven-
tional or state). The list of assignments is then treated in the semantics on
the basis of the corresponding syntactic construct (list of assignments),
which means that each assignment is examined in sequence (left-to-right),
with the use of unification for state variables.

This is to respect the treatment of conventional variables, as well as to
handle the update of state variables, in which, as mentioned in Section 4.2,
the order is not important. We reflect this in the semantics with the use of
unification during evaluation of right-hand sides of assignments: in the
assignment v :=Exp, Exp has to be evaluated in the context of update of
the state variable v. During evaluation of Exp, the actual variable v itself
is undefined, it is in fact a ``free'' logical variable, bound to its future value,
the Exp to be evaluated. Its previous value can be referenced with old v.

For every other assignment in the sequence, depending on the actual
order of evaluation, either v is already updated, or v remains to be updated
with the result arising from the symbolic evaluation of the corresponding
expression.

The following rules show the formalization of the assignment of
variables (coming from a let or a for). Two cases occur, depending on the
status of the variable. The variable is a conventional variable and a new
pair made of a name and a value is added to the environment (the state
variables environment remains unchanged, rule assign�variable). On the
other hand, in the case of a state variable, the usual environment is
unchanged and the value of the state variable is updated in the state
variables environment (rule update�state�variable).

assign�variable:
ENV, STATE�ENV |& NAME, VALUE&>env[pair(NAME,

VALUE).ENV], STATE�ENV;
provided not�stateful(NAME);

update�state�variable:
update(STATE�ENV |& NAME, VALUE&>STATE�ENV$)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ENV, STATE�ENV |& NAME, VALUE&>ENV, STATE�ENV$;

provided stateful(NAME);

In summary, the state variable extension required minimal changes in the
formal semantics. These changes are the following:

v add state variable environments (parameter and result) in every rule
dealing with expressions (purely syntactical change);
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v add new rules for function invocation to handle the case of stateful
functions and taking care of their first invocation (rules first�invoca-
tion and other�invocations);

v add a new rule dealing with assignment of state variables (updating
the state variable environment instead of augmenting the usual
environment, rule update�state�variable);

6. COMPARING SISAL AND EXTENDED SISAL

The pure Sisal language and the extended Sisal we propose are com-
pared here with regards to programmability, parallelism, and performance.

6.1. Newnames

The newnames application generates different names, and each name
can be used in different functions. The Sisal program must be implemented
by passing around parameters as shown in Fig. 5. The execution results are
as follows: values[101, 102, 103, 104, 105, 106, 107, 108, 109, 110].

In this program, we have explicitly enumerated all the names to be
used, rather than generating them with, for example, an iterative construct.
The main reason for that is to facilitate maximal parallelism in the genera-
tion of these names: in the Sisal program of Fig. 6, there are ten pairs of
definitions; the two definitions of each pair are independent and specify
potential parallelism, but parallelism across the ten pairs is restricted by
the sequentialization arising from data dependencies a1 on a0, a2 on a1,
and so on. We have shown here that a program with such artificial sequen-
tialization can be made parallel using stateful functions, and that this
parallelism can be efficiently implemented as concurrent increment opera-
tions on a shared variable representing the name. With that done, there is
parallelism both within and across the definition pairs.

It is possible to specify the generation of names with a loop, rather
than using a lengthy enumeration, but it turns out that potential

Fig. 5. Newname program in Sisal.
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Fig. 6. Newname program in extended Sisal.

parallelism is then limited. Take the following program fragment as an
example:

for n in 1, 10
do

p :=nn(i);
q :=sn(p);

returns array of q
end for

This is a parallel loop, and its range generator does indeed specify ten
independent instantiations of the loop body, with the result of each instan-
tiation (a name q) gathered into the corresponding position of the result
array. Now, construction of the array is not sequentialized by this ordering,
and thus can take place in parallel. The restricted parallelism occurs as a
result of strictness of evaluation applied to the result array; no element is
available for use elsewhere in the program until the array value is com-
pletely constructed. Although an implementation of Sisal with nonstrict
arrays (for example, arrays implemented as I-structures) can be envisaged,
it is more usual to implement Sisal arrays strictly, hence we use the
mechanism of separate enumeration (as previously described) to specify
maximum parallelism.

As indicated earlier, in the Sisal program, the execution order of
invocations of function sn is sequentialized by data dependencies. For
example, a3 is available after a2 is available, therefore sn(a3) is executed
after sn(a2). On the other hand, in the extended Sisal program the invoca-
tions of function gn can be executed concurrently; as explained in Section 4.2,
each of the update operations old x+v can be viewed as a separate thread,
and executed with a parallel coordination primitive. Therefore, the execution
time of the Sisal program is more than that of the extended Sisal program.
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Let us assume that one addition operation consumes one execution
time unit. The execution time for the Sisal program is about 43 units, and
the execution time for the extended Sisal program is about only 15 units.
Since the function f can be executed in an arbitrary serial ordering, the
execution results of main can be one of the following 10! cases: values[101,

102, 103, 104, 105, 106, 107, 108, 109, 110], values[102, 101, 103, 104, 105,

106, 107, 108, 109, 110],..., and values[101, 102, 103, 104, 105, 106, 107,

108, 110, 109]. The performance improvement, the ratio of execution time
of the Sisal program over the extended Sisal program is about !nn=
43�15=2.8. In addition, if the names are used by some other functions then
the ratio would be much larger. Note that the order of the names is unim-
portant, and that extended Sisal allows programmers to make use of this
property to exploit more parallelism.

6.2. Parallel Branch and Bound

Parallel branch and bound techniques can be applied to many applica-
tions. One example using this technique is known as the travelling
salesman problem. The problem is to determine the length of the shortest
path from source to destination.

Nodes are connected with edges that can be assigned costs: distance
between two nodes connected by the edge (Fig. 7). We assume that all the
costs are positive values. The length of a path is defined as the sum of the
costs of the edges on that path. The starting node of the path is referred
to as the source (node N1), and the last node the goal (node N4). We aim
at the shortest path between the source and the goal. In the example, the
shortest path is N1 -N2 -N4 , and the minimum value 15.

Fig. 7. Example of a graph for shortest path.
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Fig. 8. Shortest path in Sisal.

In pure Sisal, the application cannot be programmed by a shared
variable but has to be purely functional (see Fig. 8).

A recursive call is performed for all valid paths:

if L2>=NoPath
then NoPath
else f(Data,L2,N,goal)

A minimum is taken (in minval(A1)), from the local paths emanating
from a given node, after the recursive calls complete.

Each process must collect all the returned values for each iteration
of the loop, and decide the minimum value for these returned values. The

Fig. 9. Execution tree for shortest path in sisal.
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Fig. 10. Shortest path in extended Sisal.

entire graph must be traversed. Finding a minimum can be done in an
order of time O(N), where N is the number of elements in the COST array.

On the contrary, in extended Sisal, it can be implemented by a shared
variable M as shown by the program in Figs. 9 and 10.

This variable is updated as soon as a new path to the goal is found,
if it is better than the best previously found:

if source=goal
then let Gmin :=if L1<old Gmin

then L1 else old Gmin end if
. . .

Then, at each node of the graph during the search, a recursive call is done
only if the current value is not greater than the current shortest path:

if L2>=NoPath or L2>=Gmin
then NoPath
else f(Data,L2,N,goal)
end if

A process does not need to wait until the entire iteration is finished before
it updates M in the extended Sisal program. Collecting data into an array
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Fig. 11. One possible execution tree for shortest path in extended Sisal.

is not needed since the path value of each iteration is stored in M, if it is
the shortest found so far. The decision of minimum value for the inter-
mediate results of M has been scattered into all the iterations. Whenever
there is a current path (it does not need to be complete), it is compared
with the current M.

This eliminates most of the searching time and improves the perfor-
mance, since the comparison is amortized and hidden in the concurrently
executing processes.

An execution tree for the Sisal program is shown in Fig. 9, and an
execution tree for the extended Sisal program is shown in Fig. 11.

We make the following hypotheses in order to reduce nondeterminism
and restrict attention to one possible execution:

v no limits on the computational resources (we are actually using 14
threads or processes at most);

v processes are activated in parallel from left-to-right in the figure
(node 5, then 3, then 2). For a given node, its sons finish after its
right siblings. The labels Gmin=x denote the updates of the state
variable Gmin (in order 183, 60, 15).

The degree of parallelism for Fig. 9 is greater than that of Fig. 11.
However, the execution time is the real concern for programmers. The
execution tree in Fig. 11 contains almost only useful operations, while the
tree in Fig. 9 includes many nonessential operations, because in the Sisal
program, function f sees information about only that sub-tree for which it
is responsible; by using Extended Sisal, we can readily make the global
minimum visible, and curtail further searching if the local minimum is
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already more expensive than the minimum value computed for another
sub-tree (and recorded in the global minimum). Again, this is an example
of a situation where the order of updates to the shared value is not impor-
tant, and we can profitably and safely use the techniques described earlier.

In addition, its standard execution also occupies more resources
(storage locations, processors) than the extended Sisal program since there
are more active processes executed.

6.3. Histogramming

This section presents an histogramming application: it counts the
number of elements with a certain value in an array. Again we compare the
standard Sisal program with a stateful version.

First of all, let us note that Sisal has two forms of loops. The ``product
form'' is a parallel loop where there are no data dependencies between
iterations; all of them can potentially be executed in parallel. The ``non-
product form'' defines a sequential loop, in which certain loop variables are
carried between iterations, and updated from one to the next; the simple
loop of Fig. 12 is such a sequential loop. The two can be distinguished
syntactically by the presence of an update to a loop-carried variable, such
as n in Fig. 12.

Figures 12 and 13 respectively present the standard and stateful Sisal
versions of the histogram program. In both cases the general algorithm is
the same: go through the entire original array (data), and for each value
encountered increment a counter at that index in a result array (result).

The most important difference between the two versions of the func-
tion histogram is that, in Sisal, accumulation into histogram elements must
be expressed as a sequential loop (for ... while i<=InfoSize do ...),

Fig. 12. Histogramming in Sisal.
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Fig. 13. Histogramming in extended Sisal.

whereas in Extended Sisal we can use a parallel loop, fully parallelized over
the elements of the data array (for e in data at i do ...). Indeed, it would
be very hard, if at all possible for the general case, to express a parallel
version of the histogram algorithm in Sisal. The underlying reason being,
in that category of problem, the accumulator array produces a global data
dependency that leads to a synchronization on the entire array.

On the contrary, for the stateful Sisal version, the loop is parallel
because the accumulation occurs in a stateful function that was added for
that purpose (histo�state). Thus, the iterations become independent. Each
iteration of the loop indirectly defines an update in the histogram; the
iterations are sequentialized dynamically only within the constraint of
mutual exclusion on elements of the histogram array itself. We went from a
data dependency on the entire accumulator array precluding all parallelism,
to data dependencies at the level of each cell of the accumulator array.
Clearly, this provides much greater potential parallelism.

7. CONCLUSIONS

Finding parallelism in imperative programs is difficult because the
class of programs that are amenable to data dependence analysis is limited.
Functional languages remove some of the burden of managing parallelism
from the programmer, but some types of computations are difficult to
express without state. Moreover, we have shown that the functional expres-
sion sometimes actually limits parallelism. By extending Sisal with the con-
cept of state, we have developed a language whose semantics fits usefully
between a single-assignment functional language and an imperative
language. The extension enhances programmability in many cases where it
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is difficult to express maximal parallelism in a conventional Sisal encoding
of an algorithm; in these cases, programmability is improved in that state
functions allow greater parallelism to be expressed for minimal coding
effort, certainly less than would be required to express the same parallelism
in conventional Sisal.

We have presented in this paper a specification of an extension to the
Sisal functional language. This specification uses the Centaur system.(23)

The presence of side-effects is usually regarded as harmful, but some
actions leading to side-effects can sometimes be considered useful for
several parallel applications. We have thus extended the syntactic and
semantic specifications of Sisal(8, 9) to formally define our stateful extension.
The Metal and Typol rules used to specify the syntax and semantics of
extended Sisal have been described. An interactive programming environ-
ment for extended Sisal has been generated from its formal specifications
and several extended Sisal programs have been developed to demonstrate
the usefulness of this language.(6, 7)

We provide programs in both extended Sisal and in Sisal to demon-
strate that with the state variable scheme it is easier and more efficient to
program parallel computing for appropriate applications. The main con-
tributions of our work are as follows: programmers can express stateful
computations in a language supporting functional parallel multiprocess
execution. The stateful features in programs can be easily recognized and
parallelism can be increased: stateful aspects are syntactically distinguished
so that non-functional parts of a program are clearly delineated. Users can
remain in a purely functional language style when its simplicity and
implicit parallelism are desired. In comparison with purely functional
languages, the extended Sisal has greater expressive power, especially in
terms of parallel processing. We believe that these advantages can be found
useful in many applications in addition to the examples in this paper.
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