
Machine Learning, 44, 143–159, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Language Simplification through Error-Correcting
and Grammatical Inference Techniques

JUAN-CARLOS AMENGUAL jcamen@inf.uji.es
Universidad Jaume I, Campus de Riu Sec, 12071 Castellón, Spain

ALBERTO SANCHIS asanchis@iti.upv.es
ENRIQUE VIDAL evidal@iti.upv.es
JOŚE-MIGUEL BENED́I jbenedi@iti.upv.es
Instituto Tecnoĺogico de Inforḿatica, Camino de Vera s/n, 46071 Valencia, Spain

Editors: Colin de la Higuera and Vasant Honavar

Abstract. In many language processing tasks, most of the sentences generally convey rather simple meanings.
Moreover, these tasks have a limited semantic domain that can be properly covered with a simple lexicon and a
restricted syntax. Nevertheless, casual users are by no means expected to comply with any kind of formal syntactic
restrictions due to the inherent “spontaneous” nature of human language. In this work, the use of error-correcting-
based learning techniques is proposed to cope with the complex syntactic variability which is generally exhibited by
natural language. In our approach, a complex task is modeled in terms of a basic finite state model,F , and a stochas-
tic error model,E. F should account for the basic (syntactic) structures underlying this task, which would convey the
meaning.E should account for general vocabulary variations, word disappearance, superfluous words, and so on.
Each “natural” user sentence is thus considered as a corrupted version (according toE) of some “simple” sentence
of L(F). Adequate bootstrapping procedures are presented that incrementally improve the “structure” ofF while
estimating the probabilities for the operations ofE. These techniques have been applied to a practical task of mod-
erately high syntactic variability, and the results which show the potential of the proposed approach are presented.

Keywords: language processing, error-correcting techniques, bootstrapping, incremental learning algorithms,
edit operations

1. Introduction

Among many application fields ofGrammatical Inference(GI), perhaps one that is nowa-
days considered the most promising isSpeech and Natural Language Processing(SNLP)
(Vidal, Casacuberta, & Garcı́a, 1995). However, currently available GI technology can only
be considered adequate for language involving simple, regular and clean sentences, but
is clearly not mature enough to truly model natural and spontaneous language involving
contrived syntactic constructions, large vocabularies, etc.

Fortunately, many interesting SNLP applications deal withLimited Domains(LD). This
means that the universe of discourse is bounded, mainly in terms of the semantic scope
involved. Although the language generally used in an LD task may bequite complex,
having large vocabularies and many irregularities, the underlying syntax and lexicon actually
needed to convey the required meaning maynot be so complex.



144 AMENGUAL ET AL.

The proposed framework to cope with this situation isError-Correcting(EC): the simpler
underlying “clean” language is modeled by a basic, canonical modelF and spontaneous
language effects (i.e. vocabulary variations, word disappearance, superfluous words, etc.)
are modeled by means of an adequateerror model, E. We have named this approach
Language Simplification(LS).

The canonical model could be a finite state model (FSM)F = (Q, 6, E,q0, Z), where
Q is the set of states,6 is an alphabet which represents the basic lexicon,E ⊆ Q×6×Q is
the set of transitions which represents the canonical syntactic structures required to convey
the semantics of the task,q0 is the initial state, andZ is the set of final states. Additionally,
a functionφ : Q×6×Q→ [0..1] can be used to define a probability distribution over the
strings accepted byF . On the other hand, the error modelE accounts for insertions, substi-
tutions, and deletions of symbols belonging to6 (Fu, 1982; Gonzalez & Thomason, 1978).

Under this framework, a given natural sentence,x̄, is seen as a “distorted” version of
some “clean” sentence,ȳ, supposedly belonging to the (stochastic) language ofF, L(F).
On the other hand, the distortion process leading fromȳ to x̄ is assumed to be driven byE.
Givenx̄, F , andE, (stochastic)Error-Correcting Parsing(ECP) can thus be used to uncover
which ȳ was the most likely source from which the observed sentencex̄ was produced.

For example, let us use an application task where users make queries to a Spanish ge-
ographical database (see Section 5) employingunconstrainednatural language (text or
speech). In addition, assume that the language model for this task only accepts the canoni-
cal syntactic structure “How many rivers flow into the SEA sea?” 1 (sentencēy) for referring
to the semantic conceptthe number of rivers that flow into the SEA sea(which, in turn,
can be easily transformed into a database query). Then, a user makes the followingnatural
query: “What is the number of rivers that flow into the SEA sea?” (sentencēx). Following
the EC framework in this example, the desirable output, the “clean sentence”, would beȳ
after parsing the “distorted” input sentencex̄ (see also subsection 5.1). A possible sequence
of EC operations leading from̄y to x̄ would be the substitution of “How” by “ What”, the
insertions of “is” and “the”, the substitution of “many” by “ number”, the insertions of “of”
and “that”, and the substitutions of “rivers”, “ flow”, “ into”, “ the”, “ SEA”, and “sea?” for
themselves.

The following section describes the basics of EC, while subsection 2.1 specifically
addresses the problem of the estimation of the error model probabilities when using stochas-
tic ECP, which is important to achieving our goal. This brings about the need for developing
adequate learning procedures from training data, which take thekey roleplayed by “clean”
sentences into account. They not only convey the semantics of the task but alsobias the
estimation for the probabilities of EC operations. Since they are needed to both adequately
estimate the probabilities ofE and build the canonical FSM,F , our approach raises an
important problem: “clean” sentences are “hidden”, in the sense that they cannot be directly
observed from the natural performance of the users in the application considered. A solu-
tion can be achieved through thebootstrappingapproach proposed in Section 3, (initially
at least) resorting to human “expert” assistance. One of the tasks of the human “expert”
would be, for instance, to build a first canonical FSM.

Realistically, the canonical FSM,F , cannot be expected to provide a complete coverage
of thenaturallanguage that would cope with the entire semantic/pragmatic scope of the task



LANGUAGE SIMPLIFICATION 145

under consideration. Even when using EC techniques, there can exist sentences which are
very difficult or impossible to parse due to: i) syntactic variations regardingL(F) that cannot
be properly supported by an ins-sub-del error model; and ii) the fact that their meaning is
not covered by any syntactic structure modeled byF . In both cases, these sentences can
be used to “refine”F . Obviously, one can repeatedly resort to human expert help for these
refinements, but this becomes expensive or even impractical once the complexity ofF
goes beyond a certain level: it becomes increasingly difficult to assure the consistence and
appropriateness of the expert’s updates with those made in previous steps.

An alternative, more interesting approach is to perform these “refinements” by means
of GI techniques. In this work, we propose a heuristic approach to inductive “FSM re-
finement” which is specifically adapted to the general EC framework adopted. This ap-
proach is reminiscent of the ideas underlying the “Error-Correcting Grammatical Inference”
algorithm (ECGI), which were introduced by Rulot and Vidal (1987, 1988). A recently de-
veloped efficient ECP algorithm (Amengual & Vidal, 1998) overcomes the original ECGI
limitation of having to work only withacyclicFSMs. On the other hand, the new ECGI-
like algorithm includes new heuristics that have specifically been designed to cope with
some constructions which often appear in natural language applications. This algorithm is
described in Section 4. Section 6 presents experiments on a Language Understanding task
involving natural language queries to a Geographic Information database as described in
Section 5. Section 7 presents the conclusions that have been drawn.

2. Basic concepts about error correction

A classicalerror model, E, comprising insertions, substitutions and deletions ofsymbols
belonging to some alphabet6 has been used in this work. Formally speaking, an error
operation is a pair(a, b) of symbols belonging to6 ∪ {\}, with \ being thenull or empty
symbol.2 In general, a pair(a, b) means that symbola is changed for symbolb. Thus, if
we have a strinḡy of the formūaw̄, this string can betransformedinto the stringx̄ of the
form ūbw̄ by applying the error operation(a, b). Following this definition, error operations
depend only on the pair of symbols involved in the transformation, independently of the
position in the string where the error operation has been applied. Therefore, the whole set
of error model operations can be classified into these three categories:

• Substitution operations. All possible pairs(a, b) wherea 6= \ andb 6= \. These include
the particular casea = b, i.e. non-error operations.
• Deletion operations. All possible pairs(a, b) wherea 6= \ andb = \.
• Insertion operations. All possible pairs(a, b) wherea = \ andb 6= \.

Henceforth, the set of possible error model operations will be considered asE operations.
EachE operation also has aweightgiven by the functionρ : (6 ∪{\})× (6 ∪{\})→ <+.
The weights ofE operations have been heuristically set in many applications (Sankoff &
Kruskal, 1983), (perhaps) with the Levenshtein edit distance (Kruskal, 1983) being the
most widely used. This distance is based on definingρ(a,a) = 0, ρ(a, b) = ρ(a, \) =
ρ(\, b) = 1, ∀a, b ∈ 6 a 6= b.



146 AMENGUAL ET AL.

It is assumed that every possible stringȳ is input to anoisychannelC. The output of
C is the stringx̄, which is likely to be different fromȳ. C works by performing 0, 1, or
moreconsecutivetransformations over̄y using the set ofE operations, whose weight is
given byρ. Therefore, ifS is the set of different sequences of error operations which are
able to transform the original strinḡy into x̄, adissimilarity function between two strings,
D : 6∗ ×6∗ → <+ is computed asD(x̄, ȳ) = minO∈S ϒ(O), whereϒ yields thecostof
a sequence of error operations,O, and is usually computed as:

ϒ(O) =
∑
∀(a,b)∈O

ρ(a, b)

E can be easily integrated with a FSM,F , in general, producing anon-deterministicex-
panded FSM by adding the errortransitionsas follows:

∀q ∈ Q, ∀a ∈ 6 : δ(q,a) = A,A ∈ 2Q,

Substitutions δ(q, b) = A, ∀b ∈ 6, b 6= a

Deletions δ(q, \) = A
Insertions δ(q, c) = {q}, ∀c ∈ 6

Each of these transitions has a weight which is associated to the corresponding error
model operation, as given byρ. Note that these transitions do not have to be explicitly
represented in the expanded FSM. Instead they will bedynamicallyexpanded during the
parsing process, taking only the input symbol to be parsed into account (Amengual & Vidal,
1998).

Given a supposedly distorted stringx̄, as well as a FSMF (that accepts the input language
of the noisy channelC), and the set of values of the functionρ then aminimum-distance
error-correcting parser is an algorithm that solves the following search problem (Fu, 1982):

ȳ∗ = argmin
ȳ∈L(F)

D(x̄, ȳ) (1)

An important issue when using EC techniques is the choice (or “learning”) of an adequate
error-weight functionρ, given the strong sensitivity to changes in the operation costs shown
by these techniques. Some relevant works have been done in this respect (Bunke & Csirik,
1995; Rice, Bunke, & Nartker, 1997). Perhaps the most interesting weighting scheme is the
one based on stochastic assumptions (Amengual, 1999; Amengual & Vidal, 2000; Ristad
& Yianilos, 1998).

For a probabilistic definition ofE, we only need to re-define the functionρ as
ρ : (6 ∪ {\})× (6 ∪ {\})→ [0..1]∧∑∀b∈6∪{\} ρ(a, b) = 1∀a ∈ 6 ∪ {\} (Fu, 1982). The
functionϒ is now defined as the probability of a sequence of error operations:

ϒ(O) =
∏

∀(a,b)∈O

ρ(a, b)



LANGUAGE SIMPLIFICATION 147

Therefore, the probability forE to producex̄ from ȳ is:

PE(x̄ | ȳ) =
∑
∀O∈S

ϒ(O)

From this point of view, we are interested in a string ofL(F) that is most likely transformed
by C into x̄. A maximum likelihooderror-correcting parser is an algorithm that yields a
solution by solving the following search problem (Fu, 1982):

ȳ∗ = argmax
ȳ∈L(F)

P(ȳ | x̄) (2)

Equivalently, by applying the Bayes rule, we have:

ȳ∗ = argmax
ȳ∈L(F)

PF(ȳ) · PE(x̄ | ȳ) (3)

wherePF(ȳ) is the probability forF to accept̄y, and, by using themaximumapproximation
for bothPF(ȳ) andPE(x̄ | ȳ), this finally results in:

ȳ∗ = argmax
ȳ∈L(F)

O∈S

PF(ȳ) ·ϒ(O) (4)

This approximation has the advantage that its solution yields not only the most likely
“clean” string in L(F), ȳ∗, but also the most likely error transformation ofȳ∗ into x̄
(something that could not be obtained with a pure “Forward-like” approach, which on the
other hand represents much higher computational costs). As will be shown later in Section 4,
the individual errors of this transformation will be used as the basis for learning successive
refinements ofF .

An efficientViterbi-like search algorithm which solves the problem posed by equations
(1) and (3) (under themaxapproximation) has recently been developed (Amengual & Vidal,
1998). Full algorithmic details are given in that paper. Another efficient algorithm which is
capable of solving the same search problem was proposed in Gregor and Harris (1995), but,
unfortunately, this solution is restricted to acyclic or “self-looped” (left-to-right) FSMs.

Let us now focus on the estimation of the parameters ofF and E following equation
(3), wheretwo differentprobability distributions are involved. On the one hand,PF can be
independently learned using a training corpus composed of strings that are accepted by the
original FSM,F , by applying maximum likelihood techniques such as those proposed in
Casacuberta (1996). On the other hand,PE also has to be learned from training data.

Only recent works seem to propose adequate solutions to this problem (Amengual, 1999;
Amengual & Vidal, 2000; Ristad & Yianilos, 1998). The most interesting of these (keep-
ing the simplification approach in mind) are those based on the well-known Expectation-
Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). An important reason for
following this approach is the expected data sparseness: the EM algorithm can pull all of
the relevant (probabilistic) information out of training data, even if this data is scarce.



148 AMENGUAL ET AL.

Figure 1. A finite state automaton, representing the sentenceaabc, extended to includeE, which comprises in-
sertions (transitions labeled6), substitutions (transitions labeled6−{the correct transition symbol}) and deletions
(transitions labeled\).

2.1. Estimation of error model parameters

Direct maximum likelihood estimation ofE operations requires a training corpus,T , con-
sisting of pairs of (“distorted”—“clean”) sentences. Each “clean” sentence is represented
as a Markov Model as shown in figure 1 (Amengual, 1999; Amengual & Vidal, 2000).

V = PE(T ) =
∏

∀(x̄,ȳ)∈T
PE(x̄ | ȳ) (5)

In order to maximizeV, the well-known Baum-Eagon inequality (Baum & Eagon, 1967)
can be used to iteratively compute new estimates for the probabilities ofE operations.
This leads to an EM-like re-estimation procedure which is very close to the well-known
Forward-Backward algorithm, which is generally used to estimate the parameters of Hidden
Markov Models in speech recognition (Casacuberta, 1996). Full details of this iterative re-
estimation procedure are given in Amengual (1999) and Amengual and Vidal (2000), where
the small differences between our approach and that presented in Ristad and Yianilos (1998)
are explained.

This re-estimation scheme can often be improved in practice by a few iterations of
“final Viterbi re-estimation” after EM convergence, taking the estimates yielded by the
Forward-Backward-like procedure as theinitial starting values. Thisstrengthensthe highest
probabilities achieved by EM (which are often too “flat”), thusimproving the estimates
of E operations. The Viterbi approach amounts to changing the optimization criterion
(5) by:

V = P̂E(T ) =
∏

∀(x̄,ȳ)∈T
P̂E(x̄ | ȳ) (6)

where P̂E(x̄ | ȳ) is the probability of thebestalignment or “Viterbi approximation” to
PE(x̄ | ȳ), which can be computed as discussed in the previous section (see Eqs. (3) and
(4)).

Even if error-correcting techniques are used, it is likely that some sentences in6∗ be
rejected. This can be produced if some operations of the error model have not been trained,
i.e. their probability is null. To solve this problem, we have used fiveconstantsto smooth
the relative frequencies of use of error operations (Amengual & Vidal, 2000):εins, εdel, εsub,
andεnoe (to be added to the counts of the insertion, deletion, and substitution errors, and



LANGUAGE SIMPLIFICATION 149

substitutions of symbols for themselves, respectively). A last constant,εunk, is the value
for the counts associated to all possible errors involving the insertion of or the substitution
by the unknownword. In this way, out-of-vocabulary words can be coped with. In the
experiments presented in Section 6, their values have been set to 1.

3. Progressive parameter estimation through bootstrapping techniques

As already introduced in Section 1, our LS paradigm raises the problem that no “clean” or
“simplified” sentences are naturally available to train the required error model. Sentences
of this kind are reallyneededto adequately estimateE operations, since they “guide” the
training procedure outlined in Section 2.1 towards accounting for the necessary vocabulary
variations that would eventually allow the achievement of the right3“simplified” sentences.
Moreover, “clean” sentences are required to buildF , the canonical FSM. A solution to this
problem can be achieved throughbootstrapping, as described below:

1. A basic, idealized stochastic FSM,F , which accounts for canonical natural sentences
that would cover the semantics of the task involved in the application, is manually built
by a human expert.

2. The system is started withF and a non-stochastic error model using Levenshtein
distance4 (see Eq. (1)). In this case, the probabilities of the FSM are ignored.

3. A given small initial set of natural sentences is used to bootstrap the system. For each
natural sentence, if the simplification made by the EC parsing is considered adequateby
the human expertthen: i) the output “simplified” sentence is considered as the “clean”
inputof the noisy channel or thesimplified input; ii) the user input sentence is considered
as the “distorted” outputof the noisy channel; and iii) the pair is added to a training
corpusT . Therefore,T is composed by a set of pairs (user’s natural sentence, adequate
simplification).

4. EM re-estimation ofE operations is performed usingT .
5. Steps 3 and 4 are repeated, now performingstochastic(rather than Levenshtein) EC

parsing based on the parameters estimated in step 4, until no more pairs are appended
to T .

6. The whole process is repeated with increasing amounts of new training natural language
sentences, appending new training pairs toT , until the performance of the system is
considered satisfactory.

The overall convergence of this process critically depends on the rate of sentences at which
an “adequate simplification” is obtained in step 3. This rate can be easily increased by using
a K -best EC parser (Amengual, 1999; Amengual, 2000). In this way, theK -best solutions
provided by the system to each input natural sentence are offered to thehuman expertwho
selects the ones that are considered adequate simplifications. Then, the pairs formed by
the input sentence and all of its adequate simplifications (K , at most, from one to three in
practice) can be appended toT . It is likely that, during the bootstrapping process, some
input sentences cannot be correctly simplified (even using theK -best solutions provided
by the parser). This can be due to any of the following:



150 AMENGUAL ET AL.

• They are out of the semantic domain defined by the task. Sentences of this kind are simply
ignored.
• They contain contrived syntactic variations which cannot be adequately modeled with

insertions, deletions and substitutions of words. In this case, nothing can be done. More
powerful error model operations need to be studied.
• No adequate simplification is covered by the language accepted by the basic FSM.

In the latter case, these “residual” errors can now be used to “refine”F , yielding a new
FSM,F1. Obviously, the human expert couldmanuallyadd the new transitions and states but
this is costly. Also, maintaining the consistence of successive manual grammar modifications
can be quite problematic. Another possibility is to ask the expert just to provide an adequate
simplification for each of these sentences (manually, maybe employing some hints from the
output of the EC parser) and to use the grammatical inference technique described in the
following section. Thus, in the successive iterations of the above described bootstrapping
procedure, if a few more residual errors are produced, new FSMs (F2, F3, . . .) can be built
upon demand.

Consider, for instance, the canonical FSM depicted in figure 2(a) (this figure indeed
shows the working of the refinement algorithm explained in the next section). It allows
for querying about thenamesand/or lengthsof rivers that run through a given region,
generically named REGION, following a specific (supposedly standard) syntax. Assume
that a user inputs something like: “Tell me what are the flows of the rivers that run through
Valencia”. This sentence could not be suitably simplified since the basic language accepted
by the FSM does not allow asking about theflowsof rivers. When prompted to provide
an appropriate simplification to be used as learning input to the refinement algorithm, the
human expert should supply this “simplification”: “What are the flows of the rivers that
traverse REGION”. This sentence would be theactual training input for the refinement
algorithm. Keep in mind that the sentences used to refine the initial FSM have, in practice,
(simple) syntactic structures whose meaning is not “covered” at all by any syntactic structure
modeled byL(F). Most natural language effects and variations should be accounted for by
the error model.

As this procedure advances, the number of residual errors (for the “simplification”
of which expert assistance is required) is expected to rapidly decrease as the quality
of the models increases, allowing for automatic simplifications of more and more input
sentences.

4. Grammatical inference through error-correcting

Error-correcting techniques have already been used in the field of Grammatical Inference
(GI). This is the case of theError-Correcting Grammatical Inference(ECGI) and other re-
lated algorithms (Chirathamjaree & Ackroyd, 1980; Rulot & Vidal, 1987, 1988; Thomason,
Granum & Blake, 1986).

As was originally proposed, ECGI can only work with and produceacyclicFSMs. This
was mainly due to the computational problems posed by the parsing of deletion transitions
when using cyclic FSMs. A detailed description of problems of this kind can be found in



LANGUAGE SIMPLIFICATION 151

Figure 2. Example of FSM refinement using the ECGRA with a given sequence of six “simplified” learning
strings.

Amengual (1999), Amengual and Vidal (1998), Gregor and Harris (1995), where parsing
algorithms which efficiently solve these problems are proposed. These techniques allow
for performing full error-correcting parsing usinganykind of FSMs, which are no longer
restricted to being acyclic (Amengual, 1999; Amengual & Vidal, 1998). These techniques
constitute the core of anewECGI-like inference algorithm, which is proposed here.

The algorithm starts with a given grammar (or equivalent FSM),5 F , and uses a set of
training strings to update this grammar according to the possibly new syntactic constructions



152 AMENGUAL ET AL.

found in these strings. This is particularly useful in the application considered in this
paper, where small refinements of agivengrammar are required. The algorithm, which
will be referred to asError-Correcting Grammar Refinement Algorithm(ECGRA) works
by performing the following actions with every new training stringz̄:

1. EC Parsingusing the grammar to be refined. Since we are interested in adding the mini-
mum number of states/rules required to acceptz̄, the minimum-distance EC framework
is employed (therefore solving Eq. (1)). The dissimilarity function which best achieves
this goal is Levenshtein distance. As a result of this process, the sequence of transitions
that allows for generating the sentence which is closest toz̄ is obtained. Ifz̄ 6∈ L(F),
this sequence contains error operations. Information is collected about:

• typeof error; in the case of substitutions and insertions, the input symbol involved in
the corresponding error operation,z̄i , is also known.
• location(s) in F where errors occurred; that is, one (or more)pair(s) of states, (q1,q2),

where one (or more) sequence(s) of error operations was (were) produced during the
parsing.

2. FSM Updatingwith new states and/or transitions associated to the sequence(s) of error
operations found. The updating procedure for a given sequence of error operations,O,
is shown in algorithm 1 (see also figure 2). Note that in our notationq1 is always the first
state andq2 is always the final state in the sequence of error operations.

Algorithm 1 FSM updating procedure for a sequence of error operations

1: switch error type(O)
2: caseone or several consecutivefinal deletions (i.e.q2 ∈ Z):
3: Z = Z ∪ {q1}
4: caseone or several consecutive deletions:
5: ∀a,q : (q2,a,q) ∈ E
6: E = E ∪ {q1,a,q}
7: end∀
8: caseonly one insertion:
9: E = E ∪ {q1, z̄i ,q1}

10: caseonly one substitution:
11: E = E ∪ {q1, z̄i ,q2}
12: caseany other combination of consecutive ins-sub-del operations:
13: A new path connecting q1 with q2 is created in the FSM.
14: This path only contains the transitions which are associated
15: to the insertion and substitution errors occurred.
16: end switch

Note that this algorithm only refines the structure ofF . If the initial FSM is stochastic,
then probabilities are simply ignored. After the ECGRA refinements, maximum likelihood
re-estimation techniques (Casacuberta, 1996) can be applied on the modified automaton.
Another possibility, which is adopted in this work, consists in simply performing aflat



LANGUAGE SIMPLIFICATION 153

smoothing: a given small quantity is discounted from the consolidated transitions, which is
then distributed among the added ones.

An example of the working of ECGRA is shown in figure 2. In this figure, consolidated
transitions and states of the successively refined grammars are drawn as thin lines while the
error operations used during the EC parsing at each step are shown withdashedbold lines.
The states and transitionsactuallyadded by the ECGRA are represented by bold lines.

One drawback of this algorithm with regard to the original ECGI lies in the fact that
an initial grammar is needed as input, since the heuristics employed by the ECGRA have
been specifically designed to refine agivengrammar (otherwise, they easily tend towards
over-generalization, see algorithm 1). Nevertheless, future developments need to explore
the possibility of working only on a single training corpus.

5. Description of a language simplification task

The task considered here is a standard task for testing Language (speech) Understanding
systems called MGEO6 which is defined in the framework of the ALBAYZIN Spanish
language benchmarking project (D´ıaz-Verdejo et al., 1998). Taking all of the available
information about the general task domain into account (D´ıaz-Verdejo et al., 1998), the
reasons for the selection of the MGEO task are twofold. On the one hand, MGEO is a
semantically constrained task and, on the other hand, no syntactic restrictions are imposed
to the construction of the queries. In this case, the kind of information that the database can
be asked defines the semantics of the task. The database is assumed to contain information
about (this is the semantic scheme of the database):

• entities: seas, regions and rivers.
• attributesof these entities: names of the seas, names and areas of the regions and names,

lengths and flows of the rivers.
• relationsamong these entities: flowinto(river, sea), end(river, region), source(river, re-

gion), traverse(river, region), surround(sea, region).

Correspondingly, queries to the MGEO database are expected to include questions about:

1. entities or attributes of an entity.
2. entities related to another entity.
3. attributes of an entity (or entities) related to another entity.
4. any combination of the previous ones.

5.1. Purpose of language simplification in the MGEO task

Although the number of possible types of queries to the database is small from a semantic
point of view, the syntactic variability that can be exhibited by real user queries is enormous.
In other words, there exist amany-to-onemapping between the syntactic and semantic
domains of the MGEO task. However, most of the syntactic differences with regard to what
could be considered asstandardsyntactic constructions to make queries to the database



154 AMENGUAL ET AL.

consist in (more or less small) variations in vocabulary, the use of superfluous words,
interjections, etc. mainly due to user oral/writing habits.

Clearly, it is not realistic to try to model (with a regular or even context-free grammar)
all these syntactic peculiarities/habits exhibited by casual users. Therefore, in practice, the
performance of even the best trained models drops dramatically when tested with spon-
taneous natural language inputs. For instance, suppose that our language model has the
syntactic structures “What seas surround Spain” and “What seas surround all the regions”
for referring to the database query (semantic concept)List seas surround Spain. However,
if a user inputs “Tell me the seas that surround the Iberian Peninsula” 7 the system fails and
no answer is returned to the user.

Under the Language Simplification framework, the most likely sentence of our language
model that corresponds with the user input is “What seas surround Spain”, therefore provid-
ing the user with the right answer to his/her query. The error model considers that “What”
has been substituted by “Tell” and “Spain” by “ Peninsula”, that “seas” and “surround” have
been substituted for themselves, and, finally, that “me”, “ the”, “ that”, “ the”, and “Iberian”
have been inserted.

5.2. Baseline language model

In order to obtain a first canonical language model of the MGEO task, an initial stochastic
FSM was (manually) built by an expert. This model attempted to cope with only basic
variability in the construction of the queries by means of canonical syntactic forms. These
canonical forms were designed to convey the whole semantics of the task. In addition,
both the specific proper nouns (seas, regions and rivers) and the numbers (area of the
regions, length and flow of the rivers,. . .) were respectively labelled in the FSM using four
categories: SEA, REGION, RIVER and NUM. Examples of canonical syntactic forms (that
is, sentences accepted by the basic FSM) corresponding to each of the above mentioned
four types of expected queries are:

1. cuál es la longitud y el caudal del rı́o RIO
(what is the length and flow of the RIVER river)

2. cuántos ŕıos desembocan en el mar MAR
(how many rivers flow into the SEA sea)

3. cuál es la extensión de las comunidades que atraviesa el rı́o que tiene ḿaxima longitud
(what are the areas of the regions that are traversed by the river that has maximum length)

4. cuál es la longitud del ŕıo que tiene ḿınimo caudal y atraviesa ḿas comunidades y
desemboca en el mar que baña COM
(what is the length of the river that has least flow and traverses the greatest number of
regions and flows into the sea that surrounds REGION)

This FSM, which had 230 states, 665 transitions, and a lexicon consisting of 60 words,
was the starting point for the GI refinement ECGRA described in Section 4. Note that the
task of this algorithm is simply to refine the syntax and possibly some of the lexicon of the
basiccanonicalmodel. Important vocabulary variations regarding this model, including a
large number of words used to instantiate the four lexical categories SEA, REGION, RIVER



LANGUAGE SIMPLIFICATION 155

and NUM, are expected to be exhibited by natural language sentences. These variations,
along with many non-standard syntax inflections, irregularities, etc., are expected to be
(stochastically) modeled by the error model,E.

6. Experiments and results

The whole corpus of the MGEO task (see Section 5) consists of 908 sentences (806 different
sentences) with a lexicon of 307 words from a total of 9, 008 running words. Twoinde-
pendentsets were extracted from this corpus; one for training with 700randomly chosen
sentences and one for test with the remaining 208 sentences.

In order tosimulatethe bootstrapping procedure described in Section 3, the training
set was partitioned intosevenblocks, each having 100 sentences: sentences 1–100 in the
first block, sentences 101–200 in the second block,. . . , sentences 601–700 in the seventh
block. Our Language Simplification system for the MGEO task was started with the baseline
language model described in Section 5.2 and employed the Levenshtein distance to give
values toE operations. The following incremental learning process was thus carried out,
starting with the first block and ending with the seventh block:

1. Thebootstrappingprocedure explained in Section 3 was performed in order to estimate
the stochastic values ofE operations that allow for achieving right simplifications. A
K -best EC parser withK = 10 was used. The human expert selected among the solutions
provided by the parser those considered as adequate simplifications in order to build the
required training corpus,T , composed by “distorted”-”clean” pairs. As commented on
in Section 3, this process isrepeateduntil no more training pairs are appended toT .

2. Those sentences that could not be correctly simplified during the incremental estimation
of E operations (residual errors) were collected. Then, their corresponding simplified
versions were manually supplied by the human expert (often following the hints provided
by the output of the EC parser). These simplifications were finally employed to refine
the language model used in the previous step (the baseline language model when using
the first block of training sentences) by means of the ECGR algorithm explained in
Section 4.

3. The whole process is again performed with the next training block, using theE operation
estimates achieved in step 1 and the refined FSM obtained as a result of step 2 (flat
smoothing was performed to give probabilities to the added transitions).

Table 1 shows the number of iterations carried out in step 1 of the above described
incremental learning process and the number of sentences that were not correctly simplified,
along with the sizes of the successively refined FSMs with each of the seven training blocks.

The charts displayed in figure 3 show the improvement achieved with progressiveE
operation estimation (step 1 of the incremental learning process) in the first, fourth, and
seventh training blocks. When comparing first to last iteration for each of these blocks,
it can be observed that not only did the total number of sentences which were correctly
simplified increase, but their position in theK -best ranking also rose. Keep in mind that the
baseline language model and the Levenshtein distance were employed in thefirst iteration
with thefirst training block.



156 AMENGUAL ET AL.

Figure 3. Number of times the adequate simplification was obtained in each of the 10 solutions provided by the
K -best EC parser. First and last iterations (see also Table 1) with thefirst, fourth, andseventhtraining blocks are
shown in this figure.

To finish the bootstrapping training phase, step 1 of the incremental learning process
was again performed with the 42 sentences to which a correct simplification was not
provided (see Table 1). The estimates computed forE during the previous training with
the seven blocks and the refined FSM finally obtained were used. As a result, this time 12
of these sentences were adequately simplified and thefinal probabilities forE operations
were yielded. Therefore, 670 training sentences (95.71%) were correctly simplified and 30



LANGUAGE SIMPLIFICATION 157

Table 1. Number ofE operation estimation iterations and of residual errors (sentences not adequately simplified)
in step 1, along with the sizes of the FSMs refined in step 2 with each of the 7 training blocks. The initial FSM
had 230 states, 665 transitions, and 60 words.

Training Block 1–100 101–200 201–300 301–400 401–500 501–600 601–700

Iterations 6 6 3 3 3 2 2

Residual errors 4 5 8 5 10 4 6

States 243 253 265 283 285 286 287

Transitions 692 710 746 785 789 793 795

Lexicon (words) 61 63 63 65 65 65 65

Table 2. Some examples of simplifications.

Sentence dime la longitud y caudal del rı́o Ebro
(tell me the length and flow of the Ebro river)

Simplification cuál es la longitud y el caudal del rı́o RIO
(what is the length and flow of RIVER river)

Sentence ¿cu´al es el n´umero de ŕıos que desembocan en el mar Mediterr´aneo?
(what is the number of rivers that flow into the Mediterranean sea?)

Simplification cuántos ŕıos desembocan en el mar MAR
(how many rivers flow into the SEA sea)

Sentence ¿cu´al es el ŕıo de mayor caudal que desemboca en el mar Mediterr´aneo?
(what is the river with the greatest flow that flows into the Mediterranean sea?)

Simplification cuál es el nombre del rı́o que tiene m´aximo caudal y desemboca en el mar MAR
(what is the name of the river that has the greatest flow and flows into the SEA sea)

(4.29%) were “rejected”. Examples of sentences with their adequate simplifications output
by the system are shown in Table 2. As a final step, the probabilities of the final refined FSM
were estimated through a Viterbi re-estimation procedure (Casacuberta, 1996) using all of
the correctsimplificationsobtained during the whole training process (therefore ignoring
the probabilities previously used).

Once the training (refinement in the case of the FSM, estimation in the case of error
model operations) ofF andE was completed, the performance of the system was checked
by the human expert using the independent previously unconsidered 208testsentences.
Table 3 summarizes the results achieved in the test as assessed by the expert. This table
shows the percentage of correctly simplified sentences for increasing values ofK (K = 10)
in the ranking of theK -best solutions provided by the EC parser.

Table 3. Rate of correctly simplified test sentences (208) taking each of theK -best solutions provided by our
LS system into account.

Value of K 1 2 3 4 5 6 7 8 9 10

Success rate (%) 79.8 82.2 84.1 85.0 86.5 87.0 88.9 89.4 89.4 89.9



158 AMENGUAL ET AL.

7. Final remarks

Grammatical Inference (GI) along with Error-Correcting (EC) techniques have been in-
troduced in this work to deal with a novel view of Language Understanding (LU). Under
this view, the meaning of an input sentence is assumed to be associated with acanonical
natural-language-like sentence belonging to a simple grammar that models elementary syn-
tax. This basic syntax allows that the meaning can be expressed in the considered task. Such
elementary representations of the meaning readily allow for simple implementations of the
final drivers that could ultimately perform the actions requested by the user input sentences.

Bootstrapping methods have been used to incrementally refine the coverage of a basic
initial grammar while progressively estimating the probabilities for the operations of the
corresponding error model. Effective training techniques have been described to estimate
EC operations and a new GI technique based on Error Correction has been introduced to
solve the grammar refinement problem.

Empirical results on a moderately complex task show that the proposed approach is
promising as a new paradigm for a number of Language Processing applications, including
LU. Future work in this direction should encompass developing more complex error mod-
els together with their corresponding probability estimation procedures. Also, improved
grammar refinement algorithms should result in faster bootstrapping training, thus reduc-
ing the need for human expert assistance. Finally, further simplification of human expert
intervention can be expected by extending the proposed techniques to be able to work with
context-freerather than finite state models.

Acknowledgments

The authors wish to thank the anonymous reviewers for their careful reading of the
manuscript and for their useful suggestions and valuable comments. Work partially funded
by the European Union and the Spanish CICYT under contracts IT-LTR-OS-30268 and
TIC98-0423-CO6/05.

Notes

1. SEA stands for any body of water in the database.
2. The operation(\, \) is not allowed inE.
3. In the sense of preserving the meaning of the original user input.
4. That is, a minimum-distance EC parser.
5. The concepts grammar/FSM, generate/accept, transition/rule and state/non-terminal will be equally used

throughout this section.
6. Spanish acronym ofAccess to a Geographical Miniature Database.
7. This is a real example.

References

Amengual, J. C. (1999).Técnicas de Corrección de Errores y su Aplicación en Reconocimiento de Formas,
Tratamiento del Lenguaje Natural y Traducción Autoḿatica. Ph.D. thesis, Departamento de Sistemas In-
formáticos y Computaci´on, Universidad Polit´ecnica de Valencia, Valencia (Spain), in Spanish.



LANGUAGE SIMPLIFICATION 159

Amengual, J. C. (2000). Ana∗ search-basedk-best error-correcting viterbi parser. Technical Report DI 02-03/00,
Unidad Predepartamental de Inform´atica, Universidad Jaume I, Castell´on (Spain).

Amengual, J. C., & Vidal, E. (1998). Efficient error-correcting viterbi parsing.IEEE Trans. on Pattern Analysis
and Machine Intelligence, 20:10, 1109–1116.

Amengual, J. C., & Vidal, E. (2000). On the estimation of error-correcting parameters. Technical Report DI
01-03/00, Unidad Predepartamental de Inform´atica, Universidad Jaume I, Castell´on (Spain).

Baum, L. E., & Eagon, J. A. (1967). An inequality with applications to statistical estimation for probabilistic
functions of markov processes and to a model for ecology.Bulletin American Mathematical Society, 73, 360–363.

Bunke, H., & Csirik, J. (1995). Parametric string edit distance and its application to pattern recognition.IEEE
Trans. on Systems, Man, and Cybernetics, 25:1, 202–206.

Casacuberta, F. (1996). Growth transformations for probabilistic functions of stochastic grammars.International
Journal of Pattern Recognition and Artificial Intelligence, 10:3, 183–201.

Chirathamjaree, C., & Ackroyd, M. H. (1980). A method for the inference of non-recursive context-free grammars.
Int. Journal Man-Machine Studies, 12, 379–387.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em
algorithm.Royal Statistical Society, 39:1, 1–38.

Dı́az-Verdejo, J. E., Peinado, A. M., Rubio, A. J., Segarra, E., Prieto, N., & Casacuberta, F. (1998). Albayzin: A
task-oriented spanish speech corpus. InFirst International Conference on Language Resources and Evaluation
(pp. 497–501), Granada (Spain).

Fu. K. S. (1982).Syntactic Pattern Recognition and Applications. Englewood Cliffs, New Jersey: Prentice Hall.
Gonzalez, R. C., & Thomason, M. G. (1978).Syntactic Pattern Recognition. An Introduction. Reading,

Massachusetts: Addison-Wesley.
Gregor, J., & Harris, R. S. (1995). String matching with left-to-right networks.Pattern Recognition Letters, 16,

213–218.
Kruskal, J. B. (1983). An overview of sequence comparison. In D. Sankoff & J. B., Kruskal (Eds.),Time Warps,

String Edits and Macromolecules: The Theory and Practice of Sequence Comparison(pp. 1–44). Reading,
Massachusetts: Addison-Wesley.

Rice, S. V., Bunke, H., & Nartker, T. A. (1997). Classes of cost functions for string edit distance.Algorithmica,
18, 271–280.

Ristad, E. S., & Yianilos, P. N. (1998). Learning string-edit distance.IEEE Trans. on Pattern Analysis and Machine
Intelligence, 20:5, 522–532.

Rulot, H., & Vidal, E. (1987). Modelling (sub)string-length-based constraints throught a grammatical inference
method. In P. A. Devijver & J. Kittler (Eds.),Patter Recognition: Theory and Applications(pp. 451–459),
Springer-Verlag.

Rulot, H., & Vidal, E. (1988). An efficient algorithm for the inference of circuit-free automata. In G. Ferrat´e,
T. Pavlidis, A. Sarfeliu, & H. Bunke (Eds.),Syntactic and Structural Pattern Recognition(173–184), Springer-
Verlag.

Sankoff, D., & Kruskal, J. B. (Eds.) (1983).Time Warps, String Edits and Macromolecules: The Theory and
Practice of Sequence Comparison. Reading, Massachusetts: Addison-Wesley.

Thomason, M. G., Granum, E., & Blake, R. E. (1986). Experiments in dynamic programming inference of markov
networks with strings representing speech data.Pattern Recognition, 19:5, 343–351.

Vidal, E., Casacuberta, F., & Garcı́a, P. (1995). Grammatical inference and automatic speech recognition. In A. J.
Rubio & J. M. López (Eds.),Speech Recognition and Coding, New Advances and Trends(pp. 174–191), NATO
Advanced Study Institute. Berlin: Springer-Verlag.

Received December 9, 1998
Revised March 22, 2000
Accepted May 23, 2000
Final manuscript May 31, 2000


