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Abstract. At the maturity, the owner of a commodity-linked bond has the right to receive the face
value of the bond and the excess amount of spot market value of the reference commodity bundle over
the prespecified exercise price. This payoff structure is an important characteristic of the commodity-
linked bonds.

In this paper, we derive closed pricing formulae for the commodity-linked bonds. We assume that
the reference commodity price and the value of the firm (bonds’ issuer) follow geometric Brownian
motions and that the net marginal convenience yield and interest rate follow Ornstein–Uhlenbech
processes. In the appendix, we derive pricing formulae for bonds which are the same as the above
commodity-linked bonds, except that the reference commodity price in the definition of the payoff
at the maturity is replaced by the value of a special asset which depends on the convenience yield.
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1. Introduction

1.1. REVIEWS

Schwartz (1982) introduced a general framework for pricing commodity-linked
bonds where (1) the reference commodity price follows a geometric Brownian
motion and the interest rate is constant. He also covered in his framework the three
other cases where (2) the commodity price and the bond price (i.e., the interest rate
is stochastic) follow geometric Brownian motions, (3) the commodity price and the
value of the firm (bond’s issuer) follow geometric Brownian motions and the inter-
est rate is constant, and (4) the interest rate behaves stochastically as an extension
to the case. There he obtained the closed pricing formulae of commodity-linked
bonds for the first three cases (1), (2) and (3). Defaults at the time of the maturity
of the contingent claim (or, the bonds) of the issuing firms were considered in
(3), where a pricing formula was derived. But he did not derive any closed pricing
formula for the case (4). In his paper there was no discussion about the convenience
yields.
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Carr (1987) derived a closed pricing formula for the commodity-linked bonds
for an extended case of the above (3), where the bond prices follow a third geo-
metric Brownian motion without referring to the interest rate process, which is very
similar to, but a little different from the above case (4). Carr’s pricing formula takes
care of the default of the issuing firms. The convenience yields were not considered
in his paper either.

Gibson and Schwartz (1990) is the first to consider the stochastic convenience
yields for the bond pricing model. They derived the partial differential equation for
the price functions of the assets defined as functions of spot commodity price and
the net marginal convenience yield. They estimated parameters for the behavior
of the net marginal convenience yield from market data, and calculated numer-
ically the futures prices of the commodity.1 Bjerksund (1991) derived a closed
pricing formula for the commodity contingent claims where the commodity price
follows a geometric Brownian motion, the net marginal convenience yield follows
an Ornstein–Uhlenbech process, and the interest rate is constant. He did not con-
sider the default of the issuing firms at the maturity of the commodity contingent
claims. Gibson and Schwartz (1993) utilized Bejerksund’s (also two other parties’)
pricing formula and Black’s (1976) formula to fit the market prices of the crude
oil futures options. Since our concerns in the present paper are the mathematical
pricing formulae for the commodity contingent claims, we do not further refer their
fitting results. They were able to calculate numerically the present prices of the
commodity-linked bonds, but did not derive a closed analytical pricing formula.

1.2. CONVENIENCE YIELD

The owner of the commodity has the rights (this is an option) to decide how he/she
will treat the commodity; sell, lend, or store it, or even consume it. As for the
consumption-use commodities such as crude oil or copper, the owner may con-
sume it for his/her own manufacturing activities, or he/she may also store it for
his/her future consumption or future sell-out. The owner of the futures contracts or
the other contingent claims, however, does not have this rights because of lack of
storage until the maturity.

The commodities prices are also seen to change with regards to the storage level
of the participants in the market. Since all the participants make their own decision
taking account of their own current and future perspective of inventory levels and
time intervals, the market prices will change as aggregated results of each activity
conducted by them. As Duffie (1989) discusses, the convenience yield is seen as
the value of the option to sell out of storage. We will thus assume that the yield will
change in relation to the scarcity of the commodity in the market. A low inventory
level in the market, that is, scarcity of storage, leads to be backwardation of a
market where the futures prices of distant contract months are lower than those of
the nearby (see, for example, Edwards and Ma, 1992). This means that backwar-
dation occurs when there is a shortage of the available physical commodity. This



PRICING FORMULA FOR COMMODITY-LINKED BONDS 131

shortage implies the following attitude of the holder; ‘the holder of the physical
commodity are unwilling to part with it, even for short period of time (Edwards
and Ma, 1992)’ and thus generates the convenience yields. In this respect, we may
assume that there is an inverse relationship between the changes of the convenience
yield and the changes of current inventory level in the market. Kaldor (1939) and
Working (1948) examined and affirmed this hypothesis.2

A statistical analysis for the net marginal convenience yield can be done using
spot and futures prices. Brennan (1991) squeezed out the net marginal convenience
yield from futures prices of gold, silver, platinum, copper, No. 2 heating oil, lumber,
and plywood. By analyzing those data, he showed their mean-reverting movements.
Gibson and Schwartz (1990, 1993) used the relations between futures prices with
different contract months to estimate parameter values in the models for the net
marginal convenience yields’ movements and utilized the estimated values for their
numerical pricing of the contingent claims.

1.3. OUR RESULTS

In this paper, we take the approach of Gibson and Schwartz (1990, 1993), Bjerk-
sund (1991) to express the price change of the reference commodity in relation
to its convenience yield. In Appendix C, we drive a pricing formula for a special
derivative. The underlying asset of this derivative itself is a derivative security,
which is seen in Bjerksund (1991), that consists of a commodity and the continu-
ously reinvested net marginal convenience yield. These two appraoches reflect two
ways of treatments, that we could take, for the pricing of the commodity contingent
claims. The latter one uses the value of the ownership of the commodity as its
underlying variables which receive the total expected return derived from its price
changes and net marginal convenience yield. Then, we see that the resulting pricing
formula does not explicitly depend on the parameters related to the movements of
the convenience yield. On the other hand, the former one uses the market price of
the commodity where the owner of the commodity contingent claim cannot receive
the convenience yield deriving from the ownership of the commodity, but receives
the total expected return from its price changes.

The pricing formula in the former case includes the parameters related to the
convenience yield. By using this formula, we draw several graphs of the bond
prices and the default probabilities. The default occurs when the total payoff to
the bond holder exceeds the value of the issuer at the maturity. The figures for
the default probabilities provide us useful information to the bond issuer/holder in
regard to the risk management.

1.4. ORGANIZATION OF THIS PAPER

This paper is organized as follows. In Section 2, we define the random variables,
namely the commodity price, the value of the issuer, and the net marginal con-
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venience yield, and the models for the behavior of these random variables. We
also give some market conditions. Then we briefly derive the partial differential
equation (in short, PDE) for the price function of the commodity-linked bonds and
obtain a closed pricing formula of the bonds by solving the PDE analytically. In
Section 3, we show several figures for the bond prices and default probabilities
as functions of parameter values. In Section 4, we show our results, rather in
detail, which is the extended case of Section 2 where the instantaneous interest
rate behaves stochastically, following another Ornstein–Uhlenbech processes. In
subsection 4.1 we set some additional assumptions. In subsection 4.2, we derive
the PDE by using the standard no-arbitrage argument. In subsection 4.3, we derive
the closed pricing formula for the commodity-linked bondB(St, Vt , δt , rt , τ ) by
applying Feynman–Kac Theorem. Some related analytical details are presented in
Appendix A and B. Appendix C shows a brief mathematical derivation for the
pricing function of the bond linked to the special derivative. In Appendix D, we
present Mathematica’s program list to calculate prices of the commodity-linked
bondB(St, Vt , δt , τ ).

2. Closed Pricing Formula for the Commodity-Linked BondsB(St, Vt, δt , τ)

In this section, we derive the pricing functions of the commodity-linked bonds,
B(St, Vt , δt , τ ). To start with, we define our stochastic variables and derive the
PDE. Then we obtain the closed pricing formula for the commodity-linked bonds
that satisfies the derived PDE with its payoff at the maturity as the boundary
condition.

Let S, V , andδ be stochastic processes.St is the spot price of the commodity,
Vt denotes the value of the issuer (or the value of the firm), andδt represents the
instantaneous net marginal convenience yield rate. We assume thatS, V , andδ
satisfy following stochastic differential equations (in short, SDE):

dS

S
= αS · dt + σS · dWS (1)

dV

V
= αV · dt + σV · dWV (2)

dδ = k(µδ − δ)dt + σδ · dWδ , (3)

whereWS ,WV , andWδ are the standard Wiener processes and their correlation are
such that dWS · dWV = ρSVdt , dWS · dWδ = ρSδdt , and dWV · dWδ = ρV δdt .
We postulate that the parametersαS , αV , κ, µδ, σS, σV , σδ, ρSV , ρSδ, andρV δ are
constants. We assume in the above that dδ follows Ornstein–Uhlenbeck process
that can take negative values. This is not a problem for the convenience yield, be-
cause our definition (3) is for the net marginal convenience yield. The net marginal
convenience yield is defined by the differences that the gross convenience yield
subtracted by the cost of carry, thus it sometimes takes negative values.
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We also postulate that there is a risk free interest rater and that this is a constant
during the time interval fromt toT . The length of this time interval is denoted byτ .
In this paper, we assume that assets are infinitely divisible and that a short position
is allowed. We also assume that there is no-arbitrage opportunity in the market.

Commodity-linked bonds have the payoff at the majority such that the owner
of the bonds has right to receive, in the case of no default, in addition to the face
value, the excess amount of the spot market price of the reference commodity over
the prespecified exercise price. In the case where the default is considered, the
payoff at the maturity is the minimum of either the payoff in the case of no default
or the value of the issuer at the maturity. The total amount of the payment to the
bond owner at the maturity is

min[VT , F +max{ST −K,0}] . (4)

F andK are constants,F is the face value of the bond andK is the prespecified
exercise price of the reference commodity.

Also we assume that there areN(N ≥ 3) different assets in the market with
price functionsBi(St , Vt , δt , τ ) for i-th asset, wherei = 1,2, · · · ,N , that have the
same reference commodity. This is not an unrealistic assumption. Moreover, we
postulate that for any choice of the three assets, the three vectors each of which
consists ofπiS, π

i
V , πiδ in the following equation (6) forBi(St , Vt , δt , τ ) are linearly

independent to each other: that is, the following matrices are non-singular for any
choice of the three derivative assets. πiS πiV πiδ

π
j

S π
j

V π
j

δ

πkS πkV πkδ

 , (5)

wherei, j, k = 1, · · · ,N , andi 6= j , i 6= k, andj 6= k.
Next, we derive the PDE for the pricing function of the commodity-linked bond,

B(St, Vt , δt , τ ). By using Ito’s lemma, we obtain the following equation.

dBi
Bi
= ϕB,i · dt + πiS · dWS + πiV · dWV + πiδ · dWδ , (6)

where

ϕB,i =


∂Bi
∂S
SαS + ∂Bi

∂V
V αV + ∂Bi

∂δ
κ(µδ − δ)− ∂Bi

∂τ

+1
2 · ∂

2Bi
∂S2 S

2σ 2
S + 1

2 · ∂
2Bi
∂V 2 V

2σ 2
V + 1

2 · ∂
2Bi
∂δ2 σ

2
δ

+ ∂2Bi
∂S∂V

SV σSσV ρSV + ∂2Bi
∂S∂δ

SσSσδρSδ + ∂2Bi
∂V ∂δ

V σV σδρV δ


Bi

,

πiS =
∂Bi

∂S
· SσS
Bi

, πiV =
∂Bi

∂V
· V σV
Bi

, πiδ =
∂Bi

∂δ
· σδ
Bi
.
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We construct a portfolioW such that the portfolio consists of three different
derivative assets and the commodity. We denote the weights of each assets in this
portfolio asxi (i = 1, · · · ,4) and the sum of these portfolio weights is equal to 1,
i.e.,

4∑
i=1

xi = 1 .

Then the rate of return of the portfolioW is given by

dW

W
= x1 · dB1

B1
+ x2 · dB2

B2
+ x3 · dB3

B3
+ x4 ·

(
dS

S
+ δt · dt

)
. (7)

This equation utilizes the property that the total rate of return of the owner of the
reference commodity is the sum of the price changes of the commodity and its
convenience yield.

By using the standard no-arbitrage argument, we obtain the following equa-
tions:

ϕB,1− r
ϕB,2− r
ϕB,3− r
αS + δt − r

 = λ1 ·


π1
S

π2
S

π3
S

σS

+ λ2 ·


π1
V

π2
V

π3
V

0

+ λ3 ·


π1
δ

π2
δ

π3
δ

0

 . (8)

Note thatλ1, λ2, andλ3 are the market prices of risk for the commodity price, the
value of the issuer, and the net marginal convenience yield, respectively. They are,
logically at now, time dependent and vary with regard to the choice of the assets
in the portfolioW . We show in the Appendix A that these do not depend on the
choice of the assets. We assume that theseλ’s are constants in solving the following
PDE (9). Note also that first, second, and third row of (8) are the equations for any
derivative assets and the fourth row of (8) is the equation for the commodity itself.
From (8) we have the following PDE.

∂B

∂S
S(r − δ)+ ∂B

∂V
V (αV − λ2σV )+ ∂B

∂δ
{κ(µδ − δ)− λ3σδ}−

− ∂B
∂τ
− r · B + 1

2
· ∂

2B

∂S2
S2σ 2

S +
1

2
· ∂

2B

∂V 2
V 2σ 2

V +
1

2
· ∂

2B

∂δ2
σ 2
δ +

+ ∂2B

∂S∂V
SV σSσV ρSV + ∂2B

∂S∂δ
SσSσδρSδ + ∂2B

∂V ∂δ
V σV σδρV δ = 0 .

(9)

Equation (9) is the PDE which everyB(St, Vt , δt , τ ) must satisfy.
Next, we derive the closed form of the pricing function for the commodity-

linked bondsB(St, Vt , δt , τ ) under the payoff function (4) at the bond maturity.
This is done by applying Feynman–Kac Theorem (see Friedman, 1975, Chapter 6,
Theorem 5.3). To calculate the expected value of the payoff function, where we
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write [S̃t , Ṽt , δ̃t ] for the corresponding stochastic processes, we need to obtain the
joint distribution function of [̃St , Ṽt , δ̃t ] based on PDE (9). The detailed derivation
is shown in subsection 4.3.

From (9) we have the following SDE.

d

 S̃tṼt
δ̃t

 =
 S̃t (r − δ̃t )

Ṽt (αV − λ2σV )

κ(µδ − δ̃t )− λ3σδ

dt +G · d
 Z̃1,t

Z̃2,t

Z̃3,t

 , (10)

where theZ̃1,t , Z̃2,t , Z̃3,t are another set of independent standard Wiener processes.
A choice ofG is given by

G =
 S̃tσS 0 0

ṼtσV ρSV Ṽ σV · c 0

σδρSδ σδ · ē σδ · f

 ,

wherec =
√

1− ρ2
SV , ē = ρVδ − ρSV ρSδ√

1− ρ2
SV

, f =
√

1− (ρV δ − ρSV ρSδ)
2

1− ρ2
SV

− ρ2
Sδ .

The derivation ofG is shown in Appendix B.
Because one of the drift term of SDE (10) is the product ofS̃t and δ̃t , SDE

(10) is non-linear. However, we make the following change of variables in order
to transform thisnon-linearSDE to alinear SDE. Then letP̃t = log S̃t andJ̃t =
log Ṽt . By applying Ito’s lemma, we have

d

 P̃tJ̃t
δ̃t

 =
 −δ̃t + (r −

1
2σ

2
s )

αV − λ2σV − 1
2σ

2
V

κ(µδ − δ̃t )− λ3σδ

dt +

+
 σS 0 0

σV ρSV σV · c 0

σδρSδ σδ · ē σδ · f

 · d
 Z̃1,t

Z̃2,t

Z̃3,t

 .

(11)

Now by using Theorem 8.2.2 in Arnold (1973, p. 129), we can solve the SDE
(11) and derive the joint distribution of[P̃t , J̃t , δ̃t ] for the time interval[t0, T ]. The
solution of (11) is given by P̃tJ̃t

δ̃t

 =
 α(π)β(π)

γ (π)

+
 X̃tỸt
Z̃t

 ,
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whereπ = t − t0 , [α(π), β(π), γ (π)] are deterministic functions such that

 α(π)β(π)

γ (π)

 =

Pt0 + δt0 e−κπ−1

κ
+
(
r − σ2

s

2

)
π + (κµδ − λ3σδ)

1−e−κπ−κπ
κ2

Jt0 + (αV − λ2σV − 1
2σ

2
V )π

δt0e
−κπ + (κµδ − λ3σδ)

1−e−κπ
κ

 ,

and [X̃t , Ỹt , Z̃t ] are jointly normally distributed. Their means are zero and the
variance-covariance matrix

∑
is given by

∑
=
 Var(X̃t ) σXY σXZ

σXY Var(Ỹt ) σYZ

σXZ σYZ Var(Z̃t )

 ,

where

Var(X̃t ) = π
(
σ 2
s − 2

σSσδρSδ

κ
+ σ

2
δ

κ2

)
+ 2(1− e−κπ )

(
σSσδρSδ

κ2
− σ

2
δ

κ3

)
+

+ (1− e−2κπ)
σ 2
δ

2κ3

Var(Ỹt ) = σ 2
V π

Var(Z̃t ) = σ 2
δ (1− e−2κπ )

2κ

σXY = σSσV ρSV π − σV σδρV δπ
κ

+ σV σδρV δ(1− e
−κπ)

κ2

σXZ = σSσδρSδ(1− e−κπ )
κ

− σ
2
δ (1− e−κπ )

κ2
+ σ

2
δ (1− e−2κπ )

2κ2

σYZ = σV σδρV δ(1− e−κπ )
κ

The joint density function of[X̃t , Ỹt , Z̃t ] is given by

f (x̃t , ỹt , z̃t ) = 1

(2π)3/2 ·√det
∑ · exp{−1

2ṽT ∑−1 ṽ} ,

where

ṽ =
 x̃tỹt
z̃t

 .
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Then we calculate the present value of the expected value of the payoff function at
the maturity (see Figure 1 for the payoff chart at the maturity). The solution of the
PDE (9) with the boundary condition (i.e., payoff) (4) is given by

B(St , Vt , δt , t) = E
min{ṼT , F +max(S̃T −K,0)} · e−rτ

∣∣∣∣∣∣
S̃t = St

Ṽt = Vt

δ̃t = δt



= E
min{eβ(τ)+yT , F +max(eα(τ)+xT −K,0)} · e−rτ

∣∣∣∣∣∣
S̃t = St

Ṽt = Vt

δ̃t = δt


= F · exp{−rτ } ·

∫ ∞
H

∫ R

−∞
fXY (xt , yt )dxt dyt +

+ exp{β(τ)− rτ } ·
∫ H

−∞

∫ R

−∞
exp{yt }fXY (xt , yt )dxt dyt +

+ exp{β(τ)− rτ } ·
∫ Q

−∞

∫ ∞
R

exp{yt }fXY (xt , yt )dxt dyt +

+ (F −K) · exp{−rτ } ·
∫ ∞
Q

∫ ∞
R

fXY (xt , yt )dxt dyt +

+ exp{α(τ)− rτ } ·
∫ ∞
Q

∫ ∞
R

exp{xt }fXY (xt , yt )dxt dyt

(12)

wherefXY (xt , yt ) is the marginal density function ofxt and yt and {H |yT =
log F − β(τ)}, {R|xT = log K − α(τ)}, and {Q|yT = log{F + exp{α(τ) +
xT } −K} − β(τ)} .

3. Bond Prices and Default Probabilities

In this section we show several figures for the bond prices and the default proba-
bilities as functions of parameters. We list a Mathematica’s program for computing
the above pricing function (12) in Appendix D. The default probabilities are given
by the following formula, that is, we calculated the probability that the total payoff
to the bond holder is equal toVT , i.e., the light gray area in the(ST , VT ) domain
of Figure 1.

Default probability=
∫ H

−∞

∫ R

−∞
f (xt , yt )dxt dyt +

+
∫ Q

−∞

∫ ∞
R

f (xt , yt )dxt dyt .

(13)

When we use these formulae, we have to estimate each of paramters of the
processes forSt , Vt , δt and a constantr. For the commodity priceSt , and the



138 RYOZO MIURA AND HIROAKI YAMAUCHI

Figure 1. Payoff chart at the maturity.

interest rater, they are quoted in the market, thus we can observe directly each of
them and estimate the parametersσS and the constantr. But it is difficult to observe
the value of the issuerVt, and the net marginal convenience yieldδt , because they
are not quoted or reported in the market. Therefore we have to estimate each of
Vt andδt or to use some proxies instead. For the value of the issuer, one idea to
estimate each of parametersαV andσV of Vt is that: we can treat stock price of
this issuer firm as a call option on the value of the issuer, then we squeeze out the
value of the issuer firm from its stock price. Unfortunately to accomplish this idea
is not an easy task because it is difficult to know the whole cash flow of the issuer.
In this section, the initial value ofVt and the parameters for the behavior ofVt
are set rather subjectively. For the net marginal convenience yield, we recommend
a simplified estimation procedure by Gibson and Schwartz (1990) or its revised
scheme by Yamauchi (1998). Their methods use futures prices of the commodity
with various delivery months. By isolating the differences between futures prices
with neighboring delivery months and also by excluding interest rates effects for
the futures prices, they approximately estimate one month or two months net mar-
ginal FORWARD convenience yield rate and might regard the AGGREGATED net
marginal forward convenience yield rate as the net marginal covenience yield rate.
Then they can be used to estimate each of parameters ofδt .

The initial values required for the calculations of the price functions and default
probabilities are set in the following way. The issuer of the commodity-linked bond
has the business of producing and selling the commodity which is the underlying
asset of that commodity-linked bond. The issuer wants to issue this bond with
face valueF = 100 and the maturity of 5 years. The strike price is set equal
to the price of commodity at the time of issuance. The current interest rate isr



PRICING FORMULA FOR COMMODITY-LINKED BONDS 139

is 4% per year. The initial value of this issuerVt is 200 which consists of this
commodity-linked bond and the equity. Its expected growth ratioαV is 2% per
year and its volatilityσV is 30% annually. These parameters of the value of the
issuing firm are set so that the probability ofVT < F is approximately 16% at the
maturity. The current prices of commoditySt is 20 and the price volatilityσs is
39.2% per year. This volatility parameter is estimated from WTI crude oil prices
data in NYMEX for the period from September 4, 1990 to June 20, 1994. To set
the initial values of the parameters of the process of the net marginal convenience
yields, we refer the detail to Yamauchi (1998). In his paper, he first calculated, from
daily futures prices of different maturity, the daily values of 3 months net marginal
convenience yield rates in a similar way to the one by Gibson and Schwartz (1990).
Then, based on these daily values, he estimated the parameters of the processδ. The
whole estimation period is from September 4, 1990 to June 22, 1993. He divided
this estimation period into two periods; from September 4, 1990 to June 22, 1991
and from June 23, 1991 to June 22, 1993. From the former period, the estimated
parameters were such that:κ = 19.122,µδ = 0.324, andσδ = 1.3050. From the
latter period,κ = 4.547,µδ = 0.021, andσδ = 0.2673. The estimated parameters
suggest that the convenience yields of crude oil at the former period showed a
very wild movements. During the latter period, the convenience yields seem to be
relatively stable. In this paper, we set two situations, namely situation A and B.
We use the estimated parameters from the former period for situation A and the
latter ones for situation B. We set the current level of the convenience yield rateδt
at 0.25 for both situations. When the spot price of this commodity moves up, the
convenience yield rate tends to move up in the effect according to their correlation.
Their correlationρSδ is set at 0.75 for situation A and at 0.50 for situation B. These
correlation parameters are estimated from WTI crude oil prices and convenience
yield rates. Since we suppose this issuing firm sells this commodity to the market,
the value of this issuer is positively correlated to the changes of this commodity
prices and the convenience yields. Thus the commodity prices and the value of the
issuer is set to behave with correlationρSV = 0.50 for both situations. Also we set
the correlation parametersρVδ between the value of the issuer and the convenience
yield at 0.50 for situation A and at 0.33 for situation B.

F = 100 K = 20 τ = 5 r = 0.04 St = 20 σs = 0.392

Vt = 200 αV = 0.02 σV = 0.3 λ2 = –0.067 δt = 0.25 ρSV = 0.5

Situation A Situation B

κ = 19 µδ = 0.32 σδ = 1.31 κ = 4.5 µδ = 0.02 σδ = 0.27

λ3 = 0.214 ρSδ = 0.75 ρVδ = 0.5 λ3 = 0.074 ρSδ = 0.5 ρV δ = 0.33

Figure 2 shows that the graph of the commodity-linked bond prices as a function
of the speed of adjustmentκ. To calculate the bond prices for Figure 2 and Figure 3,
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Figure 2.

Figure 3.

we setµδ = 0.1, λ3 = 0.12, σδ = 0.5, ρSδ = 0.6, andρVδ = 0.4 apart from
situation A and B, we draw these two figures to see overall responses of bond prices
and default probabilities to the values ofκ. Figure 2 suggests that a smaller level of
κ makes the bond prices higher than that of a larger level ofκ. This means that the
premium portion of bond prices decrease asκ become large, that is, movements
of the convenience yield become more stable rather than that of smaller level ofκ

when other parameters are kept fixed. Figure 3 describes the default probabilities of
the commodity-linked bond. This figure shows that the default probability become
high asκ is at a smaller level. This result makes sense that the high premium,
which means in part that the expected value of the payoff at the maturity is large,
corresponds to the high default probability of this bond at the maturity.

Figure 4 suggests that the bond prices will increase asσδ increases for situation
B, while the bond prices do not seem to be affected by the changes ofσδ in situation
A. This is because in a large level ofκ, the convenience yield rate returns to its
long term mean quickly even ifσδ is at a large level. Consequently, the premium
portion changes little asσδ become large. Figure 5 shows a graph of the default
probabilities as a function ofσδ.



PRICING FORMULA FOR COMMODITY-LINKED BONDS 141

Figure 4. Thin line : Situation A. Thick line : Situation B.

Figure 5. Thin line : Situation A. Thick line : Situation B.

Figure 6. Thin line : Situation A. Thick line : Situation B.
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Figure 7. Thin line : Situation A. Thick line : Situation B.

Figure 8. Thin line : Situation A. Thick line : Situation B.

Figure 9. Thin line : Situation A. Thick line : Situation B.
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Figure 10. Thin line : Situation A. Thick line : Situation B.

Figure 11. Thin line : Situation A. Thick line : Situation B.

Figure 6 shows that the higher the commodity pricesSt are, the more expensive
the bond prices are. This is very natural. The strike priceK is equal to 20, the
premium increases asSt moves acrossK from out of the money to in the money.
Figure 7 is a graph of the default probabilities of the commodity-linked bond as a
function ofSt . This figure also shows that the default probabilities become high as
St becomes large which is the same as Figure 6.

Figure 8 through 11 are the graphs in relation to the value of the issuer. Figure 8
shows that the higher the value of the issuer is, the more expensive the bond price
is. Figure 9 suggests that the default probability decreases as the value of the issuer
Vt increases. This is very natural. IfVt is very small, the default probability of this
bond at the maturity is anticipated to be high. As for Figure 10 and 11, we see that
the larger the volatility of the value of the issuerσV is, the lower the bond price is
and, at the same time, the default probability is high. These are also natural.
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4. Closed Pricing Formula for the Commodity-Linked Bonds
B(St, Vt, δt , rt , τ)

In this section, we describe a straight extension of Section 2 where the instanta-
neous interest rate changes stochastically, following another Ornstein–Uhlenbech
process.

4.1. ASSUMPTIONS FOR THE PRICING FORMULA OF COMMODITY-LINKED

BONDSB(St, Vt , δt , rt , τ )

Assume the same situation as we postulated in the Section 2 except that the interest
rate behaves stochastically

drt = g(µr − rt )dt + σr · dWr , (14)

whereWr is another standard Wiener process and correlations are such that

dWs · dWr = ρSrdt, dWV · dWr = ρVrdt, and dWδ · dWr = ρδrdt .
This assumption for the behavior of the interest ratert might be a little problematic,
because there may occur negative interest rate. However, this probability is small.
In our paper, for the ease of the derivation of the pricing formula, we assume
Ornstein–Uhlenbech process forrt .

We also postulate that the following parameters are constants:

αS, αV , κ, µδ, g, µr, σS, σV , σδ, σr, ρSV , ρSδ, ρSr, ρV δ, ρV r, ρδr .

We assume that there areN (N ≥ 4) different assets with price functions
Bi(St , Vt , δt , rt , τ ), for i = 1,2, · · · ,N, that have the same reference commodity
in the market. For any choice of the four assets, we assume that there exists the
inverse of the following matrices:

ηiS ηiV ηiδ η
i
r

η
j

S η
j

V η
j

δ η
j
r

ηkS ηkV ηkδ η
k
r

ηlS ηlV ηlδ η
l
r

 , (15)

wherei, j, k, l = 1, · · · ,N , andi 6= j , i 6= k, i 6= l, j 6= k, j 6= l, andk 6= l .
These quantitiesη are defined later in the following equality (16).
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4.2. PARTIAL DIFFERENTIAL EQUATION

In this subsection, we derive the PDE for the pricing function of the commodity-
linked bondBi(St , Vt , δt , rt , τ ). By using Ito’s lemma, we obtain the following
equation for thei-th commodity-linked bond(i = 1,2, · · · ,N);

dBi
Bi
= 9B,i · dt + ηiS · dWS + ηiV · dWV + ηiδ · dWδ + ηir · dWr , (16)

where

9B,i =



∂Bi
∂S
SαS + ∂Bi

∂V
V αV + ∂Bi

∂δ
κ(µδ − δ)+ ∂Bi

∂r
g(µr − r)− ∂Bi

∂τ

+1
2 · ∂

2Bi
∂S2 S

2σ 2
S + 1

2 · ∂
2Bi
∂V 2 V

2σ 2
V + 1

2 · ∂
2Bi
∂δ2 σ

2
δ + 1

2 · ∂
2Bi
∂r2 σ

2
r

+ ∂2Bi
∂S∂V

SV σSσV ρSV + ∂2Bi
∂S∂δ

SσSσδρSδ + ∂2Bi
∂S∂r

SσSσrρSr

+ ∂2Bi
∂V ∂δ

V σV σδρV δ + ∂2Bi
∂V ∂r

V σV σrρV r + ∂2Bi
∂δ∂r

σδσrρδr


Bi

,

ηiS =
∂Bi

∂S
· SσS
Bi

, ηiV =
∂Bi

∂V
· V σV
Bi

,

ηiδ =
∂Bi

∂δ
· σδ
Bi
, ηir =

∂Bi

∂r
· σr
Bi
.

With the same standard no-arbitrage argument used in Section 2, we obtain

∂B

∂S
St(rt − δt )+ ∂B

∂V
Vt(αV − λ2σV )+ ∂B

∂δ
{κ(µδ − δt )− λ3σδ}+

+ ∂B
∂r
{g(µr − rt )− λ4σr} + 1

2
· ∂

2B

∂S2
S2
t σ

2
S +

1

2
· ∂

2B

∂V 2
V 2
t σ

2
V +

+ 1

2
· ∂

2B

∂δ2
σ 2
δ +

1

2
· ∂

2B

∂r2
σ 2
r +

∂2B

∂S∂V
StVtσSσV ρSV +

+ ∂2B

∂S∂δ
StσSσδρSδ + ∂2B

∂S∂r
StσsσrρSr + ∂2B

∂V ∂δ
VtσV σδρV δ +

+ ∂2B

∂V ∂r
VtσV σrρV r + ∂2B

∂δ∂r
σδσrρδr − ∂B

∂τ
− rt · B = 0 ,

(17)

whereλ2, λ3, andλ4 are the market prices of risk for the value of the issuer, the
net marginal convenience yield, and the interest rate, respectively. Equation (17) is
the PDE which everyB(St, Vt , δt , rt , τ ) must satisfy.
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4.3. CLOSED PRICING FORMULA

In this subsection, we derive the closed pricing formula of the commodity-linked
bondB(St, Vt , δt , rt , τ ) by applying the Feynman–Kac Theorem. In the calcula-
tion of the expected value of the payoff function (4), we need the joint distribution
function of [S̃t , Ṽt , δ̃t , r̃t ] based on PDE (17). From (17), we have the following
SDE:

d


S̃t

Ṽt

δ̃t

r̃t

 =


S̃t (r̃t − δ̃t )
Ṽt (αV − λ2σV )

κ(µδ − δ̃t )− λ3σδ

g(µr − r̃t )− λ4σr

 dt +

+


S̃tσS 0 0 0

ṼtσV ρSV ṼtσV · ē 0 0

σδρSδ σδ · f σδ · h 0

σrρSr σr · ḡ σr · i σr · j

 · d

Z̃1,t

Z̃2,t

Z̃3,t

Z̃4,t

 ,

(18)

where
ē =

√
1− ρ2

SV , f =
ρVδ − ρSV ρSδ

ē
, ḡ = ρV r − ρSV ρSr

ē

h =
√

1− p2
Sδ − f 2 , i = ρδr − ρSδρSr − f · ḡ

h
, j =

√
1− ρ2

Sr − ḡ2− i2

andZ̃1,t , Z̃2,t , Z̃3,t , Z̃4,t , are independent standard Wiener processes.
Next, to transform thenon-linearSDE (18) tolinear one, let P̃t = log S̃t and

J̃t = log Ṽt . Then we have the following SDEs for̃Pt and J̃t by applying Ito’s
lemma.

d


ρ̃t

τ̃t

δ̃t

r̃t

 =

−δ̃t + rt − 1

2σ
2
S

αV − λ2σV − 1
2σ

2
V

κ(µδ − δ̃t )− λ3σδ

g(µr − r̃t )− λ4σr

dt +

+


σS 0 0 0

σV ρSV σV · ē 0 0

σδρSδ σδ · f σδ · h 0

σrρSr σr · ḡ σr · i σr · j

 · d

Z̃1,t

Z̃2,t

Z̃3,t

Z̃4,t

 .

(19)



PRICING FORMULA FOR COMMODITY-LINKED BONDS 147

By solving the stochastic differential Equations (19), we derive the joint proba-
bility density function of[P̃t , J̃t , δ̃t , r̃t ] for the time interval[t0, T ] using theorem
8.2.2 in Arnold (1973, p. 129). By theorem 8.2.2, the SDE

dQ̃t = (A(t) · Q̃t + a(t))dt + B(t) · dZ̃t

has the solution

Q̃t = 8t(Qt0 +
∫ t

t0

8−1
s · a(s) · ds +

∫ t

t0

8−1
s · B(s) · dZ̃s) (20)

with the initial valueQt0, where

Q̃t =


P̃t

J̃t

δ̃t
r̃t

 , Qt0 =


Pt0
Jt0
δt0
rt0

 ,

A(t) = A =


0 0 −1 1
0 0 0 0
0 0 −κ 0
0 0 0 −g

 ,

a(t) = a=


−1

2σ
2
S

αV − λ2σV − 1
2σ

2
V

κµδ − λ3σδ
gµr − λ4σr

 ,

B(t) = B =


σS 0 0 0

σV ρSV σV · ē 0 0
σδρSδ σδ · f σδ · h 0
σrρSr σr · ḡ σr · i σr · j

 , and Z̃t =


Z̃1,t

Z̃2,t

Z̃3,t

Z̃4,t

 .

In this solution (20),8t stands for the fundamental matrix of
.

Q̃t= A(t) · Q̃t · 8t

and its inverse are given by

8t = eA(t−t0) =


1 0

1

κ
(e−κ(t−t0) − 1)

1

g
(1− e−g(t−t0))

0 1 0 0

0 0 e−κ(t−t0) 0

0 0 0 e−g(t−t0)

 , (21)
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8−1
t =


1 0

1

κ
(eκ(t−t0) − 1)

1

g
(1− eg(t−t0))

0 1 0 0

0 0 eκ(t−t0) 0

0 0 0 eg(t−t0)

 , (22)

By substituting (21) and (22) into (20), we have
P̃t

J̃t

δ̃t
r̃t

 =

α(π)

β(π)

γ (π)

ε(π)

+

x̃t
ỹt
z̃t
w̃t

 ,

where


α(π)

β(π)

γ (π)

ε(π)

 =



 Pt0 + δt0 e−κπ−1
κ
+ rt0 1−e−gπ

g
− σ2

s π

2

+(κµδ − λ3σδ)
1−e−κπ−κπ

κ2 − (gµr − λ4σr)
1−e−gπ−gπ

g2


Jt0 +

(
αV − λ2σV − 1

2σ
2
V

) · π
δt0 · e−κπ + (κµδ − λ3σδ) · 1−e−κπ

κ

rt0 · e−gπ + (gµr − λ4σr) · 1−e−gπ
κ


,


x̃t
ỹt
z̃t
w̃t

 =





(
σs − σδρSδ

κ
+ σrρSr

g

) ∫ t
t0

dZ̃1,s + σδρSδ
κ

∫ t
t0
eκ(s−t )dZ̃1,s

−σrρSr
g

∫ t
t0
eg(s−t )dZ̃1,s +

(
σr ḡ

g
− σδf

κ

) ∫ t
t0

dZ̃2,s

+σδf

κ

∫ t
t0
eκ(s−t )dZ̃2,s − σr ḡ

g

∫ t
t0
eg(s−t )dZ̃2,s

+
(
σr i
g
− σδh

κ

) ∫ t
t0

dZ̃3,s + σδh

κ

∫ t
t0
eκ(s−t )dZ̃3,s

−σr i

g

∫ t
t0
eg(s−t )dZ̃3,s + σrj

g

∫ t
t0
(1− eg(s−t ))dZ̃4,s


σV ρSV

∫ t
t0

dZ̃1,s + σV ē
∫ t
t0

dZ̃2,s σδρSδ
∫ t
t0
eκ(s−t )dZ̃1,s + σδf

∫ t
t0
eκ(s−t )dZ̃2,s

+σδh
∫ t
t0
eκ(s−t )dZ̃3,s

 σrρSr
∫ t
t0
eg(s−t )dZ̃1,s + σrḡ

∫ t
t0
eg(s−t )dZ̃2,s

+σri
∫ t
t0
eg(s−t )dZ̃3,s + σrj

∫ t
t0
eg(s−t )dZ̃4,s





,

andπ = t−t0. Note that the stochastic integrals
∫ {·}dZ̃i,s (i = 1,2,3) are normally

distributed.
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Then, the pricing formula for the commodity-linked bondB(St, Vt , δt , rt , τ ) is
obtained by calculating the expected present value of the bond with payoff function
(4).

B(St, Vt , δt , rt , t)

= E

min{ṼT , F +max(S̃T −K,0)} · exp

{
−
∫ T

t

r̃udu

} ∣∣∣∣∣∣∣∣
S̃t = St
Ṽt = Vt
δ̃t = δt
r̃t = rt



= E

min{eβ(τ)+yT , F +max(eα(τ)+xT −K,0)}

·exp
{
−
∫ T

t

(ε(u− t)+ wu)du
} ∣∣∣∣∣∣∣∣

S̃t = St
Ṽt = Vt
δ̃t = δt
r̃t = rt


= exp{ηβ(τ)} ·

∫ ∞
−∞

∫ H

−∞

∫ R

−∞
exp{yt + r∗t }f (xt , yt , r∗t )dxtdytdr∗t +

+F · exp{η(τ)} ·
∫ ∞
−∞

∫ ∞
H

∫ R

−∞
exp{r∗t }f (xt , yt , r∗t )dxtdytdr∗t +

+ exp{ηβ(τ)} ·
∫ ∞
−∞

∫ Q

−∞

∫ ∞
R

exp{yt + r∗t }f (xt , yt , r∗t )dxtdytdr∗t +

+ (F −K) · exp{η(τ)} ·
∫ ∞
−∞

∫ ∞
Q

∫ ∞
R

exp{r∗t }f (xt , yt , r∗t )dxtdytdr∗t +

+ exp{ηα(τ)} ·
∫ ∞
−∞

∫ ∞
Q

∫ ∞
R

exp{xt + r∗t }f (xt , yt , r∗t )dxtdytdr∗t ,

(23)

where

{H | yT = logF − β(τ)} , {R | xT = logK − α(τ)} ,
{Q | yT = log{F + exp{α(τ)+ xT } −K} − β(τ)} ,

and

 η(τ)

ηα(τ)

ηβ(τ)

 =


−gµr−λ4σr
g

τ +
(
gµr−λ4σr

g
− rt

)
1−e−gτ
g

Pt − σ2
S

2 τ − κµδ−λ3σδ
κ

(
τ − 1−e−κτ

κ

)
− δt 1−e−κτ

κ

Jt +
(
αV − λ2σV − 1

2σ
2
V

)
τ − gµr−λ4σr

g

(
τ − 1−e−gτ

g

)
− rt 1−e−gτ

g

 .
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f (xt , yt , r
∗
t ) is the joint density function such that

f (xt , yt , r
∗
t ) =

1

(2π)3/2 ·√det
∑ · exp

{
−1

2
vT ∑−1 v

}
,

wherev =
 xtyt
r∗t

 and
∑

is its variance-covariance matrix which is given by

∑
=
 Var(xt) σxy σxr∗

σxy Var(yt ) σyr∗
σxr∗ σyr∗ Var(r∗t )

 ,

where

Var(xt ) =
(
σ2
S +

σ2
δ

κ2
+ σ

2
r

g2
− 2

σSσδρSδ

κ
+ 2

σSσrρSr

g
− 2

σδσrρδr

κg

)
τ +

+ σ2
δ

2κ3 (1− e−2κτ )+ σ2
r

2g3 (1− e−2gτ )+

+ 2
(1− e−κτ )σδ

κ2

(
σSρSδ − σδ

κ
+ σrρδr

g

)
−

− 2
(1− e−gτ )σr

g2

(
σSρSr + σr

g
− σδρδr

κ

)
−

− 2
σδσrρδr

κg(κ + g) (1− e
−(κ+g)τ )

Var(yt ) = σ2
V τ

Var(zt ) = σ2
r

g2 τ − 2
σ2
r

g3 (1− e−gτ )+
σ2
r

2g3 (1− e−2gτ )

σxy =
(
σSσV ρSV − σV σδρV δ

κ
+ σV σrρV r

g

)
τ +

+ σV σδρV δ
κ2

(1− e−κτ )− σV σrρV r
g2

(1− e−gτ )

σxr∗ =
(
−σSσrρSr

g
− σ

2
r

g2
+ σδσrρδr

κg

)
τ +

+ σδσrρδr

κg(κ + g)(1− e
−(κ+g)τ )− σ2

r

2g3
(1− e−2gτ )−

− σδσrρδr
κg

{
1− e−κτ

κ
+ 1− e−gτ

g

}
+

+ σSσrρSr
g2 (1− e−gτ )+ 2

σ2
r

g3 (1− e−gτ )

σyr∗ = −σV σrρV r
g

τ + σV σrρV r
g2 (1− e−gτ )
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The default probability is given by

Default probability=
∫ ∞
−∞

∫ H

−∞

∫ R

−∞
f (xt , yt , r

∗
t )dxtdytdr

∗
t

+
∫ ∞
−∞

∫ Q

−∞

∫ ∞
R

f (xt , yt , r
∗
t )dxtdytdr

∗
t .

(24)

5. Concluding Remarks

In this paper, we have derived pricing formulae for the commodity-linked bonds
in three cases. In Section 2, the first pricing functionB(St, Vt , δt , τ ) had three
variables beside the time to maturity, namely the commodity price, the value of
the issuer, and the net marginal convenience yield. We have shown several fig-
ures of the bond prices and of the default probabilities as functions of parameter
values in Section 3. These figures provided us certain implication for prices of
the commodity-linked bond and the default probabilities. In Section 4, the second
pricing formulaB(St, Vt , δt , rt , τ ) was an extended version of the first one. This
formula was the pricing function when we allow the stochastic changes for the
interest rate. In Appendix C, the pricing function,B∗(Ct, Vt , δt , τ ), was different
from the first and second ones with respect to its underlying asset. The underlying
asset ofB∗(Ct, Vt , δt , τ ) was a special asset which is a self-financing portfolio
consisting of a unit of commodity and the continuously reinvested net marginal
convenience yield. We note that the closed-form pricing function of this bond
did not include any parameter associated with the convenience yield. In these
derivation procedures, we used the standard no-arbitrage argument to derive PDEs
and took the change of the variables which transformed thenon-linear SDEs to
the linear ones to find the joint probability distribution for calculating the pricing
formulae.

As is well known, commodities and their derivative securities are one category
of the risky assets for the corporate finance. We have to consider various efficient
ways for their hedging schemes in regard to financial risk management. We hope
that the bond pricing formulae that we derived here will provide some help to
practitioners who want to hedge the risk of price fluctuations of commodities.
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Appendix A: Proof for the Independence ofλ1, λ2, andλ3 on the Choice of
the Assets

By the standard no-arbitrage argument, we derived constantsλ1, λ2, andλ3 for
the choice of the three assets, namely, 1st, 2nd, and 3rd bonds in Section 2. They
are tentatively dependent on the choice of three assets. In this appendix, we prove
its independence on the choice of the assets. First, we exchange 3rd bonds to 4th
bonds. The same no-arbitrage argument is valid for this new portfolio and we obtain
a new set of constantsλ′1, λ

′
2, andλ′3 with the following equations:

ϕB,1− r
ϕB,2− r
ϕB,4− r
αS + δt − r

 = λ′1 ·

π1
S

π2
S

π4
S

σS

+ λ′2 ·

π1
V

π2
V

π4
V

0

+ λ′3 ·

π1
δ

π2
δ

π4
δ

0

 . (A.1)

From equationsD = λ1 · A + λ2 · B+ λ3 ·C and (A.1) and (5) (the assumption of
non-singularity), we obtain λ1

λ2

λ3

 =
 λ′1λ′2
λ′3

 =
 π1

S π1
V π1

δ

π2
S π2

V π2
δ

σS 0 0

−1

·
 ϕB,1− r

ϕB,2− r
αS + δt − r

 .

This procedure can be iterated. The iteration is done for exchanging 2nd bond
to 5th bond, and 1st bond to 6th bond. Then we have a unique time dependent
constant set,λ1, λ2, andλ3. Thus, these constants are independent of the choice of
assets. Each of these is called the market price of risk.

Of course, we can imply the same result to the set of constantsλ1, λ2, λ3, and
λ4 in section 4.2 and alsoλ∗1, λ∗2, andλ∗3 in Appendix C.

Appendix B: Decomposition of G·GT

G is a matrix such that

G ·GT =
 S̃2

t σ
2
S S̃t ṼtσSσV ρSV S̃tσSσδρSδ

S̃t ṼtσSσV ρSV Ṽ 2
t σ

2
V ṼtσV σδρV δ

S̃tσSσδρSδ ṼtσV σδρV δ σ 2
δ

 .

To getG, the following decomposition helps:

G ·GT =
 S̃tσS 0 0

0 ṼtσV 0
0 0 σδ

 ·
 1 ρSV ρSδ
ρSV 1 ρV δ
ρSδ ρV δ 1

 ·
 S̃tσS 0 0

0 ṼtσV 0
0 0 σδ

 .

Next, we decompose the second matrix of the RHS above 1 ρSV ρSδ
ρSV 1 ρV δ
ρSδ ρV δ 1

 =
 a 0 0
b c 0
d ē f

 ·
 a b d

0 c ē

0 0 f

T

,
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where{
a2 = 1, b2 + c2 = 1, d2 + ē2+ f 2 = 1

ab = ρSV , ad = ρSδ, bd + cē = ρVδ .

When we assigna = 1, we have

b = ρSV , d = ρSδ andc2 = 1− ρ2
SV .

Now we supposec andf be positive (of course, negative values are feasible. But
we select positive values forc andf as one of the choices),

c =
√

1− ρ2
SV , ē =

ρVδ − ρSV ρSδ√
1− ρ2

SV

, f =
√

1− (ρV δ − ρSV ρSδ)
2

1− ρ2
SV

− ρ2
Sδ .

Then we can writeG as follows:

G =
 S̃tσS 0 0

0 ṼtσV 0
0 0 σδ

 ·
 a 0 0
b c 0
d ē f


=
 S̃tσS 0 0
ṼtσV ρSV ṼtσV · c 0
σδρSδ σδ · ē σδ · f

 .
This argument can be used to obtain a choice ofG for the SDE (18) in relation

to the PDE (17) in subsection 4.3 and the same thing applies to the SDE (C.5) in
Appendix C.

Appendix C: Derivation for the Closed Pricing Formula of
Commodity-Linked BondsB∗(Ct, Vt, δt , τ): One of the Underlying Asset is a
Self-Financing Portfolio

In this appendix, we derive the closed pricing formula for commodity-linked bonds
B∗(Ct, Vt , δt , τ ) with payoff at the maturity such that

min[VT , F +max{CT −K,0}] . (C.1)

We assume thatC(St, δt , t) (in short,Ct ) is the value of a self-financing portfo-
lio, treated in Bjerksund (1991), has a unit of commodityS, and reinvests the net
marginal convenience yield continuously. This has its initial valueC(St, δt , t) =
S(t). This portfolio was treated in Bjerksund (1991), where the evolution of its
value is described by the following SDE:

dC

C
= (αS + δt )dt + σS · dWS . (C.2)
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This equation (C.2) means that the total expected return of this special portfolio
comes from both the expected price changes of the commodityαS and the net
marginal convenience yieldδt . SDEs forVt andδt are the same as in Section 2.
Their correlations between each other are also the same as in Section 2.

We assume hereN (N ≥ 4) different B∗ in the market and the following
matrices are non-singular for any choice of three assetsB∗i , B∗j , andB∗k . θiS θ iV θ iδ

θ
j

S θ
j

V θ
j

δ

θkS θkV θkδ

 , (C.3)

wherei, j, k = 1, . . . , N andi 6= j , i 6= k, andj 6= k .
Note thatθiS , θ

i
V , andθiδ are defined as follows:

θiS =
∂B∗i
∂C
· CσS
B∗i

, θ iV =
∂B∗i
∂V
· V σV
B∗i

, θ iδ =
∂B∗i
∂δ
· σδ
B∗i

.

Other assumptions are the same as in Section 2.
By using the standard no-arbitrage argument as we did this in subsection 4.2,

we have the following PDE for the pricing function of this bond:

∂B∗

∂C
C · r + ∂B

∗

∂V
V (αV − λ∗2σV )+

∂B∗

∂δ
{κ(µδ − δ)− λ∗3σδ} −

∂B∗

∂τ
− r · B∗ +

+ 1

2
· ∂

2B∗

∂C2
S2σ 2

S +
1

2
· ∂

2B∗

∂V 2
V 2σ 2

V +
1

2
· ∂

2B∗

∂δ2
σ 2
δ +

+ ∂2B∗

∂C∂V
CV σSσV ρSV + ∂2B∗

∂C∂δ
CσSσδρSδ + ∂2B∗

∂V ∂δ
V σV σδρV δ = 0 ,

(C.4)

whereλ∗2 and λ∗3 are the market prices of risk for the value of the issuer and
the net marginal convenience yield, respectively. They are dependent on time and
independent on the choice of portfolio assets (see Appendix A).

This (C.4) is the PDE which everyB∗(Ct, Vt , δt , τ ) must satisfy. This (C.4) is
different from (9) in regard to the coefficients of∂B/∂S (and∂B∗/∂C), namely,
the coefficient of the first partial derivative in this PDE is ‘C · r ’ and this does not
include ‘δ’.

Next, we derive the present value of the expected value of the payoff function
(C.1) at the maturity by applying Feynman–Kac theorem. From (C.4), we have the
following SDE:

d

 C̃tṼt
δ̃t

 =
 C̃t · r

Ṽt (αV − λ∗2σV )
κ(µδ − δ̃t )− λ∗3σδ

dt +

+
 C̃tσS 0 0
ṼtσV ρSV ṼtσV · c 0
σδρSδ σδ · ē σδ · f

 · d
 Z̃1,t

Z̃2,t

Z̃3,t

 ,

(C.5)
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where

c =
√

1− ρ2
SV , ē =

ρV δ − ρSV ρSδ√
1− ρ2

SV

, f =
√

1− (ρV δ − ρSV ρSδ)
2

1− ρ2
SV

− ρ2
Sδ .

Note that the drift terms in this SDE (C.5) are linear in the variables. This makes it
easier to solve the PDE (C.4) than to solve (9). By solving the equation (C.5), the
joint distribution of[C̃t , Ṽt , δ̃t ] for the time interval[t0, T ] can be derived by the
theorem 8.5.2 in Arnold (1973, p. 141). The solutions are given by

 C̃tṼt
δ̃t

 =

Ct0 · exp{α(π)+ X̃t}
Vt0 · exp{β(π)+ Ỹt}
γ (π)+ Z̃t

,

where


α(π) ≡

(
r − 1

2
σ 2
s

)
π

β(π) ≡ (αV − λ∗2σV − 1
2σ

2
V

)
π

γ (π) ≡ δt0 · e−κπ + (1− e−κπ )
κµδ − λ∗3σδ

κ

,

π = t − t0, and[X̃t , Ỹt , Z̃t ] are jointly normal distributed with zero means and the
variance-covariance matrix

∑
is given by

∑
=


σ 2
Sπ σSσV ρSV π σSσδρSδ

(1− e−κπ )
κ

σSσV ρSV π σ 2
V π σV σδρV δ

(1− e−κπ )
κ

σSσδρSδ
(1− e−κπ )

κ
σV σδρV δ

(1− e−κπ )
κ

σ 2
δ · (1− e−2κπ )

κ


.

The density functionm(X̃t , Ỹt , Z̃t ) of [X̃t , Ỹt , Z̃t ] is below.

m(X̃t , Ỹt , Z̃t ) = 1

(2π)3/2 ·√det
∑ · exp

{
−1

2
ṽT ∑−1 ṽ

}
, whereṽ =

 X̃tỸt
Z̃t

 .
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Finally, we derive the present value of the expected value of the payoff function
at the maturity. The solution of the PDE (C.4) with initial condition (C.1) is as
follows:

B∗(Ct, Vt , δt , t) =

= E
min{ṼT , F +max(C̃T −K,0)} · e−rτ

∣∣∣∣∣∣
C̃t = Ct
Ṽt = Vt
δ̃t = δt


= E

min{Vteβ(τ)+yT , F +max(Cteα(τ)+xT −K,0)} · e−rτ
∣∣∣∣∣∣
C̃t = Ct
Ṽt = Vt
δ̃t = δt


= Vt · e−rτ−β(τ) ·

∫ H

−∞

∫ R

−∞
exp{yt } ·mXY (xt , yt )dxtdyt +

+ F · e−rτ ·
∫ ∞
H

∫ R

−∞
mXY (xt , yt )dxtdyt +

+ Vt · e−rτ−β(τ) ·
∫ Q

−∞

∫ ∞
R

exp{yt} ·mXY(xt , yt )dxtdyt +

+ (F −K) · e−rτ ·
∫ ∞
Q

∫ ∞
R

mXY (xt , yt )dxtdyt +

+ Ct · e−rτ−α(τ) ·
∫ ∞
Q

∫ ∞
R

exp{xt} ·mXY (xt , yt )dxtdyt ,

(C.6)

wheremXY (xt , yt ) is the marginal density function ofxt andyt and {H | yT =
logF − β(τ)}, {R | xT = logK − α(τ)}, and{Q | yT = log{F + exp{α(τ) +
xT } −K} − β(τ)}.

We note that the derived pricing function (C.6) does not includeδt and the
parameters related to movements ofδt .

Appendix D: Pricing Program on Mathematica for B(St, Vt, δt , τ)

CLB[St_,sp_,k_,a_,ld_,sd_,DE_,Vt_,muv_,sv_,lv_,Rhosd_,Rhosv_,Rhovd_,tau_,K_,F_,r_]:=With[
{
sx = Round[Sqrt[((sp^2)-(2*sp*sd*Rhosd)/k+(sd^2)/(k^2))*tau+2*(1-Exp[-k*tau])*((sp*sd*Rhosd)/(k^2)-

(sd^2)/(k^3))+(1-Exp[-2*k*tau])*((sd^2)/(2*(k^3)))]*10000000]/10000000,
sy = Round[Sqrt[(sv^2)*tau]*10000000]/10000000,
cov = Round[(sp*sv*Rhosv*tau-(sv*sd*Rhovd*tau)/k+(sv*sd*Rhovd*(1-Exp[-k*tau]))/(k^2))*10000000]

/10000000,
rho = Round[(((sp*sv*Rhosv*tau-(sv*sd*Rhovd*tau)/k+(sv*sd*Rhovd*(1-Exp[-k*tau]))/(k^2)))/Sqrt[(((sp^

2)-(2*sp*sd*Rhosd)/k+(sd^2)/(k^2))*tau+2*(1-Exp[-k*tau])*((sp*sd*Rhosd)/(k^2)-(sd^2)/(k^3))+
(1-Exp[-2*k*tau])*((sd^2)/(2*(k^3))))*((sv^2)*tau)])*10000000]/10000000,

alpha = Round[(N[Log[St]]+(DE*(Exp[-k*tau]-1))/k+(r-(sp^2)/2)*tau+(k*a-ld*sd)*((1-Exp[-k*tau]
-k*tau)/(k^2)))*10000000]/10000000,

beta = Round[(N[Log[Vt]]+(muv-lv*sv-(sv^2)/2)*tau)*10000000]/10000000,
R = Round[(N[log[K]]-N[Log[St]]+DE*(Exp[-k*tau]-1)/k+(r-(sp^2)/2)*tau+(k*a-ld*sd)*((1-Exp[-k*tau]

-k*tau)/(k^2))))*100000]/100000,
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P = Round[(N[Log[F]]-(N[Log[Vt]]+(muv-lv*sv-(sv^2)/2)*tau))*100000]/100000
},
Q = N[Log[GF-K+Exp[alpha+x]]]-beta;
N[1/2*Pi*sx*sy*Sqrt[1-rho^2])*0.00001*
(Exp[beta-r*tau]*NSum[NIntegrate[Exp[y]*Exp[(((x^2)/(sx^2))+((y^2)/(sy^2))-((2*rho*x*y)/(sx*sy)))/
((-2)*(1-rho^2))],{y,Round[-6*sy*100]/100,P}],{x,Round[-6*sx*100]/100,R,0.00001},Method->Integrate]
+F*Exp[-r*tau]*NSum[NIntegrate[Exp[(((x^2)/(sx^2))+((y^2)/(sy^2))-((2*rho*x*y)/(sx*sy)))/((-2)*
(1-rho^2))],{y,P,Round[6*sy*100]/100}],{x,Round[-6*sx*100]/100,R,0.00001},Method->Integrate]
+Exp[beta-r*tau]*NSum[NIntegrate[Exp[y]*Exp[(((x^2)/(sx^2))+((y^2)/(sy^2))-((2*rho*x*y)/(sx*sy)))/
((-2)*(1-rho^2))],{y,Round[-6*sy*100]/100,(Round[Q*100000]/100000)}],{x,R,Round[6*sx*100]/100,0.00001}
,Method->Integrate]
+(F-K)*Exp[-r*tau]*NSum[NIntegrate[Exp[(((x^2)/(sx^2))+((y^2)/(sy^2))-((2*rho*x*y)/(sx*sy)))/((-2)*
(1-rho^2))],{y,(Round[Q*100000]/100000),Round[6*sy*100]/100}],{x,R,Round[6*sx*100]/100,0.00001}
,Method->Integrate]
+Exp[alpha-r*tau]*NSum[NIntegrate[Exp[x]*Exp[(((x^2)/(sx^2))+((y^2)/(sy^2))-((2*rho*x*y)/(sx*sy)))/
((-2)*(1-rho^2))],{y,(Round[Q*100000]/100000),Round[6*sy*100]/100}],{x,R,Round[6*sx*100]/100,0,00001}
,Method->Integrate]
)
]
]

Note in Proof

After the final revision of this paper toward this publication, we came to know the work of K.R.
Miltersen and E.S. Schwartz (1997) ‘Pricing of Options on Commodity Futures with Stochastic Term
Structure of Convenience Yields and Interest Rates’. Publications from Department of Management,
School of Business and Economics, Odense University. Their paper develops a model for pricing
options on commodity futures in the presence of stochastic rates as well as stochastic convenience
yields.

Notes

1. The spot (or sheer) price of some commodities such as crude oil are not observed in the market.
We have a forward contract of the crude oil, since it takes a few weeks to deliver the oil. A
device to calculate the convenience yield made by Gibson and Schwartz (1991) works without
using spot prices.

2. For example, the production and transportation of crude oil cannot match with the demand of
the market simultaneously, thus the shortage of crude oil costs much to the buyers of crude oil
at the time being. So, if the shortage occurs in the crude oil market, then the owner of crude
oil can enjoy his privilege, and the convenience yield will be recognized in the crude oil market.
Moreover, in equilibrium, the convenience yield on the marginal unit of storage will be equalized
among all of the potential and current owners of the commodities throughout their competition.
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