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THE COMPLEX PROCESS OF CONVERTING TOOLS INTO
MATHEMATICAL INSTRUMENTS: THE CASE OF CALCULATORS

ABSTRACT. Transforming any tool into a mathematical instrument for students involves
a complex ‘instrumentation’ process and does not necessarily lead to better mathematical
understanding. Analysis of the constraints and potential of the artefact are necessary in
order to point out the mathematical knowledge involved in using a calculator. Results
of this analysis have an influence on the design of problem situations. Observations
of students using graphic and symbolic calculators were analysed and categorised into
profiles, illustrating that transforming the calculator into an efficient mathematical instru-
ment varies from student to student, a factor which has to be included in the teaching
process.
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1. A PRELIMINARY AWARENESS OF A POTENTIAL
NEGATIVE INFLUENCE OF GRAPHIC CALCULATORS

1.1. The French Educational Context

Since 1980, all types of calculators have been freely used in second-
ary school examinations in France. Contrary to the accepted opinion that
graphic calculators are tools for teaching, Trouche and Guin (1996) have
pointed out that while calculators are used by students, the French educa-
tional system has not properly acknowledged their use. However, since
1980, the importance of graphic representations and numerical methods
has been growing in the French secondary mathematical curriculum: offi-
cial comments emphasise the development of experimental processes, in
which calculation tools should play a significant role. The use of calculat-
ors has therefore become an explicit aim in these curricula and the Ministry
of Education and Technology has supported many experiments to promote
the integration of new technologies into teaching. Nevertheless, no more
than 15% of the teachers include graphic calculators in their teaching, in
spite of the fact that all students have a graphic calculator in scientific
classrooms (in the Fifth and Sixth Forms). Teachers appear to resist the
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Figure 1. A representation of tanx on a computer screen.

integration of new technologies even at an elementary level. For example,
how to obtain and read a graph (i.e., window manipulations) is missing
from mathematics curriculum in France: students must acquire these types
of skills by themselves outside of class time.

1.2. Effects on Mathematical Conceptualisation

The educational context described above may cause undesirable effects
on mathematical conceptualisation. As Goldenberg (1987) has already
pointed out: “students often misinterpreted what they saw in graphic
representations of functions. Left alone to experiment, they could induce
rules that were wrong . . . How do misconceptions distort the information
that students glean from the graph?”. We will present examples of student
behaviour when faced with screen representations provided by graphic
calculators. These examples demonstrate the insight of Goldenberg’s
comments.

1.2.1. Confusion Between Mathematical Objects and Their
Representation by Calculators
In a class of 17-year-old science students (with a reference text at their
disposal), when students are facing the screen image (see Figure 1), only
four students evoked an infinity of solutions in their answer.

The remaining students asserted that there was a finite number of solu-
tions (those visible on the screen). An illustrative argument was: after a
certain time, the straight liney = x has no intersection with the graphic
representation of tanx. Seven students even included the intersections of
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y = x with the asymptotes in order to evaluate the number of solutions,
reporting that: the asymptotes are part of the graph, since they appear when
we ask for the graph. Of course, the presence of these asymptotes on the
screen is only an outcome of the modelling of the continuum by the use
of discrete tools. Finally, five students suggested an infinity of solutions at
the proximity of the origin (referring to their perception of the proximity
of the graphs of tanx andx), though they had seen in a theoretical lesson
the tangent at 0 of the graphic representation of tanx.

1.2.2. Conceptualisation of Mathematical Objects that Tools Cannot
Show
When students discover infinitesimal calculus at the last level of second-
ary school, they think that their graphic calculator can show infinity. The
main idea is that graphic calculators may induce illusions as to their
capacities relative to infinity. Trouche and Guin (1996) have related how
the philosophy of ‘seeing is reality’ influences the conceptualisation of the
fundamental notion of limits, particularly as there is no explicit definition
of limit in the French secondary mathematics curriculum. Let us refer to a
significant example, concerning the following question to 100 students 18
years old:

lim
x→+∞ `n x + 10 sinx

All student responses were correct in the modality without the calcu-
lator (50 students). On the other hand, confronted with the rather disturbing
graph produced by the calculator (see Figure 2), students could not come
to terms with the inconsistency of the results displayed by the machine: in
this case only 10% of the answers were correct (50 students). Most students
extrapolated from what was actually visible on the screen and attempted to
deduce information about the curve’s behaviour towards infinity from its
profile. We argue that not having mastered manipulations of the graphic
calculator will lead students to revert to more primitive conceptions of
limits. On the other hand, students without a calculator more often refer
to strategies based on recently acquired knowledge. In this case, the refer-
ence is the text. For the majority of students, because they usually have
their graphic calculator at their disposal, it is the first and often the most
influential, sometimes even the only way to investigate, especially for
mathematically weaker students.

1.3. Instructional Implications

These examples of student behaviour are significantly opposed to those
described in Shoaf (1997) as “a process in which the student is silently
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Figure 2. A representation of̀n x + 10 sinx on a TI-82 screen.

conversing with himself through the calculator, asking questions of himself
as he manipulates the concrete screen image. This leads him to have the
knowledge to conjecture not only what is actually occurring with the
image, but why it is happening. By using the graphic calculator students
are more likely to construct their own mathematical understanding through
conscious reflection”.

Past experiments have concluded that such behaviour does not come
naturally, particularly for mathematically weaker students, and that the
effects of visualisation may be considerably more complex than gener-
ally believed. The challenge is therefore to find out how to achieve the
aim of making the graphic calculator’s visual representation of mathemat-
ical concepts both a heuristic and pedagogic tool, particularly for weaker
students.

There is an unavoidable gap between ‘real’ mathematics and the image
reflected by calculators (at the graphic level as well as at the numer-
ical level). There is an unquestionable discretisation of the continuum
which is rather disturbing for the student: screen images are a represent-
ation of reality, more precisely a display which may distort reality. For
all these reasons, teachers should highlight this transformation and teach
‘image’. The ‘touch and see’ philosophy discussed in Yerushalmy (1997)
allows interesting mathematical reflection to be organised around screen
images, because the chosen problem situations are well adapted to the
technology. However, long-term activities on functions whose behaviour
on the screen leads to a good prediction of the limit (this is the case
for rational functions) may reinforce student tendencies to extrapolate a
function’s behaviour towards infinity. Moreover, if the conceptualisation
of limits at infinity depends on the possibility of going beyond the idea
of monotonic closeness widely held among students (Trouche and Guin,
1996, p. 328), then is there a risk of creating a learning obstacle to an
expert conception of limits at infinity?

Considering the above-mentioned problem situations, the difficulty of
elaborating situations which enhance the potential of the tool may be
estimated in order to organise a new learning environment and promote
more interesting mathematics tasks. Teachers should integrate the graphic
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calculator as a heuristic, pedagogic and cognitive tool, because this integra-
tion is not necessarily spontaneous: the calculator is not an efficient
mathematical instrumentper se, even if the transformation is quickly
made for certain individuals. It is only through a complex process that
students will be able to combine different available sources of information
(theoretical text, a calculator, calculation by hand) to construct their own
mathematical understanding.

A teacher’s assistance in this process requires analysing the charac-
teristics of the technology, taking into consideration previous research in
the field of computer-based learning environments, so as to anticipate the
changes it may introduce to the learning environment.

2. THE NECESSITY OF INSTRUMENTED ACTIVITY
ANALYSIS

2.1. Lessons from Computer-Based Learning Environment Studies

Artigue, in her synthesis of the relationship between computer-based
environments and learning theories (Artigue, 1997), states that the analysis
of the computer’s potential for mathematics learning has been strongly
influenced by constructivist approaches viewing cognition as an adaptive
process where knowledge is actively built by the subject. Computers serve
the purpose of renewing teaching practices by managing technical compu-
tations, thus potentially promoting more conceptual understanding. In this
context, the new role of the teacher is to organise and encourage interaction
with the computer environment. This approach is stressed in advanced
mathematical thinking: “We see the computer already proving a power-
ful tool in advanced mathematical thinking in mathematics education at
the higher levels. The empirical evidence shows that it proves to be more
successful in the educational process when it is used to enhance meaning
through the use of computer environments for exploration and construction
of concepts” (Dubinsky and Tall, 1991, p. 243).

Artigue pointed out an appreciable evolution in recent research with
particular emphasis placed on the role played by the material tools of
mathematical activities: “emphasis is put on the fact that, due to their
characteristics and also due to the way they shape and constrain the
possibilities of interaction with mathematical objects, they deeply condi-
tion the mathematics which can be produced and learnt” (Artigue, 1997,
p. 2). In this way, by exploiting the computer as a window on the multiple
ways mathematical meanings are constructed, the new model revises math-
ematical meanings and focuses on the individual role of mathematical
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meaning dependent on a given environmental context: “these tools wrap
up some of the mathematical ontology of the environment and form part
of the web of ideas and actions embedded in it” (Noss and Hoyles, 1996,
p. 227). The authors underline the users’ difficulties, in these new ways
of constructing meaning, in building connections with the official math-
ematics outside the microworld. These observations are confirmed by the
examples cited earlier. Thus, the teacher’s role is to draw attention to
the appropriate connections in the web: he or she has a crucial responsi-
bility in shaping the relationship between the computational media and
mathematical knowledge.

However, this completely revised didactic thinking requires consider-
ation of a set of mathematical and didactic constraints which are imple-
mented in the design of the environment: “Learning is based as much
on these constraints as on the possibilities of investigations” (Dreyfus,
1993, p. 128). Dreyfus stresses the importance of the choice and the way
activities are promoted by the teacher for making an effective learning tool.

One cannot avoid the new complexity caused by the introduction
of technology to the classroom. Computer-based devices introduce a
new source of knowledge transformation caused by the specificity and
constraints of sophisticated representation systems both at the interface and
inside the machine, as well as technical constraints imposed by operating
systems (Balacheff, 1993, p. 147). Balacheff uses the term “computa-
tional transposition” for the process which leads to the implementation
of a knowledge model. The teacher’s presence is necessary to make that
knowledge compatible with the national mathematics curriculum.

In order to understand what kind of knowledge can be learnt in these
computer environments, how and in what forms, it is necessary to give
due consideration to student experiences. Artigue studied the adaptive
processes at play in mathematical work with DERIVE (a computer algebra
system). She noted that “even if perceptive processes are piloted by math-
ematical knowledge, mathematical knowledge engaged remains limited”
(Artigue, 1997). Similarly, faced with difficulties in interpreting feed-back,
instead of engaging more mathematical knowledge, students often prefer
to use a trial and error strategy. Weaker students often do not question
results; activities do not necessarily lead to reflective work, but may instead
lead to behaviour she has called “fishing behaviour” (Artigue, 1995). The
widespread idea that computer environments, because they can appear to
take on technical aspects of mathematical activity, spontaneously induce
mathematical activity, which is both more reflective and conceptual, must
be challenged. Unfortunately, the “economy of the adaptive processes”
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observed during these experiments with DERIVE is also far from the
desired student behaviour mentioned in Section 1.3 (Shoaf, 1997).

If, as teachers and educational researchers, we are aiming to encourage
such behaviour, it is essential to attempt to understand what type of math-
ematical knowledge is at play in the perceptive processes of an efficient
expert and how this is connected to more analytical processes. This is
a prerequisite to efficient teacher intervention in the interaction process
involving artefacts and students to be studied in Cognitive Ergonomy.

2.2. Instrumented Activity in Cognitive Ergonomy

This analysis stems from Vygotsky’s hypothesis (Vygotsky, 1930), which
states that artificial systems can extend man’s cognitive capacities by
developing his ability to act on the environment. Natural processes do
not disappear, but are integrated with the instrumented act and become
dependent on the instrument. As language and thought are related
(see Vygotsky, 1962), Vygotsky points out the fundamental relationship
between gestures and thought. Verillon and Rabardel’s studies focusing on
learning processes involving instruments in the area of cognitive ergonomy
are based on this idea. If cognition evolves through interaction with the
environment, accommodating to artefacts may have an effect on cogni-
tive development, knowledge construction and processing, and the nature
itself of the knowledge generated (Verillon and Rabardel, 1995, p. 77).
They suggest models and concepts to analyse the instrumented activity of
children confronted with tasks involving artefacts.

Verillon and Rabardel stress the difference between the artefact (a
material object) and the instrument as a psychological construct: “The
instrument does not exist in itself, it becomes an instrument when the
subject has been able to appropriate it for himself and has integrated it
with his activity” (Verillon and Rabardel, 1995, p. 84). The subject has
to develop the instrumental genesis and efficient procedures in order to
manipulate the artefact. During this interaction process, he or she acquires
knowledge which may lead to a different use of it. Similarly, the specific
features of instrumented activity are specified: firstly, the constraints
inherent to artefacts; secondly, the resources artefacts afford for action;
and finally, the procedures linked to the use of artefacts. The subject is
faced with constraints imposed by the artefact to identify, understand and
manage in the course of this action: some constraints are relative to the
transformations this action allows and to the way they are produced. Others
imply, more or less explicitly, a prestructuration of the user’s action.

The reorganisation of the activity resulting from the introduction of
instruments also affords new possibilities of action which are offered to
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Figure 3. From an artifact to an instrument, the instrumental genesis.

the user; they may provide new conditions and new means for organising
action. Thus, it can be argued that, because the instrument is not given
but must be worked out by the subject (see Figure 3), the educational
objectives stated above require the analysis of the instrumented activity
of artefacts involved in the learning processes.

3. PRELIMINARY ANALYSIS OF THE CONSTRAINTS AND
POTENTIAL OF SYMBOLIC CALCULATORS

Symbolic calculators have the potential to combine two modes of calcula-
tion: exact calculation and the approximate calculation of graphic calcu-
lators. The following will give an outline of the constraints introduced
by the TI-92, a symbolic, graphic and geometric calculator, available in
France since 1996 (including specific versions of DERIVE and CABRI
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Figure 4. No recognition of the exact value of cosπ/16 by the TI-92 CAS.

software). These constraints shape its potential in terms of types of
actions and their management. They are specific to TI-92 but, with
some modifications, they could be adapted to any calculator of the same
type.

3.1. Constraints of Symbolic Calculators

Trouche (1996) has characterised three types of constraints which are
significant elements of the computational transposition of mathematical
knowledge: the internal constraints linked to the internal representation of
objects and their calculation processing, the command constraints linked
to the possibilities of action given to the user (choice of implemented
commands) and the organisation constraints linked to the commands’
access and their organisation. The last two types of constraints include
constraints linked to the interface and are involved in the prestructura-
tion of users’ action. This triple net of constraints offers access to the
computational transposition of mathematical knowledge.

3.1.1. Internal Constraints
Three types of internal constraints can be noted, all inter-related.

(1) Those caused by the inevitable limitations of the symbols available
in memory (a characteristic specific to symbolic calculators). For instance,
the calculator gives the exact value of cosπ/8, whereas it does not recog-
nise cosπ/16. Obviously, from the formula cosπ/8 = 2(cosπ/16)2− 1,
the calculator may calculate the exact value of cosπ/16 by solving the
equation.

However, because the exact value of cosπ/16 is unknown to the calcu-
lator, it will never recognise that the suggested value is the correct one
(see Figure 4). The calculator’s limitations may produce results whereby
mathematical consistency is not easy to find.
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Figure 5. A diagram showing the consequence of a discrete trace: an unusual period for
the sine function.

(2) the constraints linked to the discrete traces on a screen composed
of a finite number of pixels. This discretization phenomenon (the same
for graphic and symbolic calculators) may lead to inconsistent graphic
representations depending on the chosen window. For instance, if the
displayed function is periodic and if the distance between two calculated
points on thex-axis is almost equal to the period (so that the calculated
images are near), the graphic calculator joins the successive calculated
points, and in this way masks the oscillations between them. Above (see
Figure 5) is a diagram illustrating this process. It will be shown in Section
4 that, in spite of the presence of DERIVE, the misleading effects such
images may encourage do not immediately disappear when the TI-92 takes
the place of the graphic calculator.

(3) the constraints linked to the coexistence of several modes of calcu-
lation within the same tool. For example, the equationx2 − (1 +

√
2)x +√

2 = 0 has two roots, 1 and
√

2. In the exact mode, the TI-92 gives the
two roots in an unsimplified form, whereas in the approximate mode the
calculator gives two roots which look close to 1 and

√
2. The problem is

that the machine refuses to identify the two roots it has found with the
obvious ones (1 and

√
2) (see Figure 6 below).

Beyond the resolution of equations, avoiding discussion on how the
computer operates internally, such answers question fundamental math-
ematical notions such as true or false. Many examples can be given where
results may disturb students; consequently, the teacher should present
situations leading to reflection on the various results from different calcu-
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Figure 6. No recognition of the roots.

lation modes. Connections between real and complex numbers, exact and
approximate calculations are not perfectly clear and require mathematical
knowledge.

3.1.2. Command Constraints
The syntactic requirement is demanding and has to be memorised (as is
usual in CAS systems), although the screen display of the input facilitates
syntax control. However, even if the syntactic constraints cause difficulties
for students, it may be considered as a training feature. In problem situ-
ations involving functions, the syntactic strictness of commands requires
that the difference between variable, parameter, function, bound, etc., be
noted.

On the other hand, the coexistence of two main modes of calculation
may encourage students to bypass procedures. For instance, if they do not
get a result with the limit command in the exact mode (which may occur
quite frequently), they can find it by requesting the value of the function
in the same mode. Another possibility is to enter the approximate mode;
in that case, the limit command can also provide a result. These bypass
procedures are particularly used in solving equations, because when roots
are not sufficiently obvious the HOME application only solves equations
of first and second degree. Thus, in the opposite case, there is a temptation
to enter the approximate mode, but then some solutions may appear, and
others disappear. For example, the TI-92 only gives one positive solution
for the equation ex = x50. Moreover, if the conditionx> 100 is added, this
solution disappears, but another appears (see Figure 7 below).

We argue that, contrary to widespread opinion, the presence of
symbolic commands does not necessarily exempt one from reflection,
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Figure 7. The resolution of ex = x50 on several intervals, in exact, then in approximate
calculating mode.

because one cannot avoid the commands limitation. On the contrary, it
may suggest questions which have not been anticipated by teachers.

3.1.3. Organisation Constraints
Unlike graphic calculators, calculation holds a privileged theoretical place
in the TI-92, because the formal application HOME, able to handle exact
and approximate calculations, provides an entry feature as simple as the
graphic calculator. Actually, the situation is still more complex because
it is difficult to reduce a function to a formula without seeing its graphic
representation, giving some reality to the mathematical object. Moreover,
the access to approximate calculation is easier because it is shortened by
a special key stroke, whereas changing to the calculation mode requires
a sequence of five or six key strokes. Therefore, the exact mode will not
necessarily be the reference mode for students, even if it is privileged by
the teacher.

3.2. Potential of Symbolic Calculators

The potential of learning environments has been widely described in
mathematics education. Keitel and Ruthven (1993) provide a synthesis.
Since their main ideas have already been discussed in Section 2.1, this
section will merely recall the main point underlying research in this area:
new learning environments offer the possibility of developing various
new mathematical activities including interplay between the algebraic,
graphic and tabular settings in order to promote experimental work. In
these various settings, the mathematical objects, become new objects,
called representatives by Schwartz and Dreyfus (1995). For example, in the
graphic setting, a representative is obtained by choosing a viewing window.
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By means of actions on these representatives, students can discover
invariant properties that provide new ways to understand a concept.
Handling these representatives requires new skills and a certain art, called
“window shopping” by Hillel (1993). Moreover, these actions have to be
verbalised and an appropriate language has to be developed to discuss
the software phenomena. These new ways of constructing meaning for
students by weaving their web of ideas and actions in the learning environ-
ment (Noss and Hoyles, 1996) are likely to have an impact on the
conceptualisation of functions. Throughout the examples given above, it is
clear that connections must be built with official mathematics, a far from
easy task. The teacher interaction in this process is confirmed as crucial.

There is no doubt that reflection on the integration of new symbolic
calculators and the use of computers as learning tools is closely linked.
However, even if the applications of these new calculators correspond
to previously available software, the main difference is that students can
always have them at their disposal, facilitating, at least theoretically, their
appropriation. It has already been pointed out how calculator manipula-
tions always involve mathematical knowledge, in the handling of graphs,
approximate and exact calculations and in the control of numerical approx-
imations. The potential and constraints described above obviously involve
issues concerning the implementation of mathematical work.

4. AN INSTRUMENTATION EXPERIMENT

4.1. The Experimental Context

4.1.1. Guiding Ideas
The teacher is the designer of activities where mathematics is the central
focus. We know from Dorfler (1993) and Ruthven and Chaplin (1997) that
experiences with calculators do not easily lead to cognitive reorganisa-
tion and that the organisation of learning activities is crucial to attaining
some cognitive reorganisation. Therefore, situations have to be carefully
designed in order to take advantage of the constraints and discrepancies
caused by calculators, which may be considered as new learning potential.
The choice of the applications involved in the activity and their articulation
aims to improve investigation by enhancing varying points of view (for
instance, the articulation between the algebraic and graphic settings). It is
precisely because mathematical objects are not in the tangible world that
the differentiation between a mathematical object and its representation is
at the heart of the learning process. The two key points for learning are the
functional differentiation and coordination of semiotic registers developed
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by Duval (1996). In addition, these coordinations constitute the threshold
which, when crossed, provokes a radical change within the student’s atti-
tudes with regard to the conscious level of the cognitive process, i.e., to the
initiative and command capacities. There is no doubt that the calculator
deeply modifies ways of interweaving various registers and coordinating
them.

One must therefore develop situations aiming to foster experimental
work (investigation and anticipation) with interactions between graphic
observations and theoretical calculus, and to encourage students to
compare various results of different registers in order to tackle the distor-
tion between the paper and machine environments, precisely because it
is not a natural behaviour. This reflection is needed in order to seek
mathematical consistency in various results and will motivate students to
improve the mathematical knowledge required to overcome these contra-
dictions (such as the distinction between approximate and exact calcula-
tion, control of numerical approximations, reflection on the unavoidable
discretization of the screen and the nature of representatives and calcula-
tion algorithms).

This mathematical knowledge is necessary to understand commands as
well as their limitations, to distinguish mathematical objects from calcu-
lator representations and mathematical processing from internal calculator
processes, and finally to convert the symbolic calculator into a mathe-
matical instrument. The experiment reported herein attempted to collect
information on the different ways students actually make use of the calcu-
lator, in order to understand, through the evolution of their strategies, how
they instrumentalise the calculator and the mathematical effects of this
transformation process. It was also the aim of this experiment to determine
what mathematical knowledge can underlie instrumentation.

4.1.2. Designing a New Study Environment
The French Ministry of Education supported an experiment in which ten
classes were provided with symbolic calculators. The following describes
the experimental organisation used in two of these classrooms (15/16
and 17/18-year olds). During the first three months of the school year,
the older group of students used graphic calculators, then during the last
six months the class went on to use symbolic calculators (TI-92). Each
student had the use of a TI-92 both at school and at home. The organisa-
tion described below was used first in a graphic calculator environment
then in an environment using symbolic calculators. From the beginning
of the school year, for the theoretical lesson itself and for the practical
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Figure 8. Organisation of a lesson in a calculator environment.

sessions, the time and spatial organisation of the learning activities were
reconsidered.

Throughout the lesson both a blackboard and a screen (displaying one
of the calculators) were used. This combination enabled the individual
student’s work, both on paper and using the calculator, to be guided by
the teacher (see Figure 8 below). Each student took a turn operating
the projected calculator. This student, called a ‘sherpa student’ played a
central role in the layout of the lesson as a guide, assistant and medi-
ator. Traditional classroom relations were altered: new classroom relations
were established between the sherpa student and the other students as
well as between the sherpa student and the teacher. This new context
favoured classroom debates, pointed out the various student behaviours
and was essential to counterbalancing the rather individualistic relation-
ship students tend to have with a small screen. This organisation also
enabled the teacher to become aware of the different steps in the student
appropriation process of the instrument and reinforced the social aspect of
this construction (see Section 2.2).

Such organisation entailed a rearrangement of study time: the various
phases (observation, confrontation of results, testing different strategies)
were longer. The teacher had to keep in mind both the potential and limits
of the calculator throughout (see Section 3). This required the teacher to
have a thorough knowledge of the calculator. The practical sessions were
inserted as one-hour weekly sessions. The students worked in pairs (see
Figure 9 below).
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Figure 9. Practical sessions in a calculator environment.

Various problem situations were created aimed at promoting interaction
between calculators, theoretical results, and handwritten calculations as an
aid to conjecture, test, solve and check. After working on these problem
situations in groups of two or three, each group had to explain and justify
their observations or comments, noting discoveries and dead-ends in a
written research report. The role of this report was twofold:

− it focused the student activity on the mathematics and not on the
calculator, forcing students to give written explanations for each stage
undertaken in their research (a very important step);

− it gave the teacher a better understanding of the various steps of the
the students’ behaviour, so as to offer appropriate assistance to help
students out of deadlocks, to reinitiate reflection and to follow, week
by week, the students’ instrumental genesis.

Throughout this phase, the teacher was a consultant giving hints and
dealing with problems as they arose in this new educational context. There
is no doubt that in this case, teachers and students play a new role, as
stated by Monaghan (1997): “the teacher is viewed as a technical assistant,
collaborator, facilitator and as a catalyst, and students have to cooperate in
group problem solving”.
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During the next session, a synthesis with an overhead calculator manip-
ulated by a sherpa student, allowed the teacher to organise a group
discussion and compare various approaches (different calculator and paper
applications). The teacher’s role was to compare different strategies, point-
ing out the contribution of each group, and suggesting questions designed
to make students discuss the inconsistent results and seek mathematical
consistency in the various results found. This collective synthesis is crucial
because it allows the teacher to propose institutionalisation (recognition of
student productions which are to be retained as knowledge) and decontex-
tualisation of the desired mathematical knowledge. The teacher’s role in
this phase is well described in Dreyfus (1993, p. 113).

At the beginning of the experiment, the phase of the written research
report was not readily accepted by the students, perhaps because they
did not see the benefit of it. However, after several weeks they began to
realise how this report could be a useful basis for launching experimental
work, because the teacher had frequently referred to this written report
throughout the synthesis phase. This new aspect of the didactic contract
required a good deal of time to become an established and accepted feature
of the student work. Similarly, the students’ awareness of the necessity of
a mathematical proof in this new educational environment was not imme-
diate: it is only later on that students considered calculators as an aid to
conjecture or checking, but not an exemption from proof. More generally,
the management of experimental work in the classroom is a long-term
process which requires considerable time to observe, exchange and reflect
on all the collected data. Various difficulties arise when confronted with
the institutional constraints, requiring that new specific rules be designed.

4.2. An Example of Situations

The following is one example of 17 to 18 year-old students, used to present
the approach in a more concrete form. More details about these exper-
iments may be found in Guin and Delgoulet (1996) and Trouche (1996).
This problem generalizes the solving of the equation previously mentioned
in Section 3.1.2.

Our purpose is to study the equations ex = x10n, wheren is a strictly positive integer (the
first equation is therefore ex = x10, the second one is ex = x20, etc.).

1. How many solutions has each of these equations got? (Prove your answer!)

2. Can you give an approximate value (10−5 by default) of the solutions of the first,
second, third and tenth equations?

3. Can you suggest conjectures for the behaviour of the sequences of solutions whenn
increases?

4. Can you prove some of these conjectures?
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This situation was chosen in order to suggest two main questions: first, is
there always a large positive solution (the calculator does not give it for
n = 2); and second, is it possible to organise the results into sequences of
solutions? Beyond these questions, the skills aimed at were familiarisation
with reference functions, dealing with various representatives, questioning
the machine’s results when appropriate, and finally proving the problem
as soon as conjectures were formulated. Additional example situations can
be found in Trouche (1996).

4.3. Change in Student Behaviour

Various data were collected from questionnaires focusing on mathematical
tasks and the students’ relationship to the calculators (called the students’
barometer), the observation of some groups during the research phase, the
students’ written research reports and from interviews of selected students.
For reasons of space, students’ behaviour in terms of interviews and screen
captures will not be detailed: this kind of description can be seen in Guin
and Delgoulet (1996). The following gives an overview of the change in
student behaviour during the experiment.

4.3.1. Awareness of the Constraints and Potential of the Tool
The students aged 15/16 had both discovered symbolic calculations and
the graphic calculator. The manipulation difficulties in the algebra applic-
ation observed at the beginning as parenthesis management or message
interpretations progressively disappeared, certainly because the teacher
turned his attention to them throughout the experiment. However, a correct
manipulation asFactor or Expandrequires that students give an explicit
mathematical meaning to these commands. Consequently, manipulation
difficulties reveal conceptual difficulties such as the recognition of factor-
ized and developed forms of an algebraic expression. However, the differ-
entiation between a mathematical object and its representation cannot be
made without recognising two equivalent algebraic expressions. Although
they were relieved of the technical tasks, many students could not work out
strategies of comparison between expressions.

Moreover, a surprising result did not necessarily induce a question,
especially for weaker students. Monaghan describes the embarrassment
felt in such situations, even for experts: “We thus engaged in a successful
problem solving feed-back loop with the aid of the calculator. But, the
reality is not always successful: perhaps we do not get what we expected
or cannot make sense of the output we get. We get an unwanted feedback
loop of cognitive noise that can effectively obscure the mathematics at
the heart of our use” (Monaghan, 1997, p. 2). In this context, we have to
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recognise that weaker students often give up the idea of understanding the
command’s meaning and what it does.

As a result, we observed avoidance strategies of various forms:

• automatic translations of the questions in terms of commands trans-
lating the statement word for word;

• generalising the command validity (for example, the use of the
commandSolvefor solving an inequation, whereas students know this
command is specific to equations);

• random trials and zapping to other commands in the same menu.

No doubt this behaviour is different from the activity in the paper/pencil
environment where trying something else already requires careful thought.
The main difference between the two environments is precisely that which
occurs with the calculator, students lose consciousness of the task and there
is little mathematical work in their activity. Once more, it is notable that the
calculator does not automatically induce a more questioning and reflective
mathematical attitude, as Artigue has also found (Artigue, 1997).

These students had discovered the graphic calculator simultaneously
with the introduction of the function concept. Conceptual difficulties were
likewise revealed and interfere with manipulations of graphs (confound-
ing coordinates, erroneous graphic interpretations linked to definition or
image domains, etc.). Beyond the difficulties linked to treatments within
the graphic register, new difficulties arose when the algebraic and graphic
registers interact (interpretation of the functionSign, distinction between
function and equation required by the syntax of commands, confusion
between the approximate calculations of the graphic register and the
exact calculation of the algebraic register). Conceptual knowledge rela-
tive to functions had only recently begun to emerge and put obstacles
in the conversion of representations from one register to another (for
example conversion of an inequation to a graphic problem). Therefore,
a specific exercise during several sessions was organised on the coordin-
ation between these two registers with regard to functions, equations and
numbers. Even if students had not really undertaken experimental activ-
ities such as conjectures, proofs and refutations (which is not natural at
all in the French educational context), they became aware of the possi-
bilities of visualisation, anticipation and verifying offered by this interplay
between several registers, even if they were not comfortable enough with
the machine to take such initiative by themselves.

Focusing on the instrumental genesis, two phases become distinct.
The first phase is the discovery phase of various commands, their effects
and their organisation. This phase was mainly characterised by a strong
dependence on the machine where students often disregarded other
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information sources, displayed in Figure 10 as theoretical knowledge or
paper/pencil work. This phase was also revealed by students doing pioneer-
ing work associated with a wide use of available commands. Observations
showed that they seldom referred to understanding tools (see Figure 10)
in this phase which, nevertheless, revealed a first instrumentation level
with a great diversity of strategies and techniques. As soon as commands
gained mathematical meaning, students focused their action on a limited
number of them. This second phase was an organisation phase which is
characterised by a pruning attitude towards the first strategies and tech-
niques. It occurred simultaneously with a progressive awareness of the
effective constraints and potential uses of the calculator and a decreasing
trust of the machine’s results. It is also a phase in which students began to
organise their actions in relation to fewer commands and to consciously
coordinate them, with each other and with the other information tools,
by means of what is here called the understanding tools. The student’s
command process is characterized by the conscious attitude to consider,
with sufficient objectivity, all the information immediately available not
only from the calculator, but also from other sources and to seek math-
ematical consistency between them. In more technical terms, it can be
characterized by the propensity to choose strategies that are relevant rather
than avoid those that are irrelevant (see Houdé, 1995).

The mathematical profile of students will determine how long it takes
to go beyond this first level, even if learning activities are assumed to be
organised by the teacher in this way. However, throughout the experiment,
it was observed that the more manipulations were mastered, the more
students were able to involve themselves in mathematical work.

4.3.2. Behaviours Profiles
In the experimental class of students 17 to 18 year-old, a great variety
of behaviour was observed. In order to analyse the change in student
behaviour in the instrumentation process, the following five profiles of
behaviour were defined before the introduction of symbolic calculators,
taking into account the mathematical profile, the relationship to the graphic
calculator and the main features of student behaviour. From the observa-
tion of students using their graphic calculators, in particular during the
practical sessions, and by examining their written work, especially their
research report, the following profiles were defined:

• random work method, characterised by similar student difficulties,
whether in the calculator environment or in the traditional paper/
pencil environment. The tasks were carried out by means of cut and
paste strategies from previously memorised solutions or hastily gener-
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Figure 10. Calculation in a calculator environment.

alised observations. Therefore, the rather weak student’s command
process is revealed by trial and error procedures with very limited
references to understanding tools and without verifying strategies of
machine results.

• mechanical work method, characterised by information sources more
or less restricted to the calculator investigations and simple manipula-
tions. However, reasoning is based on the accumulation of consistent
machine results. Student’s command process remains rather weak,
with an avoidance of mathematical references.

• resourceful work method, characterised by an exploration of all avail-
able information sources (calculator, but also paper/pencil work and
some theoretical references). Reasoning is based on the comparison
and the confrontation of this information with an average degree of
student’s command process. This is revealed by an investigation of a
wide range of imaginative solution strategies: sometimes observations
prevail, other times theoretical results predominate.
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Figure 11. Typology of the different types of student behaviour.

• rational work method, characterised by a reduced use of the calcu-
lator, mainly working within the traditional (paper/pencil) environ-
ment. The specificity of this behaviour is a strong student’s command
process with an important role played by inferences in reasoning.

• theoretical work method, characterised by the use of mathematical
reference as a systematic resource. Reasoning is essentially based
on analogy and over-excessive interpretation of facts with average
verifying procedures of machine results.

The summary of this typology is shown in Figure 11; for each of the
profiles (for example, theoretical work methods) the following criteria
were given:

− on the first line, the understanding tool most referred to (in this case,
interpretation);

− on the second line, the information tool most referred to (in this case,
theoretical knowledge);

− on the third line the proof method most referred to (in this case,
analogy).

These categories are obviously not exclusive: a given student cannot be
exactly classified in one of the given profiles. However, this above typology
is very useful for two reasons:
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Figure 12. A strange graph.

− it establishes the different features of the overall class, which enables
extreme types of behaviour to be identified;

− it allows the students’ change in behaviour to be followed during the
experiment. According to these different types, the instrumentation
process evolved differently over a varying length of time.

4.3.3. An Illustration of this Typology Based on Student Work
This problem was carried out, using graphic calculators, during one of the
first practical sessions of the school year.

P(x) = 0.03x4 − 300.5003x3 + 5004.002x2 − 10009.99x− 100100.

a. Determine the limit in +∞;

b. Determine a window which confirms your result.

The difficulty comes from the distance between the four real roots
(−10/3, 10, 10.01 and 10000) which makes the choice of a relevant
window difficult (see Figure 12 above). On the standard window, the graph
which is obtained is not easy to interpret. On a fitted window, the graph
does not correspond to the students’ idea of a +∞ limit for a function. The
problem is solved differently by each type of student:

A result showing the theoretical profile.Student A applied the theorem
which was learnt in class: this polynomial function has the same limit
in +∞ as its term of highest degree. Therefore, lim+∞ P is +∞. Through a
drawing on paper, A indicated that he knew the overall shape of a 4 degree
polynomial (see Figure 13 below).

To find an adequate window, A chose a range of abscissa (0, Xmax),
adjusted Ymin and Ymax using the highest degree term: Ymax =
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Figure 13.

0.03(Xmax)4. Then he increased Xmax until he obtained a window which
corresponded to the expected graph. This mechanical adjustment of the
ordinate and the fact that A a priori knew the general shape, allowed him
to find an appropriate window quickly. It was noted that this student was
able to use theoretical results to solve theoretical problems and also to
solve practical problems.

A result showing the rational profile.In order to establish the limit, student
B reproduced the method seen during the lesson (that is to say, demonstrate
the theorem). She factorized the term of the highest degree:

P(x) = x4(0.03− 300.500
1

x
+ 5004.002

1

x2
− 10009.99

1

x3
− 100100

x4
).

B was able to give the limits of each factor of this function, then, by
applying the theorems on the sums and products of limits, she found
the limit of P . In order to obtain an appropriate window, B undertook
a classical study of a function: the derivative ofP , then the derivative
of P ′ and the sign ofP ′(x). Due to lack of time, B could not finish the
work, which was extremely long. Her behaviour was characterized by a
linear method based on the reproduction of very general calculations, not
necessarily the most appropriate for this particular problem.

A result showing the random profile.Student C took a rather long time
to enter the expression into the function editor of the calculator. He was
unable to analyse the graph shown on the standard window or to obtain
a more appropriate window, and was not able to use a more theoretical
approach, which seems too difficult for such a complex object. The only
relevant information was obtained from the table (values of the function,
see Figure 14). The result given (after carrying out tests) was: lim+∞ P =
−∞.

A result showing the mechanical profile.From the beginning, student D
started looking for an appropriate window for the graph and carried out
various tests involving numerous commands:
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Figure 14.

Figure 15.

− the Tracecommand led to the location of points situated outside of
the screen and therefore, the student redefined the window to allow
the overall graphic representation to be shown;

− secondly, theZoomcommands allowed quicker searches (see Figure
15).

D used all explorations possible on this calculator (using the widest
possible range for thex variable). In this way, she obtained the required
result using only the resources of the calculator, without any reference to
theoretical results, and without putting any trace of her work on paper.

A result showing the resourceful profile.Using theorems learnt during
lesson, student E was able to assert that lim+∞ P = +∞. Then he looked for
confirmation through a graphic representation of the function. After some
concordant tests, he assumed that the graphs invalidated his first result
obtained by theory: the function seemed to be strongly decreasing, even
for high values ofx. E, therefore, tried to solve this contradiction and tried
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to find a justification for the exceptional status of this function. Observing
the expression of P, he noticed that the coefficient ofx3 was extremely
large while the coefficient ofx4 was very small. For E, this point justified
the exceptional status of this polynomial:

− for standard coefficients, it is the term with the highest degree which
counts;

− in this case (a great difference between these coefficients), it is the
termx3 which counts. Therefore lim+∞ P is +∞. In this case, it is clear
that the characterization of this behaviour was the search for coher-
ence when confronted with the various results from different sources,
validating the final results.

4.3.4. The Change in the Different Profiles Throughout the
Instrumentation Process
The observation of students with the profiles defined above allowed the
change in student behaviour to be followed in a symbolic calculator
environment.

• rational work method: the use of symbolic calculators seemed to be
mastered whereas these students were not very interested in graphic
calculators. They were more attracted by symbolic calculators, prob-
ably because these tools incorporate not only approximate calculation
and graphs, but also exact and formal calculations. The adaptation
to the particular syntax of the machine was easy. Moreover, their
behaviour was perceptibly modified with more conjectures and more
partial validations, even in assessment situations.

• resourceful work method: these students also control their experi-
mental processes of conjectures and validations well, but they had
more difficulty in meeting the calculator’s requirements, especially
with regard to its new syntax. Symbolic calculators seemed to foster
a rationalisation of their behaviour.

• theoretical work method: the effect was more contrasted for these
students who found it difficult to adjust to the new syntax of symbolic
calculators, referring to the mathematical syntax. Moreover, faced
with the lack of an answer from the calculator, they may challenge
it by trying to force the answer. This strategy may be disturbing when
it occurs in a situation with time constraints (assessment situations).

However, for these three types of behaviour, the effects seem to be
favourable at different levels. The situation is clearly different for the
other students (random and mechanical work methods), and there is a
gap between two subgroups of students: some students, who had sufficient
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mathematical background, had undertaken the additional work of adapting
to the machine with positive effects. Conversely, some students did not
have the mathematical knowledge necessary to overcome the new diffi-
culties arising on the screen (for instance, interpretation of feed-back), and
were inefficient in their analysis of the results. Often they gave up any
idea of understanding, copying the formula into their notebook without
any interpretation, a behaviour already described in Section 4.3.1.

Finally, with regard to the students’ relationship to symbolic calcu-
lators, it is necessary to stress the change in their behaviour in terms of
student’s command process. For rational students, this process remained
strong; for theoretical students, it increased, whereas the other profiles
revealed a reduction of student’s command process, which seems to
be inversely proportional to the calculator power. Moreover, comparing
student behaviour with and without the symbolic calculator, an unquestion-
able independence with regard to the calculator for rational and theoretical
students was observed, i.e., these students could calculate function limits in
the two environments. At the other extreme, there was a significant depend-
ence on the part of the other students with regard to symbolic calculators,
especially for random students who lost all control over results and could
do nothing without their ‘crutch’. The arguments which have led to all
these summarised assertions can be found in Trouche (1996).

5. DISCUSSION: HOW TO SUPPORT INSTRUMENTAL
GENESIS?

Most students appreciated the use of the overhead calculator, which they
considered an assistance in understanding calculator manipulations, the
verification of calculations and the visualisation of mathematical objects.
Students also stressed the advantage of working in small groups for learn-
ing calculator manipulations, problem solving methods, and experimental
research and teamwork. These opinions came about as a result of the
new device set up in classrooms and were not those expressed in the first
questionnaires. The awareness of the usefulness of this organisation took
a rather long time, especially for the written research report, which at the
beginning was seen as a pointless constraint. At the end of the experi-
ment, most of the opinions in the two classrooms were convergent, as the
following student statements illustrate:

• Finally, I have understood the mechanisms of research.
• It has modified my point of view on calculators.
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• The calculator is not merely a means for calculations, it also pushes
us to reflection, even if it does not exempt from proof.

These opinions also reveal an awareness of the potential and limitations
of the calculator, especially with regard to the assistance they may offer
within an experimental framework, even if students are not yet able to
exploit them fully. However, in the two classrooms, some students think
they have learnt unnecessary things, and one cannot avoid the problem of
the institution’s lack of recognition of the new skills acquired in the new
environment. Finally, a real change for most students in their relations to
mathematics and their own self-confidence was observed.

A similar experiment was carried out by Artigue in two scientific
classrooms of 16/17 year-old-students (at an intermediate level between
the two experimental classrooms) with special attention paid to the study
of functions. For those students who were used to working with graphic
calculators, a familiarity with the graphic application was quickly obtained
as in the classroom described in Section 4.3.2 (17 to 18 year-old). In
her analysis of the instrumentation process (Artigue et al., 1997) she
identified a first phase focusing on the graphic application (table values
and graphics), then a first use of HOME (the formal application) without
coordination with the graphic application, and finally a reorganisation of
old practices and a new coordination with the HOME application.

Artigue also stresses the role played by the relationship to the calcu-
lator in the instrumentation process beyond the mathematical level: the
instrumental genesis is seldom better achieved by students who are highly
attached to the machine. This assertion is confirmed by the change in the
mechanical profile noted in Section 4.3.4. On the other hand, students who
are more unwilling to use the machine can construct a more efficient rela-
tionship with the calculator while keeping a certain objectivity with regard
to the machine, a result which is convergent with the change in behaviour
identified in theoretical and rational type students.

We argue that this stage of the instrumentation process was charac-
terised, as in the rational and resourceful method profiles, by combining
all information sources (including the paper/pencil work) and cannot be
attained without an explicit intervention at a conscious level (see Figure
10). The threshold of this stage is precisely the moment when the algebraic
register takes priority over the graphic register, which then becomes a
register for conjectures.

In cognitive psychology, Houdé points out the necessity for subjects
to inhibit no relevant procedures in order to perform cognitive tasks. He
argues that the deficient rationality often observed in studies about reason-
ing is due to a shortfall in inhibition of dangerous procedures and proves,
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in several experiments, that this inhibition can be learnt (Houdé, 1995). We
also believe that most students in the present experiment had learnt to ques-
tion calculator results, even if they tended to doubt a numeric value more
readily than a graph, because a question about a graph is not spontaneous
and requires significant effort (see Section 1.2).

It is hoped that this change in attitude with regard to mathematics will
come about in working with new technologies which can potentially stimu-
late students’ thinking in a conscious mode, if new work methods promote
such behaviour. Nevertheless, this experiment has shown that the instru-
mentation process does not necessarily lead to more mathematical work.
On the one hand, it may mask deficiencies in students’ mathematical know-
ledge (a student can calculate the limit without knowing what it means);
on the other hand, it may reveal such deficiencies (see Section 2.1 and
Section 4.3). Sometimes, for weaker students, the calculator may induce a
loss of consciousness and lead to automatic behaviours lacking reflection;
sometimes, students drop the idea of understanding the command effects
as described in Section 3.1.1. In this case, they do not pass through the
first instrumentation level (discovery phase), because it requires specific
mathematical knowledge to coordinate various semiotic representations
of mathematical objects (for example, the definition of a function and its
graph) and their management (e.g., management of approximate and exact
calculations).

The behaviour profiles described above indicate great diversity in
instrumental genesis, especially among students’ abilities to interpret and
coordinate calculator results. In any case, the instrumentation process
is complex and slow, because it requires sufficient time to achieve a
reorganisation of procedures, even for the better students who have
established a relationship with the machine. The instrumentation process
has a significant influence not only on students’ work behaviour and
its student’s command process, but also on the knowledge constructing
process, because of the connections between gesture and thought (see
Section 2.2). It is important to stress the advantage of the learning which
takes place beyond the mere instrumentation of the calculator by means of
connections and reformulations they unavoidably support. No doubt they
have an effective impact on the conceptualisation of numbers and func-
tions through the multiple windows they offer for students to construct
mathematical meanings to extend their web of ideas (Noss and Hoyles,
1996).

How can teachers foster the acquisition of skills throughout the instru-
mental genesis and facilitate an efficient relationship with the artefact?
Certainly, the teaching organisation plays an essential role in supporting
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the development of an efficient means of task control with the instrument.
How can this organisation help students pass through the discovery phase
and prune unsuitable techniques in order to substitute workwith the arte-
fact for workon it? This threshold cannot be attained without a conscious
coordination between efficient calculator techniques and paper/pencil
work.

As in computer environments (see Section 2.1), the teacher’s role has
fundamentally changed, but not at all easier. The specific mathematical
knowledge required for efficient instrumentation, even within simple tasks,
is often underestimated by teachers: they do not acknowledge this fact
because the underlying knowledge is implicit in their practice of the instru-
ment. Moreover, the problem of the educational legitimacy of computer
technologies raised in Artigue (1998) has an influence on teacher attitudes:
they do not consider the instrumented techniques, which are left to students
to acquire on their own, contrary to those of the paper/pencil environment.
Teachers tend to resist devoting their time to helping students focus on the
constraints and efficient techniques necessary to an effective management
of the instrument.

Nevertheless, this knowledge, which appears to be specific to the instru-
mentation process, interweaves with the mathematical knowledge required
by the curriculum. The on-going experiment described here also reveals
that additional time devoted to emphasising efficient techniques may facil-
itate access to effective instrumentation and, in this way, this lost time will
probably be made up during future activities.

Therefore, we argue for strong teacher involvement in the instrument-
ation process and full recognition of the constraints and potential of the
artefact as well as various profiles of student behaviour so as to design and
implement appropriate mathematical activities. Teachers have to juggle
all these parameters in order to enhance students’ experimental processes
of combining information and understanding tools. How should teachers
organise their teaching in order to turn symbolic calculators into effi-
cient mathematical instruments? We would like to make the following
suggestions:

Firstly, from an institutional point of view, include new organisation
class which allow students’ manipulation on the calculator to be made
visible (sherpa student) and also to give them more time for research
(practical sessions).

Secondly, from a technological point of view:

• introduce only a limited number of new commands in each activity,
taking care not to obscure mathematical work by manipulation diffi-
culties and limit the use of avoidance strategies (see Section 4.3.1);
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• devote sufficient time learning to verify various representatives
(images and numbers), emphasising their differentiation and coordin-
ation and the language relative to them;

• alternate questions in the two environments with the objective of
avoiding overdependence on the machine and thus improving rather
than reducing mathematical work,

• point out, with the overhead calculator, efficient strategies and instru-
mented techniques making the TI-92 a real mathematical instrument,
i.e., provide institutionalisation of efficient instrumented techniques,

• draw attention to building connections with the national mathematics
curriculum within the institutionalisation phase to suggest appropriate
connections in webs of ideas.

Finally, from a psychological point of view, respect student profiles to
adapt activities towards successful integration. Specific assistance must
then be organised for weaker students in order to avoid work in an
unconscious mode and foster instead true experimental work.

This paper has tried to underline, through the negative aspects pointed
out in Section 1, how an unaccompanied acquisition of the use of calculat-
ors may be dangerous for the conceptualisation process. Teachers should
consider the instrumentation process in order to articulate new techniques
with older practices in the paper/pencil environment, because this reorgan-
isation of instrumented techniques is far from spontaneous and requires
spending sufficient time to reach the experimental processes. Most of these
ideas have been discussed at the European Conference on symbolic and
geometric calculators (Guin, 1999, to be published).
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