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This article develops the first model in which, consistent with the empirical evidence, the transition from stagnation

to economic growth is a very long endogenous process. The model has one steady state with a low and stagnant
level of income per capita and another steady state with a high and growing level of income per capita. Both
of these steady states are locally stable under the perfect foresight assumption. We relax the perfect foresight
assumption and introduce adaptive learning into this environment. Learning acts as an equilibrium selection
criterion and provides an interesting transition dynamic between steady states. We find that for sufficiently low
initial values of human capital—values that would tend to characterize preindustrial economies—the system under
learning spends a long period of time (an epoch) in the neighborhood of the low-income steady state before finally
transitioning to a neighborhood of the high-income steady state. We argue that this type of transition dynamic
provides a good characterization of the economic growth and development patterns that have been observed across
countries.
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1. Introduction
1.1. Development Facts

Prior to industrialization, all of today’s highly developed economies experienced very long
periods,epochs of relatively low and stagnant growth in per capita income. Maddison
(1982, table 1.2) reports average annual compound growth rates in per capita GDP for
sixteen of today’s highly developed countrieshese growth rates were 0.0 percent for the
years 500 to 1500, 0.1 percent for the years 1500 to 1700, and 0.2 percent for the years
1700 to 1820. It was only after industrialization, during the period 1820 to 1980, that
these countries achieved a significantly higher average annual compound growth rate of 1.6
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percent. While these data are highly aggregated and necessarily involve some guesswork,
few economists would question the picture they paint.

Considering the more recent data, the dominant fact is that there is a large and persistent
disparity in the levels of per capita income across nations (see, for example, Parente and
Prescott, 1993; Durlauf and Johnson, 1995; and Quah, 1996a, 1996b). Parente and Prescott
(1993), for example, use the Summers and Heston (1991) data set and report that for a
sample of 102 countries over the years 1960 to 1985, per capita income in the richest 5
percent of the countries was about twenty-nine times per capita income in the poorest 5
percent of countries. The poor countries grew, on average, about as fast as the rich countries,
so that this disparity has remained roughly constant over the 1960 to 1985 period. Durlauf
and Johnson (1995) and Quah (1996a, 1996b) use the Summers and Heston data set to
ask whether differences in cross-country growth experiences might be due to the existence
of multiple steady states in per capita output. These authors show that the possibility of
multiple steady states cannot be rejected.

In an effort to explain sustained differences in growth rates across economies across
time, and also to explain the vast differences in levels of per capita income across nations
that we observe today, a number of authors have recently expanded on the endogenous
growth literature pioneered by Romer (1986) and Lucas (1988) by building models that
possess multiple steady states for the growth rate of per capita Gutptitese models,
low-growth steady states, sometimes referred tpaerty trapsare used to characterize
preindustrial or less developed econonmiiéghese low-growth steady states coexist with
high-growth steady states that are used to characterize industrialized or highly developed
countries. While these models have certain advantages over the one-sector neoclassical
growth model in the sense that they allow for sustained differences in growth rates across
economies, this improvement comes at some expense: these models cannot explain how
countries initially in poverty traps are ever able to make the transition to a high-development
steady statéIndeed, poverty traps are modeled as absorbing states from which no economy
can escape. Furthermore, it is some exogenous factor, typically history or expectations,
that determines whether a country will be at the low or high development steady state for
all time. Yet, as Maddison’s (1982) data clearly reveals, sixteen of today’s most highly
developed economies were in a poverty trap for many hundreds of years! These countries
were nevertheless eventually able to industrialize and achieve a higher state of development.

In this article we study a model that gives rise to sustained differences in growth rates
across countries for long periods of time but that also allows countries that are initially
near or at low-growth steady states to eventually make the transition to high-growth steady
states. The model can also account for the phenomenon that countries with similar initial
conditions may experience quite different development paths, so that an observer of the
world situation at a point in time might see countries with vastly different levels of per
capita income.

1.2. Summary of the Model

We study the effect of adaptive learning behavior on transitional dynamics in a growth
model with human capital and threshold externalities along the lines of Azariadis and
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Drazen (1990). The model possesses multiple stationary equilibria, which makes it an
attractive framework in which to study transition dynamics.

In this model, physical capital is accumulated in a standard way, but human capital
accumulation is subject to increasing returns. Agents make two decisions when young:
how much to save by renting physical capital to firms and how much to invest in training.
The returns to training depend positively on the economywide average level of human
capital. The model admits two steady states. The first is associated with low and stagnant
levels for physical capital, human capital, and output per capita and is characterized by
agents who choose not to invest in training when young. We call thisotliéncome
steady state The second steady state has higher and growing levels for these per capita
variables and is characterized by agents who choose to devote a positive fraction of their
available time endowment to training when young. We call thishiigh-income steady
state Each of these steady states is locally stable under a perfect foresight assumption so
that, in particular, the low-income outcome is an absorbing State.

Our innovation is to introduce adaptive learning behavior into this environment. We drop
the assumption that agents have perfect foresight and instead assume that agents must learn
which decision rules return the highest utility in the environment they face. We model learn-
ing using Holland’s (1975) genetic algorithm, a stochastic, directed search algorithm based
on principles of population geneti€sNe interpret genetic algorithm learning as a useful
representation of trial-and-error learning that has important advantages over many other
models in the literature—chief among these for our purposes is that the genetic algorithm
offers a natural model for experimentation by agents. We conduct computational experi-
ments in order to characterize how a population of heterogenous agents might eventually
find its way to the high-development steady state.

1.3. Main Findings

Our main finding is that for initially low levels of human capital per capita—levels that would
tend to characterize preindustrial economies—our population of artificial agents spends
many generations (an epoch) in a neighborhood of the low-income steady state before
finally making the transition to the high-income steady state. We argue that this provides
an account of the development fact documented by Maddison (1982) that today’s richest
countries were once stagnant for hundreds of years. We further demonstrate that initially
identical economies might have very different development experiences in this model, in the
sense that industrialization might occur at radically different times. The timing is important
since different dates of industrialization imply very different postindustrialization levels of
per capita income across economies in this model. We argue that this result helps explain
another development fact, the present wide and persistent disparity in levels of per capita
income that has been documented by Parente and Prescott (1993), Durlauf and Johnson
(1995), and Quah (1996a, 1996b).

1.4. Recent Related Literature

The recent literature on growth and development is large and cannot be effectively sum-
marized here. But the idea of multiple stationary equilibria has been a popular theme,
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and important contributions include Murphy, Shleifer, and Vishny (1989) on formalizing a
big-push argument; Becker, Murphy, and Tamura (1990) on how fertility and human capital
accumulation might interact to influence development; and Azariadis and Drazen (1990) on
formalizing a threshold argument. We work in this article within the latter framework, but
our approach could in principle be applied to describe transitions in these other frameworks
that emphasize alternative mechanisms.

The study of transition dynamics in models with multiple steady-state equilibria has
received relatively little attention. Goodfriend and McDermott (1995) build an endogenous
growth model that involves transitions from premarket to market and from preindustrialized
to highly developed economies. Their model has multiple stationary equilibria, but this fact
plays an important role only in their explanation of the transition from premarket to market
economies; their explanation of industrialization relies on a single, evolving steady state.
Our approach might be useful in explaining the former transition. Galor and Tsiddon (1997)
also have a model in which the economy is characterized by multiple steady-state equilibria
in the short run. Intheir model, endogenous technological change is induced by an increase
in the average level of human capital and eventually causes the structure of the dynamical
system to change in a way that eliminates the poverty trap. Consequently the economy
converges in the long run to a unique high-income steady-state equilibrium. While our
model leads to results that are qualitatively similar to those found in Galor and Tsiddon
(1997), our approach is different. In particular, the structure of the dynamical system in our
model does not undergo any change that would eliminate the possibility of a poverty trap.
Indeed, a poverty trap and a high-income steady silatays coexisas possible stationary
equilibria in our model.

This article is also related to the macroeconomics learning literature, which has recently
been surveyed by Sargent (1993). One aim of this literature has been to use learning
processes to select equilibria in models with multiple rational expectations equilibria. Our
analysis is relatively novel in this literature in that our model involves capital accumulation.
In addition, agents in our model are learning, simultaneously, alm@uecision rules—
how much to save and how much to invest in training—in contrast to previous learning
analyses, where agents are typically concerned with learning about a single decision rule.

1.5. Modeling Learning Behavior Using Genetic Algorithms

We model adaptive learning behavior using Holland’s (1975) genetic algorithm—a stochas-
tic directed search algorithm based on principles of population genetics. Genetic algorithms
operate on a population of candidate solutions to some well-defined problem. Following
each iteration of the algorithm, candidate solutions are evaluated for their performance and
assigned a fitness value. Solutions with relatively high fithess values are more likely to
remain in the next “generation” of candidate solutions than are solutions with relatively
low fitness values. This process captures the notion of survival of the fittest (natural selec-
tion). The algorithm then uses the highly fit candidate solutions to breed new candidate
solutions using naturally occurring genetic operations such as crossover (recombination)
and mutation. A more detailed description of the genetic algorithm is provided later in
Section 3.
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In the context of our model, we interpret the genetic algorithm as describing a process
of trial-and-error learning by a population of heterogenous, artificial economic agents.
Genetic algorithms and other computational technigues involving artificial intelligence are
increasingly being employed by economists as a way of modeling the behavior of economic
agents. A partial list of recent references includes Andreoni and Miller (1995), Arifovic
(1994, 1995, 1996), Arthur et al. (1996), Binmore and Samuelson (1992), Bullard and
Duffy (1996a, 1996b), Durlauf (1995), Holland and Miller (1991), Marimon, McGrattan,
and Sargent (1990), Miller (1996), Routledge (1994), Sargent (1993), Tesfatsion (1995),
and Wright (1995).

We chose to model learning behavior using the genetic algorithm because it has some
important advantages relative to other adaptive learning models that can be found in the
literature. First, there is considerable heterogeneity across agents, a feature not often en-
countered in the learning literature to da®econd, the information requirements on agents
are minimal, as they need to know very little to function well in the economy. Third, the
genetic algorithm offers a natural model for experimentation by agents with alternative
decision rules, an important characteristic of learning also rarely modeled in competitive
general equilibrium environments in the literature to date. Fourth, the heterogeneity of
beliefs allows parallel processing to be an important feature of the economy. That is, some
agents are trying one decision rule while other agents are trying other decision rules, with
the better decision rules propagating and the poorer ones dying out. We think this is closely
akin to what goes on in actual economies, where communication among agents encourages
successful strategies to be quickly copied and unsuccessful ones to be discarded. Fifth,
genetic algorithm learning has been shown in other research (see, for example, Arifovic,
1994, 1995, 1996) to successfully mimic the behavior of human subjects in controlled labo-
ratory settings. And finally, the initial heterogeneity of the population allows us to initialize
the system randomly, so that we are able to obtain some sense of the “global” properties
of our system under learning as opposed to the local analysis that is often employed in the
learning literaturé. These features suggest that genetic-algorithm-based models of learning
have interesting economic content.

The rest of the article is organized as follows. In Section 2 we outline the model that we
employ in the rest of the article. We close the model under perfect foresight and characterize
the set of stationary equilibria. In Section 3, we introduce our genetic-algorithm-based
learning algorithm. Section 4 explains the design and results of our sets of computational
experiments, and Section 5 concludes.

2. A Model of Growth and Development
2.1. Preferences and Technology

We use a version of a model of economic growth and development due to Azariadis and
Drazen (1990). Time is discrete and takes on integer values on the real line. There is a
single, perishable good that is both consumed and used as an input into production. Agents
in this economy live for two periods, which we laly@lungandold. At every datd there is

a total population of Rl agents, wher@\ is a positive integer, with the population equally
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divided between young and old. There is no population growth. We use the notation
that subscripts denote birthdates and parentheses denote real time, while individual agents
within a generation are indexed by a supersdript (1, 2, ..., N). Aggregate variables
have no subscript or superscript.

Agents are endowed with one unit of time at every dateuring the first period of life,
young agents may choose to spend some fractj@h), € [0, 1), of their time endowment in
training. There is a common training technology, denditex{!(t), X(t)), which all agents
can access, where the variaklg) is the average quality of labor of both the young and the
old at timet:

NP D SN IS S
Xt =3 Ngxt(wﬁjglxt_l().

This variable is measured as efficiency units per worker. An individual agent can devote
time to training when young in order to receive more efficiency units in the second period
of life via

X (t + 1) = h(z/ (1), X(1))X(L).

The key feature of the model is that the individual agent’s return to training depends pos-
itively on the economywide average level of efficiency units. We follow Azariadis and
Drazen (1990) and specify(-) as

h(z (1), x(®) = 1+ y (X)) 7 (V).

However, we depart from Azariadis and Drazen (1990) in that we use a specific parametric
form for y (-), the private yield on human capital. In particular, we use the sigmoid function

A A
1+ex® 2
which is strictly increasing ix(t) and implies the bounds given py0) = 0 and

y (X)) =

A

lim X)) ==-=y.
X(t)_)oo)/( ) 5=7
Each young born at dateinherits the average level of efficiency unitgt), that was

determined by the decisions of agents born at datel. Young agents combine this
endowment with a training decisiag(t) in order to receiveq (t + 1). Because we allow

within generation heterogeneity in the decision variatig), the accumulation equation

for x(t) is given by
Xt +1 =x®L+yx®)TO],

where? = £ 31 < ().
Output per unit of effective labor is produced according to a neoclassical production
function, which we specify as

f (k) =k®)*,



THE TRANSITION FROM STAGNATION TO GROWTH: AN ADAPTIVE LEARNING APPROACH 191

wherea € (0, 1) andk(t) is the capital-to-effective labor ratfoEffective aggregate labor
is given by

N N
L(t) = [N - <t)} X() + Y x4 (),
i=1 i=1

so that
K{(t)
[N — ZiN=1 T (OIX() + ZiN:l Xti—l(t)7

k(t) =

whereK (1) denotes the aggregate physical capital stock. The rental rate on physical capital
and the wage are given by, respectively,

r) = ak()*?
w(t) = (1—a)kt)®.

There is also a consumption loan market with gross rate of interest deR@tedArbitrage
equates the rate of return to renting physical capital with the rate of return on consumption
loans viaR(t) =r(t + 1) + 1 — §, wheres is the net depreciation rate on physical capital.
In this article we assumg= 1.1°

All agents in this economy have the same preferenCes: Inc{(t) + Inc{(t + 1).
Furthermore, all agents face the same lifetime budget constraint:

dt+1)

[14+yx®)h OIXOw(t + 1)
R(t) :

R(t)

c(t) + < (@ — 7 O)xOwd) +

2.2. Equilibria Under Perfect Foresight

In this subsection, we assume that agents have perfect foresight. Combining the first-order
conditions with the budget constraint, and making use of the definitions®rand R(t),
the individual young agent’s optimal savings decision can be written as

A-gdOxOA-a) K — [1+yx®) 5 OIXOA - @)

kt +1).
> o t+1

s(t) =

Young agents are equally endowed wittt), and under perfect foresight they all make the
same choices fot; (t), which we callz(t). Thus, aggregate saving is given Byt) =
N (t). The market clearing condition is thEt(t + 1) = S(t). Some manipulation yields

B -t —a) .
KD = S O Oze@ =+ D)+ A=w] )

We now consider steady states of this system.
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First, suppose that(t) = r; = 0 Vt. In this casex(t) must be constant for atl It
follows from (1) that in this case

K — a(l—ow) =
T 143 ‘

The pair(z;, k}) is the low-income steady state of our system.
Next, suppose that(t) = t # 0. In this casex(t) is growing so that fot large enough
y(t) — 7, and furthermore arbitrage requires tlat = ak*L. Then

1

a\ e
5= (5)"
"y

and it follows from (1) and}; must solve

@\ Q1-tal—oa) =
(;9) - [[1 + p7][Ba — 20t + 1]} '
This is a quadratic irr, but only one of the two roots is feasible (that is, there is only one
value forr € [0, 1)), and this is the root we choose fgy. The pair(z;}, ki) constitutes the
high-income steady state in this system.

Itis straightforward to show that the low-income steady state is locally stable in the perfect
foresight dynamics and that the high-income steady state is saddlepath stable. Azariadis and
Drazen (1990) argued that initial conditions would determine which steady state a nation
might ultimately achieve, and that given a sufficiently diverse set of initial conditions, an

observer might see nations in persistently low- as well as persistently high-growth equilibria.
They argued that this prediction matches elements of the current world situation.

3. Learning
3.1. Heterogeneous Agents

We alter this model by assuming that individuals born at ttnmeust learn about which
decision rules work best in this environment. The agents are now initially heterogeneous
with respect to, first, the fraction of time that they spend in trainii¢t) < [0, 1), and
second, the fraction of their timrtewealth that they save. If we denote this savings fraction
by ¢! (t) € [0, 1), we can write a typical agent's youthful savings as

s (t) = ¢l Hwt) (L — 7 (T)X(1).

We model learning using a genetic algorithm, which we view as a useful model of trial-and-

error learning. The genetic algorithm acts on a population of chromosomes, or strings, which
are typically binary representations of important variables in the system to be studied. In our
application, each binary string completely characterizes the decision rules of an individual
agent. Strings are evaluated according to a fitness criterion, which in economic models is
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naturally taken to be a utility function. An iteration of the algorithm involves the application

of genetic operators. The first operator is reproduction: strings are evaluated for fitness,
and the better strings are propagated, while the poorer strings are eliminated. A second
operator is crossover: new strings are created by splicing parts of existing strings together.
A third operator is mutation, with which very small portions of strings are altered with small
probability. Over time, the algorithm is expected to evolve strings that have, on average,
higher fitness than previous generations of strings.

3.2. Representation

As a preparatory step to implementation of the genetic algorithm, we encode the decision

rules of the entire population ofN2 agents using binary (bit) strings. Each agent’s two

decision variables; (t) andg| (t), are encoded in a single bit string of lengtk- 0, where

¢ is an even integer. The firéy2 bits encode the agenti$(t) decision and the next/2

bits encode the agenifg (t) decision. The initial ® population of bit strings is randomly

generated with each bit position in a string set equal to a zero or a one with probability .5.
To illustrate how bit strings are decoded to obtain individual’s decision rules, consider an

example wheré = 30. An individual agent’s decision string might look like this:

000101010011011010001101110101
The first and last 3@ = 15 bits are decoded to obtain two base-ten integer values:

00010101001101010001101110101
2715 9077

These integers are then divided by the maximum integer value possible, a string with 15
bits all equal to 1, plus one, which i$%2= 32768%1

2715 = .0828552=1{ (), 2L = .277008= ¢ (1).

Once we havep andz values for each of thé&l young agents, we can calculate each of
these agent’s savings decisiogg}), and we can fin@ggregate savings

N
St =) 8.
i=1

From the market-clearing condition, we then find the capital-to-effective labor ratio, and we
use that in turn to determine the interest rate and the wage. We can use this information to
evaluate which decision rules are performing better and subsequently update the population
of strings using the genetic algorithm.

3.3. Fitness

In the artificial intelligence literature, fitness measures how well a string performs relative
to other strings. Our criterion is lifetime utility' = Inci(t) + Inc (t + 1). We want to
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be able to measure the fitness of any string in the system at tilneorder to do this, we

ask the following question of each string: how well would this string have performed if it
had been in use in the previous peri&d®e view the individual agent as atomistic and
therefore incapable of significantly altering the level of endogenous aggregate variables in
the system. Accordingly, we use past data from the system on the interest rate, the level
of human capital, and the wages that the string would have faced if it had been in use in
the previous period. From this we can determine how much consumption and therefore
how much utility a particular string would have garnered had it been in use in the previous
period. This utility level constitutes the fitness of a string.

3.4. Genetic Operators

3.4.1. Reproduction. Atthe end of period, we have to determine the next generation of

N young agents who will be born at tinhg- 1, the newborns. The first step in this process is

to apply the reproduction or selection operator of the genetic algorithm. The reproduction
operation involved binary tournamentsEach binary tournament is conducted as follows.
First, choose two strings at random with replacement from the entire populatioN of 2
strings—those belonging to both young and old agents—that were in use dt tidest,
compare the fitness values of the two chosen strings; the winner of the tournament is the
string with the higher fitness value. A copy of this string is made and is placed in the set
of strings that are candidates to become the strings used by the next generation of young
agents. This binary tournament process is then repédtedl more times yielding a set

of N decision rules that are, on average, more fit than the decision rules in use &t time

3.4.2. Mutation. Followingthe reproduction operation, we subjectbhf the candidate
strings that were winners of thé binary tournaments to some mutation. Each ofllthe
bits in each of theN strings is independently subjected to mutation with some small, fixed
probability p™ > 0. With probabilityp™, an individual bit value is changed from= 0, 1

to 1 — b; with probability 1— p™ the bit value is not changed.

3.4.3. Crossover. Thefinal operatorinthe genetic algorithntiessover The crossover
operator works on the population of strings that result from selection and mutation. First,
each of thes&l strings is randomly paired with another string. For example, we might have
a pairing between the following two strings:

010101000101110101110010111101

000101100101101001101100101111

With some fixed probabilityp® > 0, two random integers are drawn, drawl, draw?2
[1, £/2). Using these numbers, the two strings are then cut at two points—one point within
the first£/2 bits and one point within the lagy2 bits. For example, if drawl = 3, and



THE TRANSITION FROM STAGNATION TO GROWTH: AN ADAPTIVE LEARNING APPROACH 195

draw2 =9, the two strings in our example would be cut as follows:

010101000101110 1011100Ma1101

000101100101101 0011011a®1111

The string portions to the right of each cut point would then be swapped (the substrings
representing each decision are kept separate), and the two strings are then recombined:

010101100101101101110010101111

000101000101110001101100111101

The result is two new strings, possibly representing decision rules that have never appeared
in the system befor€ The N strings resulting from selection, mutation, and crossover
become the new young generation alive at time 1. The young agents alive at tinte
become the old agents alive at time- 1, and the old agents alive at timheease to exist

(their strings are deleted). The process is repeated in order to generate a time series for the
artificial economy.

3.5. Interpreting Genetic Operators

The reproduction, mutation, and crossover operators have a simple economic interpretation.
Beingbornin this economy means leaving one’s formative years and entering the productive
portion of one’s life. These newborn agents just leaving their formative years initially have
no plans for the future: they are blank slates. They acquire the decision rules they will need
by communicating with a few other members of society, those either one or two generations
ahead of them. This communication is modeled via the reproduction operator. In our
implementation, each newborn agent communicates with two randomly selected members
of the society. The newborns evaluate the decision rules that belong to these two older
agents by calculating how much utility the rules would have delivered had they been in use
one period in the past. Each newborn then copies the decision rule of the two that would
have delivered the most utility. This completes the first step in attaching a decision rule to
each of the incoming members of the society. But the newborns communicate further when
they talk with each other and contemplate alternative decision rules that might not be in use
in the society at that time—that is, the newborns conduct a mental experiment with other
possible decision rules. This additional communication is modeled via the crossover and
mutation operators. In our implementation, the newborns are paired, and each pair creates
two new decision rules by combining parts of their existing rules and also by randomly
changing small parts of the decision rules. Thus the incoming generation learns from the
experience of the agents older than themselves and can also be innovative in introducing
new decision rules into society.
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4. Design of Computational Experiments and Results
4.1. Calibration

In order to examine the behavior of our genetic-algorithm-based learning system, we con-
ducted a large number of computational experiments. These experiments required us to
choose parameterizations and initial conditions for our model, which we now describe.

There is a single parameter in the preferences and technology portion of the model that
must be set: physical capital's share of output, We sete = .36, a value that can be
derived from postwar U.S. national income and product accounts, where consumer durables
are counted as capital. By using this value, the high-income steady state of the model is
consistent with postwar experience on physical capital’s share in the U.S. economy.

A single parametet,, controls the returns to investing in human capital. These returns
are partly endogenous since they depend @ but for largex(t), y = % We seth = 50,
implying y = 25. This choice implies an endogenously determined high-income steady-
state value for the fraction of time devoted to training of approximately h = .22. If
we interpret the time period in the model as being on the order of twenty-five years, the
compound annual rate of return in the high-income steady state is about 13.7 percent, and
the amount of time devoted to training is about five and a half years. We could reduce the
high-income steady-state rate of return, which is higher than most estimates of the postwar
U.S. average, by choosing a lower value foibut this would mean a lower value for the
amount of time devoted to training. If one views, say, high school education as part of the
time devoted to training in modern economies, then five and a half years may already be
too low. Our value of strikes a compromise on these competing aims.

We look to the artificial intelligence literature to set the parameters of the genetic algo-
rithm. The minimal number of strings for effective search is usually taken to be 30. We
chose to seN = 50 so that there are 50 agempir generatiorin our model, giving us a
total population of 100 agents. We set the bit string lergth 30, with £/2 = 15 bits
devoted to each of the decisions the agents face when young. String length is unimportant
except as it determines the grid over which the agents can search for an optimal value. By
setting the substring length to 15 bits, we effectively created a two-dimensional grid with
(32, 767)? locations over a unit square and required the agents to choose optimal values on
this grid. We set the probability of crossovef, equal to .95, and we set the probability of
mutation,p™, equal to .0022. These values are close to those recommended by Grefenstette
(1986). We now turn to the design of our computational experiments.

4.2. Experiment Set A: The Effects of Initial Conditions

4.2.1. Design of Experiment Set AWe first consider the effects of different initial con-
ditions on the behavior of the system under learning. Our model has initial conditions for
the per capita stock of human capite),the capital-to-effective labor rati, the average
initial fraction of time devoted to training;, and the average initial savings fractiam,

We chose five feasible initial values for each of these four variables and simulated the
system once for each possible combination of these five initial conditions. This yields 625
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computational experiments, each with a different set of initial conditions. We conducted
each experiment for 250 iterations and calculated the average of the last ten vatyes of
denoted byr, and the average of the last ten values of the capital-to-effective labor ratio
k, denoteck. Let us denote bk* andt* the equilibrium levels of the capital-to-effective
labor ratio and the training fraction at the two steady states. We examined the data to see
if |k* — k| < .002 andjz* — 7| < .02 at date. If this criterion was met, we say that the
system was in a neighborhood of that particular equilibrium atdate

We chose the set of initial conditions as follows. Interesting initialalues are at or
below x|, ) ,5=05 = .1, the value ofx that putsy at 5 percent ofy. We chose one
initial x(0) value higher than this and three lower; accordingly, we used five values of
x(0) € (.0001,.00%, .01, .1, 1). We set initial capital-to-effective labor rati&g0) relative
to steady-state values accordingk@) < (.5k7, k7, .5k; + .5k, ki 1.5;). Average initial
T and average initial savings fractiopscan range between zero and one. We chose five
different values for each of these initial fractions in order to cover the whole range of
possibilities:z, ¢ € (.1, .3,.5,.7,.9). However, actual initial values far and¢ are only
approximately equal to our targeted values, due to the way in which we initialized stfings.
We call this set of 625 computational experiments “experiment set A.”

4.2.2. Results from Experiment Set AOne of the main results from experiment set A

is that, depending on the settings of the initial conditions, neighborhoods of either of the
two steady states can obtain at a point in time, which we limit to 250 iterations. Persistent
mutation is the only source of variability in these neighborhoods. A typical time series
from this set of 625 experiments reveals that the system initially fluctuates but then settles
down to a neighborhood of either the low-income or the high-income steady state. These
systems then remain in these neighborhoods for the remaining iterations. A sample time
series is given in Figure 1, where it is a neighborhood of the low-income steady state that
obtains.

A second key result from experiment set A is that, among the initial conditions, the initial
level of human capital per capita(0), is the dominant determinant of the behavior of the
system at iteration 250. For low valuesxaD), we find the systems are in a neighborhood
of the low-income steady state at iteration 250, while for high values(0f, we find
the systems are in a neighborhood of the high-income steady state at iteration 250. Other
initial conditions only influence this outcome for borderline valueg@). This result is
interesting since preindustrial economies tend to be characterized by especially low levels of
human capital per capita. Our model therefore predicts that these preindustrial economies
will spend a long period of time, agpoch in a neighborhood of the low-income steady
state.

Figure 2 illustrates the importance of the initial levekg®). In each of the three sections,

k(0) = .001989, but the results are the same for other valuks®f What varies in these
three sections are the initial levels ®{0). In Figure 2a,x(0) = .001; in Figure 2b,

x(0) = .01; and in Figure 2cx(0) = .1. In all three figures, the initial average fraction

of wealth saved is plotted on the horizontal axis, and the initial average time devoted to
training is plotted on the vertical axis. The actual initial average values ford¢ are
indicated by the placement of the labetsw or High in each of these figures. These labels,
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Figure 1. An epoch in a neighborhood of the low-income steady state.

Low and High, indicate whether our system had achieved neighborhoods around either
the low- or high-income steady states of the model after 250 periods of model time. In
Figure 2a, where(0) = .001, the system is in a neighborhood of the low-income steady
state after 250 iterations for all initial values for averagand¢. For x(0) = .01, as
illustrated in Figure 2b, the system has achieved the high-income steady state after 250
iterations in only three out of the twenty-five different combinations for initial avetage
and¢. Notably, the three instances in which the system had achieved the high-income
steady state were all cases for which the initial level of avetagras quite high to begin

with (approximately .9), so that at least early on in the development process, there was
a significant accumulation of human capital. This greater initial accumulation of human
capital together with a higher initial stock of human capitd)) = .01, perhaps along with
some helpful mutations, enabled the system to achieve the high-income steady state. But
Figure 2c demonstrates that this is simply a borderline situation. In Figux¢@c= .1,

and the system achieves a neighborhood of the high-income steady state after 250 iterations
for all twenty-five combinations of initial averageand¢. The only important difference
between Figures 2a and 2c is the initial level of human capital per ca@gla, Thus, we

see that the initial level of the stock of human capital plays a dominant role relative to
other initial conditions. 1fx(0) is relatively low, then we observe that the system is in a
neighborhood of the low-income steady state at model time 250 regardless of other initial
conditions, while ifx(0) is relatively high, we observe that the system is in a neighborhood

of the high-income steady-state at model time 250, regardless of other initial conditions.
This result holds across other valuesko®), which is held constant in all three sections
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Table 1. Results for Experiment Set A as a function of the
initial level of human capital per capita.

High steady Low steady
Value of Number of  state outcome  state outcome

x(0) experiments at = 250 att = 250
.0001 125 0 125
.001 125 0 125
.01 125 18 107
1 125 125 0
1.0 125 125 0

Note: Experiment set A consists of 625 experiments, one
for each combination of initial conditions. The table lists
results as a function of(0) only. For low values ok(0),

the low income steady state is observed at model time 250
regardless of other initial conditions.

of Figure 2. Further confirmation was obtained for the two other valuez@rthat we
consideredx(0) = .0001 andx(0) = 1. The case wherg(0) = .0001 is qualitatively
similar to the case whenre(0) = .001, meaning that these 125 experiments were without
exception in a neighborhood of the low-income steady state at iteration 250. Similarly, the
case where (0) = 1 is qualitatively similar to the case whex€0) = .1 because these 125
experiments were without exception in a neighborhood of the high-income steady state at
iteration 250. Table 1 reports the results for experiment set A as a functioi@pf

4.3. Experiment Set B: Long-Run Behavior

4.3.1. Eventual Attraction to the High-Income Steady Stawhile initial attraction

to a neighborhood of the low-income steady state is likely for preindustrial economies—
economies with low initial values fot(0)—both intuition and the results for experiment set

B (given below) can be used to establish that these systems will eventually be attracted to a
neighborhood of the high-income steady staith probability 1 The intuition is as follows.
Suppose all agents have initially coordinated on the low-income steady state. The constant
probability of mutationp™ > 0 implies that there will be some persistent experimentation

by agents with nonzero investments in training—that is, there will sometimes be one or more
agents who choose positive training amOL(mgfsst) > 0). How often such experimentation
occurs depends, of course, on the mutation rate. This experimentation implies that effective
labor units per unit of time worked (the average human capital that all agents inherit) will be
rising over time. While the economy remains in the neighborhood of the low-income steady
state, selection pressure will work against agents who invest positive amounts in human
capital (training). The time they spend in training lowers the time they spend working, and
the return from working more and investing more savings in physical capital dominates the
return from investing in human capital at the low-income steady state. Decision rules that
call for positive investments in training do not propagate and instead are systematically killed
off. This keeps the system in a neighborhood of the low-income steady state for some time.
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However, since agents are always experimenting with positive amounts of training, the
stock of human capital per capitait), grows slowly and unevenly according to the training
technology and the law of motion fot(t) until this stock of human capital eventually
becomes large enough so that the rate of return to investing in human capital in equated
with the rate of return to investing in physical capital. At this pos#lection pressure
switchedecause decision rules (strings) that call for investing positive amounts of time in
training now yield higher fitness values than those decision rules (strings) that continue to
instruct their owners to invest zero time in training. Thus strings that call for investing in
training propagate, and the no-training strings are systematically killed off. Eventually, all
agents are devoting a positive fraction of their youthful time endowment to training and this
fraction lies within a small neighborhood of the fraction consistent with the high-income
steady state. The economy stays in a neighborhood of the high-income steady state forever.
Note that a transition, when it occurs, is alwdy@n a neighborhood of the low-income
steady stat¢o a neighborhood of the high-income steady state; a reversal from the high-
income to the low-income steady state would never be optimal, and therefore such a reversal
will not occurl®

A corollary to this intuition is thainitially identical economies that spend an epoch
in the neighborhood of the low-income steady state may have radically different dates of
development takeoff. This occurs because the exact sequence of mutations that an economy
experiences will determine which country reaches the threshold level of human capital first.
While the date at which the transition occurs may well differ across countries we emphasize,
once again, that the transition from a neighborhood of the low-income steady state to a
neighborhood of the high-income steady state occurs with probability 1.

4.3.2. Design of Experiment Set Bln experiment set B, we verified the intuition pro-
vided in the previous subsection by studying the long-run behavior of these artificial
economies computationally. We want to show that these economies always eventually
attain the high-income steady state. We also want to study the timing of development
takeoffs. To pursue these aims in the starkest possible way, we began each of fifteen
computational experiments with exactly the same initial conditions and all parameters set
identically, including the rate of mutation. The fraction of time devoted to training was
zero for all agents, and the savings fraction was the one that is consistent with the low-
income steady state for all agents. The valu&@ was the one that is consistent with

the low-income steady state, ar@)) was set to .01. The only difference between these
computational experiments is that we used a different random number seed for each exper-
iment. We terminated these experiments when our convergence criterion was met for the
high-income steady state. For these experiments, our convergence criterion was to require
lk* — k| < .001 and|t* — 7| < .001, wherek andt are calculated over the last thirty
observationd®

4.3.3. Results from Experiment Set BOur results from experiment set B verify the
intuition given above, as all of the economies in this set of experiments initially remain in
the neighborhood of the low-income steady state for hundreds of generations but eventually
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Figure 3. A development takeoff.

transit to a neighborhood of the high-income steady state. The results from experiment
sets A and B constitute our claim that this model can address the fundamental fact of
development and economic documented by Maddison (1982)—namely, that sixteen of
today’s most highly developed economies were once stagnant for centuries.

A time series of what occurs in a typical result from experiment set B is illustrated in
Figure 3, which depicts a development takeoff. The average fraction of young agents’
time devoted to training is measured on the left axis, while the capital-to-effective labor
ratio is measured on the right axis. The low-income steady state valuksafudt r are
indicated by horizontal lines in the left portion of Figure 3, but they are difficult to see
because the variables are close to steady-state values nearly all of the time. Agents have
initially coordinated on a neighborhood of the low-income steady state (wher8) and
remained there for the first 1,499 periods, which are not pictured. The economy remains
in a neighborhood of the low-income steady state through model time 1,625 before it
has, through experimentation, accumulated a sufficiently high stock of human capital. At
this point, the rate of return to investments in human capital reaches that of the rate of
return to investments in physical capital. A development takeoff occurs, and the population
of artificial adaptive agents begins the process of adjusting their decisionsdnd ¢
accordingly. The economy transitions to a neighborhood of the high-income steady state,
indicated by the two horizontal lines in the right half of Figure 3, wheis now greater
than zero. By about model time 1,675, the economy can be said to have coordinated on a
neighborhood of the high-income steady state.

The remaining experiments in this set produced results qualitatively similar to those



THE TRANSITION FROM STAGNATION TO GROWTH: AN ADAPTIVE LEARNING APPROACH 203

depicted in Figure 3. We checked at every iteration to determine whether our system had
met our convergence criterion for the high-income steady state. The mean number of
iterations at which our convergence criterion was met was 1,797 iterations, with a standard
deviation of 70. The maximum number of iterations for convergence to the high-income
steady state was 1,916 and the minimum number of iterations for convergence was 1,657.
Even though all fifteen of these economies were initially identical and initially coordinated
on a neighborhood of the low-income steady state, each nevertheless industrialized at a
different time. If we interpret each generation as a period of roughly twenty-five years, the
standard deviation of seventy iterations implies that a typical difference in the date at which
the high-income steady state is achieved across societies according to these experiments is
about 1,750 years. This figure is too large to apply directly to the international experience
as we know it, but it does suggest that in this mdtieke is the possibility of a very wide
disparity in the time it takes for countries to industrialize, even when countries all begin
the process with exactly the same initial conditiod¢e want to emphasize this feature as

an interesting property of the model and caution against taking any particular calculation
too seriously. The disparity in dates of industrialization could be reduced or increased, for
instance, by either reducing or increasing the constant rate of mutation used or by reducing
or increasing the value of(0)."

Figure 4 illustrates the different timing of the development takeoff for six of the fifteen
artificial economies in experiment set B. We show only six economies in order to reduce
clutter. This figure plots the averagevalue in each of these six economies from iteration
1,399 through iteration 1,916, when the last of the fifteen artificial economies met our
convergence criterion for the high-income steady state. All economies in experiment set B
were in a neighborhood of the low-income steady state for the first 1,400 iterations. The
development takeoff is illustrated as the movement of avetaigem a neighborhood of
the low-income steady state value= 0, to a neighborhood of the high-income steady
state valuer = .22. Beginning at the low-income steady state, human capital per capita
rises slowly and haphazardly across economies, since there is little private incentive to
accumulate it. Because experimentation is a stochastic process, some economies reach
the threshold level of human capital per capita before others; these countries industrialize
rapidly and enjoy high growth subsequently. Other countries reach the threshold level of
human capital per capita in due course but perhaps considerably later than the first group
of countries. These countries then industrialize and eventually enjoy high growth, but
their level of per capita income will be significantly lower than that of the countries that
industrialized earlier and will remain lower even though the countries that industrialized
later have achieved the high-income rate of growth. We can interpret the different timing of
the development takeoffs that is illustrated in Figure 4 as being due to the different beliefs
that agents have over time in the different economies about how much to invest in human
and physical capital. The larger the amount of experimentation with honzero investments
in human capital, the faster a nation is able to reach the threshold level of human capital
that is necessary for a development takeoff.

Differences in dates of industrialization can potentially go a long way toward explaining
the differences in levels of per capita income across countries that we observe today. Con-
sider a stylized calculation patterned after the model of this article. There are two steady
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Figure 4. Six artificial economies industrialize.

states, one with no growth in per capita income and one with a growth rate of 1.6 percent
per year. There are two countries, A and B, both initially in the low-growth equilibrium.
Countries switch between steady states abruptly and without any transition time. Country
A achieves the high-growth steady state in the year 1750, while country B achieves the
high-growth steady state in 1960. If this is the situation, the ratio of per capita income in
country A relative to country B in 1960 would be about 28.5. Both countries would grow
at the same rate from 1960 through 1985, and so this ratio would remain constant. This
is roughly consistent with the findings of Parente and Prescott (1993). This calculation is
meant only to be illustrative, but we think it is suggestive that a two-steady-state model
with learning providing a transition between the steady states can help address some of the
main facts in economic development.

5. Remarks

Our modified version of an endogenous growth model is consistent with several broad de-
velopment and growth facts. The modification we study is to introduce learning, which
serves to select among equilibria and also provides a transition dynamic between station-
ary equilibria. We find that for low initial levels of human capital per capita—Ilevels that
tend to characterize preindustrial economies—and regardless of other initial conditions, the
economies we study are initially attracted to the low-income steady state of the model and
can remain there for long periods of time. Eventually, however, these economies achieve a
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high development state. These results are consistent with a fundamental development fact
documented by Maddison (1982): today’s leading industrialized nations were all growing
at zero or near zero rates for centuries prior to the industrial revolution in Europe. Further-
more, in this model a development takeoff can occur at radically different times for two
economies with identical initial conditions. These economies both eventually grow at the
same mean rate, according to this model, but the level of per capita income will be signif-
icantly different in the two countries and will remain so indefinitely. This helps account
for another fundamental development fact documented by Parente and Prescott (1993) and
others: the level of per capita income is higher in the richest 5 percent of countries relative
to the poorest 5 percent by a factor of 29, and furthermore, this factor has been constant
from 1960 through 1985.

We chose to use a genetic algorithm to characterize the trial-and-error learning process
of agents not only because this algorithm offers a natural model of experimentation by
a heterogeneous population of agents, but also because the algorithm is well suited to
“global” searches through its processing of many different decision rules simultaneously—
in parallel. Indeed, the genetic algorithm, acting in concert with the training technology, is
responsible for generating the transition from the low- to high-income steady state. Initially,
for sufficiently low values of human capital per capita, the genetic algorithm achieves a
neighborhood of the low-income steady state via the operations of reproduction, crossover,
and mutation. The constant mutation rate of the algorithm ensures that there is constant
experimentation with nonzero levels of time devoted to training, even though such positive
levels of training yield relatively lower fithess values when all agents have coordinated on a
neighborhood of the low-income steady state. However, this experimentation with positive
amounts of training ensures that the stock of human capital rises over time, eventually
achieving the threshold level. Once this threshold level is achieved, selection pressure
changes as the genetic algorithm—acting once again via the operations of reproduction,
crossover, and mutation—moves away from a neighborhood of the low-income steady state
and achieves a neighborhood of the (now optimal) high-income steady state, remaining
there indefinitely. We doubt that more mechanical (for example, recursive or gradient-
based) learning models with noise could deliver these same results, though this remains, of
course, an open question.

There are a number of possible extensions that could be made to the basic model that
we have developed in this article. One extension would be to cons&ighborhood
effects(see, for example, Durlauf (1995))—that is, one could allow different, neighboring
countries (different populations of artificial agents) to exchanges ideas (decision rules)
about how much to save and how much to invest in human capital. If one nation had, for
example, a greater propensity to experiment with human capital investments than another,
the exchanges of ideas might have the effect of increasing the stock of human capital in
the country with the lower propensity to experiment and thus speed up the development
process in that country. Such neighborhood effects might explain, for example, why most
of western Europe developed within the half century following the industrial revolution in
Great Britain.

A second extension might be to include more than one threshold level for human capital
accumulation. The purpose of this exercise would be to ascertain whether the country that
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was first to achieve the first threshold level for human capital (say, for example, Great
Britain), would necessarily be the same country that was the first to achieve the second
threshold level for human capital.

A final extension would be to consider how the distribution of income changes during the
transition from the low- to the high-income steady state. We note that when agents have
initially coordinated on the low-income steady state, income is distributed rather equally
across agents. During the transition period to the high-income steady state there is rising
income inequality as some agents do better (in terms of fitness) by investing more of their
youthful time endowment in training rather than working. Once all agents have achieved a
neighborhood of the high-income steady state, income once again becomes more equally
distributed. The rising income inequality that we observe during the transition is largely
consistent with Kuznets’s (1955) hypothesis that the process of industrialization leads to
a rise in income inequality and that it is only at relatively high levels of income that such
inequality is reverset® We leave these extensions to future research.

Appendix: Program Outline

Begin program.
Set model parameters.
Set simulation parameters.
Set genetic algorithm parameters.
Find equilibria numerically(z;, k7)) and(zy, k).
Initialize tensors and accumulation variables.
Initialize k, X.
For replications=1 to maximum replications,
Initialize strings;
Find implied values of, w, r fort = —2;
Find implied initial old aggregate savings;
Find implies values ok, y, w,r, x fort = —1;
Find implied initial young aggregate savings;
Find implied values ok, y, w, r, x fort = 0;
For time=1 to maximum time,
Find fitness of the old generation;
Find fitness of the young generation;
Create newborn generation: for member=1 to generation size;
Apply reproduction operator via tournament selection;
Apply crossover and mutation operators;
End creation loop;
Find aggregate savings of newborn generation;
Find values ok, y, w, r, x for timet;
Delete old strings, let old=young, let young=newborn;
End time loop;
End replication loop.
End program.
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Notes

The sample consists of Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, ltaly, Japan,
the Netherlands, Norway, Sweden, Switzerland, the United Kingdom, and the United States.

See, for example, Murphy, Shleifer, and Vishny (1989), Becker, Murphy, and Tamura (1990), Azariadis and
Drazen (1990), Matsuyama (1991), and Laitner (1995) among others.

3. See Azariadis (1996) for an introduction to the economics of poverty traps.

4. An exception is Galor and Tsiddon (1997), which is discussed below.

10.

11.

12.

13.

14.

We could have allowed for more than two steady states, but we elected to study a stylized two-steady-state
case in this article in order to discuss the main ideas in the clearest possible way.

For an introduction to genetic algorithms, see Goldberg (1989) or Michalewicz (1994).

For an alternative approach to systems with heterogeneous learning rules, see Evans, Honkapohja, and Marimon
(1995).

In this article, we use the terglobal to describe our analysis because it is based on a random initialization
scheme. We recognize that our analysis is not truly global, even computationally speaking, since we did not
complete multiple experiments based on every possible initialization for a given parameterization. Such an
approach is beyond the scope of this article.

We could include exogenous labor-augmenting technological change and population growth, but these factors
would exogenously increase the output growth rate in both steady states and serve only to complicate the
analysis. For this reason we follow Azariadis and Drazen (1990) and abstract from these factors by assuming
a constant population and a static technology.

The assumption that capital depreciates fully each period is not necessary to our results; it merely simplifies
our analysis.

We add one so that neither fraction can be equal to unity. If ail'tl(rerorqb{ (t) is equal to one, the consumption

c{(t) for that agent is zero, implying utility ofco. This causes a computational problem which we avoid

by using 32,768 instead of 32,767. This also explains why we restaotl¢ to be chosen from the interval

[0, 1) rather than from the interval [@].

Of course, some stringgerein use in the previous period, so this question might seem a little redundant. We
phrase the question this way only to emphasize that we ask the same question of every string in the system at
timet in order to evaluate all strings on an equal basis.

The addition of crossover serves to speed convergence somewhat, but it is the constant mutafios 1@te

rather than the crossover operation that is responsible for our main results. We note that while crossover may
serve to speed convergence, it has little effect when the economy is in the neighborhood of an equilibrium; in
this case, strings are already nearly identical, and so crossover plays almost no role in altering strings.

Our initialization procedure worked as follows. If we wanted to initializend ¢ so they were, say, both

equal to .1, we would choose each bit value in each string by first choosing a random number from .01 to 1.00;
if the random number was less than or equal to .1, we would place a bit value of 1 in that spot in the string,
otherwise, we would place a bit value of 0. Since we only have fifty agents in each young generation, our
initial values forr and¢ are only approximately equal to our targeted initial values of .1, .3, .5, .7, and .9.
This approximation is not material to our results.
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15. A reversal from the high- to the low-income steady state cannot occur in our model because human capital
only accumulates. Thus, the private return to investing in human capital is nondecreasing over time. Even a
wildly improbable round of mutations that set all agent's training decisions to zero could not be sustained as
a return to the low-income steady state because the private return to investing in human capital would remain
sufficiently high (that is, above the threshold). This is a fundamental difference between our model and that
of Kandori, Mailath, and Rob (1993).

16. We limited the number of experiments in this set to fifteen mainly to conserve on computation time. The
qualitative results were unchanged in a number of other computational experiments that we did not organize
into a reportable format.

17. Perhaps more important, we are following Azariadis and Drazen (1990) in abstracting from the possibility that
labor or ideas or both can move across economies. We expect that a model including some degree of human
capital mobility would mitigate the sharp disparities in dates of industrialization that we find. From this point
of view, the results we obtain are perhaps reasonable for a world of completely isolated societies.

18. See also Galor and Tsiddon (1997), who obtain a similar result.
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