
Multimedia Tools and Applications, 13, 285–306, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

QoS Filtering and Resource Reservation
in an Internet Environment

ANDREAS MAUTHE andreas.mauthe@gmx.de
Tecmath AG, Kaiserslautern, Germany

FRANCISCO GARCIA frankiegarcia@agilent.com
Agilent Laboratories, Edinburgh, UK

DAVID HUTCHISON dh@comp.lancs.ac.uk
Computing Department, Lancaster University, Lancaster, UK

NICHOLAS YEADON nick.yeadon@rd.bbc.co.uk
BBC Research & Development, Tadworth, UK

Abstract. Multimedia group applications often operate in an environment where the various participants are
located on systems and communication links with different capabilities. Mechanisms are required that ensure
full-quality media for high-performance workstations but lower-quality media for playout at low-end systems.
QoS filters have been proposed as a way to adapt QoS to the user specified level by changing the structure of a
media stream in a well defined way. Resource reservation and QoS filter instantiation should be closely integrated
since both represent one particular aspect of the provision of individualistic QoS for heterogeneous users in
multipeer communications. The Internet reservation protocol RSVP is receiver oriented and allows each receiver
to specify its resource requirements. However, no actual mechanisms are defined that adapt the data stream to the
receiver specified QoS requirements. In this paper we present an enhanced version of RSVP (calledRSVP++)
that integrates resource reservation and QoS filter control. In order to achieve this integration we extend the RSVP
functional model and define a new QoS service class. RSVP++ can coexist with common RSVP systems, thus,
openness and interoperability of the system are ensured.

Keywords: QoS filtering, media stream adaptation, resource reservation, RSVP, heterogeneous multipeer
communications

1. Introduction

Today’s computer and network infrastructures are often characterized by heterogeneity
in hardware and software. This is totally acceptable in isolated systems; as such systems
are often tailored to the particular task. Once these systems are connected together, the
problems of establishing a true open environment emerge. This is especially critical for
multimedia group applications where different participants are located on systems with
different processing capabilities connected via communication links ranging from high
speed networks to mobile connections with relative low bandwidth. Such systems are for
instance training applications for field engineers or remote consultancy applications in the
area of tele-medicine. All participants in such applications should be provided with the best



286 MAUTHE ET AL.

possible quality, i.e., those with high capability systems should have full quality video and
audio whereas others who have only limited capabilities should have the media quality that
is best suited to the specific task at hand. In which way the media quality is reduced depends
on the specific requirements of the application. For some applications the continuity of a
movement is more important than color information or the sharpness of an image (e.g., a
video that shows a specific action). At other times it is more important to have a clear, full
colored picture rather than the full frame rate (e.g., where the structure of a slow moving
object is viewed). Both might actually be the case at different times in the same session (i.e.,
first a movement is demonstrated and later the structural characteristics are analyzed in more
detail). Low bandwidth links in this context do not imply, however, that no resources are
reserved and only the quality is adapted to the available (and possibly changing) bandwidth.
On the contrary, the users of multimedia group systems such as CSCW applications might
be able to cope with a relatively low quality as long as the behavior of it is deterministic.
Hence, the requirement of such applications is to adapt the media quality to the requirements
and capabilities of different participantsand to reserve resources to ensure deterministic
behavior.

The proliferation of the Internet Protocol (IP) has gone some way to solve the intercon-
nection problems for data transfer. However, the issues relating to the transfer of interactive
continuous media are still not resolved. In the Internet the problem of QoS provision is
mainly addressed by the resource reservation protocol RSVP [1, 16]. RSVP was designed
with multipeer communication in mind. Reservations in RSVP are initiated by the receiver
who (knowing his own resource capacities and experiencing the quality of incoming traffic)
can define which part of the transmitted data he wants to receive with traffic performance
guarantees [16]. However, a sensible way to discard or alter those parts of the data stream
that can not be handled appropriately by the receiver(s) is lacking. Thus, data for which not
enough resources were reserved might be randomly discarded in the network. Hence, those
receivers who have reserved fewer resource than required by the media stream can receive
corrupted, completely distorted and unusable data.

Layered coding is one way to adapt the quality of a media stream. However, in the
discussed context this is not always suitable since it only allows to reduce the quality
of media in a specific way. The QoS filters1 developed at Lancaster University [13] can
provide individualistic QoS and qualities to different receivers and hence are better suited
for applications with heterogeneous requirements. These QoS filters can be dynamically
placed in end-systems and network nodes and are controlled via a special QoS filter control
protocol.

Although the concept of generic mixers and translators (similar to the QoS filter concept)
that alter the composition of a data stream exists as part of the Internet protocol RTP
(real-time transport protocol) [6], their description appears more vague than generic. RTP
does not specify any particular mixer or translator, neither does it define how they can
be instantiated and controlled. With the Lancaster QoS filters the structure of a continuous
media data stream can be changed and by doing so the QoS requirements are adapted. Ideally
resource reservation and QoS filter instantiation are closely integrated since both represent
one particular aspect of the provision of individualistic QoS for heterogeneous users in
multipeer communications. In this paper we present an enhanced version of RSVP (called



QOS FILTERING AND RESOURCE RESERVATION 287

RSVP++) that integrates resource reservation and QoS filter control. In order to achieve
this integration we extend the RSVP functional model and define a new QoS service class.
RSVP++ can coexist with common RSVP systems, thus, openness and interoperability of
the system are ensured.

The paper is structured in six sections. Section two briefly describes the QoS filters
developed at Lancaster and presents some experimental results. Subsequently, in section
three, QoS provisions in the Internet are discussed and the relevant characteristics of RSVP
are outlined. In section four the RSVP++ functional model and the new QoS service
class are introduced. Further, the way QoS filters and resource reservation are integrated
is described in detail in this section. Section five discusses implementation related issues.
Finally, section six gives future directions and conclusions.

2. QoS filters: Addressing the heterogeneity gap

The work on QoS filtering at Lancaster was primarily motivated by the need to support mul-
tipeer communication within heterogeneous communication environments. In this section
we introduce the QoS filters developed at Lancaster and show how they reduce the resource
requirements of a data stream in a structured manner. Since QoS filters can be dynamically
placed in the dissemination tree they allow to provide individualist QoS to all participants
in a group session.

2.1. QoS filters: General priniciples

In order to provide individual QoS levels to different receivers in multipeer communication
while still exploiting the advantages of multicast, the use of QoS filters has been proposed
[4, 12, 14]. QoS filters are objects that transform continuous media streams in some way.
This may for instance involve the reduction of video frame rate, adjustments to presentation
quality or conversion to different compression formats. The effect QoS filters have is a
structural change of the data stream while preserving the information content. This is usually
accompanied by a reduction of the QoS requirements of a data stream. A QoS filter may
be a software only object or enjoy hardware support. The filtering model involves placing
QoS filters at strategic points (such as network nodes, gateways, specialised servers, etc.)
around a multicast dissemination tree. The designated source may then send at the quality
required by the highest capability receiver while low capability receivers acquire a filtered
down version of the media stream.

As the characteristics of the underlying network or the nature of the transmitted media
change, QoS filters may be added or removed from the dissemination tree dynamically. Filter
objects may also logicallymovearound the current tree to achieve the optimum location of
execution. This is known as filterpropagation[4, 13].

By implementing this approach all receivers’ disparate quality requirements are satisfied
while the advantages of multicast transmission protocols can still be exploited. At present
filtering seems to be the only realistic solution for heterogeneous QoS within multicast
communications.



288 MAUTHE ET AL.

2.2. QoS filter types

The QoS filter mechanisms currently implemented at Lancaster broadly fall into the 6
categories listed below [11, 14]. Some of these have been designed with wireless commu-
nications in mind. They include filters that produce large reductions in data rate, such as
the frame dropping filter, and filters that can improve bit-streams error resilience, namely
the slicing filter. The QoS filters allow to adapt a media stream in various ways to the
available QoS and the requirements of the user. Hence, the filtered data stream is an optimal
compromise between resource restrictions and user requirements.

Codec filter. A codec filter can be used to compress or decompress a bit-stream. It is
more commonly used to perform transcoding between different compression standards.
Depending on the compression scheme used, transcoding can often be performed without
the need for full decompression and re-compression.

Frame-dropping filter. This is a media-discarding filter used to reduce frame rates. The
filter has knowledge of the frame types (e.g., Intra- or Inter- frame coding type) and drops
frames according to importance. For example, the pecking order for dropping frames from
an MPEG 1 video stream is B-, P-, and finally I-pictures. The frame-dropping-filter is used
to reduce the data rate of a stream in a sensible way by discarding a number of frames and
transmitting the remaining frames at a slower rate. The filter may be used to ensure that a
receiver gets frames at a rate suitable to its processing capabilities or because it can only
decode one type of picture (e.g., I-pictures). This filter operation can also be employed to
save network resources by discarding frames that are late or have been corrupted by loss of
constituent packets.

Frequency-filter. A frequency filter performs operations on semi-uncompressed data.
That is, it operates in the frequency domain on the values of the DCT-coefficients. Semi-
decompression/compression involves just entropy decoding/encoding. Filter mechanisms
include low-pass filtering, color reduction filtering and color to monochrome filtering. Low-
pass filtering is where the higher frequency DCT-coefficients are discarded on recoding,
leaving only the DC DCT-coefficient and a number of low-frequency components. Color
reduction filtering performs the same operation as the low-pass filter but only operates on
the chrominance information in the bit-stream. The color-to-monochrome filter removes all
color information from a bit-stream. A color to DC-color filter performs the same operation
as the color to monochrome filter except that the DC DCT-coefficient is left untouched,
giving coarse blocks of color. Unlike the frame-dropping filter the frequency filter, and later
on the re-quantization filter, reduces the required bandwidth without affecting frame rate.
Of course this is at the cost of image quality.

Mixing filter. This filter is used to mix streams together or to multiplex audio and video
where the encoding supports this kind of structure (e.g., MPEG). Mixing can be performed
in a couple of ways, either on a frame basis or a slice basis. Frame based mixing simply
interleaves two streams into the same stream. This requires a more complex demultiplexing
or decompression process in the end-system. Slice-mixing filtering involves more process-
ing by the mixer but can be decoded as a single stream. The slice-mixing merges two frames
from different sources into the one larger frame by adding slices from each stream into the
target stream, see figure 1.



QOS FILTERING AND RESOURCE RESERVATION 289

Figure 1. Slice based mixing.

The slice structure of the frames sometimes needs to be altered so that each row of
macro-blocks is contained in one slice (see slicing filter below). Extra blank padding slices
are needed if the two streams are of different window sizes; to make the resultant image
rectangular. Mixing two streams in this way means that the receiving end-system needs only
one decompression board or one decoding process. Also there is a reduction in transmission
overhead as one and not two streams will be transferred.

Re-quantization filter. The re-quantization filter, like the frequency filter, operates on
the DCT-coefficients but also dequantizes the coefficients. The coefficients are then re-
quantized using a larger quantizer step. As quantization is the most lossy process in the
DCT based compression algorithms, requantization can produce some strange edge effects.
However, the bit-rate reduction achieved by this filter can be quite substantial.

Slicing filter. The slicing filter increases the number of slices in an MPEG stream, or
restart segments in Motion-JPEG, per frame. Slices are identifiable from byte aligned slice
headers. Slices are used to provide protection from errors occurring within a picture. The
variable length decoder (entropy decoder) is realigned on each slice header. Therefore, if
the bit-stream is corrupted and the decoder becomes misaligned with the variable length
codes in the bit-stream, erroneous effects will not carried over past the end of the slice. The
penalty for adding a slice header consists of a 32 bit byte aligned header code, followed by
a 5 bit quantizer scale and a 1 bit extra information bit, i.e., 38 bits plus up to 7 padding bits
to make the start code byte-aligned.

2.3. QoS filter instantiation and control

The Lancaster QoS filters currently operate independently of any resource reservation
scheme. QoS filters are instantiated is shown in figure 2. The client application is constructed
around the MPEG 1 software video player available as shareware from the University of
California, Berkeley [5]. The software has been modified to receive data from the network
and take as input the host name of the required file server (or the next up-stream filter
server).

The client application also permits aQoS-eventand QoS-actionto be specified. The
QoS-event identifies an incident which constitutes the breaching of a pre-definedthreshold



290 MAUTHE ET AL.

Figure 2. Filter control: Establishment phase.

level. When the QoS-event occurs the specified QoS-action is undertaken. The prototype
implementation allows the event to be specified in terms of loss percentage (i.e., packets
lost) and the action equates to the automatic instantiation of a filter operation.

The filter object consists of two software elements: a daemon and a filter agent. The filter
server daemon waits for requests from down-stream nodes, which are either receivers or
other filtering nodes. The filter server spawns a filter agent with the necessary filter operation
and parameters. The parameters the daemon receives and passes to the filter agent include
the requested service of the down-stream client.

The filter agent instantiates the requested filter operation and forwards the service request
up-stream. The next up-stream node may be another filter server or the source file server.
The filter agent then waits for the data stream to propagate from the source down through the
dissemination tree. The filter agent performs the necessary filter operation on each packet as
it is received. Each network node need only know the location and signaling port address of
the next up-stream node. This approach allows connections to be quickly set-up and tested.
Multipeer communications can also be quickly established by down-stream nodes joining
existing streams at the filter agents. The filter agent is then responsible for generating the
number of output streams required from the single input stream. Each received packet is
filtered and copied to the output buffers of the filter agent.

The prototype filter propagation protocol is based on a simple scheme; at regular intervals
(in order to avoid oscillation) the filter agent evaluates the filtering functions being performed
on each of its output buffers. If possible the filter operations are combined and a filter request
message is sent to the next up-stream node. This changes the operations on the output of
the up-stream filter agent.

2.4. QoS filter performance

It was shown in [14] that not only can filter operations be performs on the fly but also that
the end-to-end delay may actually be reduced by filter operations. This is because the more
data a filter discards the less it has to process for re-encoding and hence the faster it operates.
This also has implications on the decoding process. As data is discarded at the filter, there
is less for the client system decoder to process. Therefore, the delay incurred by placing a
filter in the dissemination tree and filtering the data stream is offset by the gain in reduced
delay at the software decoder. In figure 3 it can be seen that where the low-pass filter is used
with a low cut-off point (CO= 1 and CO= 2) the actual end-to-end delay can be reduced.



QOS FILTERING AND RESOURCE RESERVATION 291

Figure 3. Mean processing time to filter and display an I-frame.

3. QoS in the internet

The Internet is an accumulation of a vast number of heterogeneous networks ranging from
multi-gigabit fibre optic based backbones to 10 Mb/s ethernets. The provision of QoS
in such an environment is a complex issue, especially if multipeer communication with
heterogeneous receivers is considered. QoS in the IPng architecture is supported by the
concept of flow and traffic classes in IPv6 in conjunction with the resource reservation
protocol RSVP and resource management in network nodes. RSVP is used to convey
information about the requested QoS between end-systems and network nodes. The traffic
specification itself is opaque data to RSVP [1] and is defined separately.

3.1. Resource reservation with RSVP

RSVP is a companion protocol to IP [15]. Its task is twofold, it is used by the end-system
to request a specific QoS from the network for certain data streams (so calledflows), it is
further used to propagate QoS and control requests to all routers along the path(s) of the
flow(s) and to establish and maintain state information to provide the requested service [1].
RSVP does, however, not guarantee that the requested QoS will be provided or even that
resources will be reserved. Further, RSVP does not perform any routing, it only uses local
routing databases to establish the route of a flow. Hence, it can operate with different routing
protocols.

Reservations in RSVP can be requested for simplex flows. A sender periodically issues
Path messages which are transmitted hop-by-hop along the data path to the receiver(s).
It contains aSender Template(which describes the format of data packets a sender will
transmit) andSender Tspec(which describes the traffic characteristics of the sender data
stream). Information about available resources along the path(s) is collected while travers-
ing the network and stored in the so-calledAdspec. While traveling through intermediate



292 MAUTHE ET AL.

systems,Pathmessages set up information for areverse routein the routers. This information
is used byResvmessages to propagate the receivers’ reservation request along the data path
towards the sender. The requested QoS is specified in theFlow Descriptor. Only Resv
messages can instantiate a reservation. Hence, it is the receiver who defines how much
resources should be reserved for a particular flow. Since there can be a potentially large
number of receivers there might be multiple reservation requests for the same flow(s)2.
Whenever there is more than one such reservation request at a network node, RSVP merges
the different requests, i.e., a reservation for the largest flowspec is made and oneResv
message with this flowspec is forwarded to the previous hop. RSVP paths can also be
actively released by means of teardown messages (i.e.,PathTearandResvTear).

The actual reservations depends on the ability of each router between the sender and
the receiver(s) to provide traffic control. The components in a router required to perform
traffic control are apacket classifier, a packet scheduler, andadmission control. For each
flow admission control is performed locally at each router based on the current resource
availability.

RSVP filters determine the use of resource reservations3. Thefilter spec, which is part of
theFlow Descriptor, specifies the subset of packets which should benefit from a reservation.
These packets can originate at a single sender and belong to one flow only but they can
also be sent by multiple senders who are part of the same session. Three types of filters
are defined. These areWildcard Filters(a single resource reservation is shared by all flows
from all upstream senders of one session),Shared-Explicit Filters(the resource is shared
among streams from a well defined set of senders) andFixed Filters(the reservation is for
packets from one sender only).

3.2. QoS control services in the internet

Three QoS service types are proposed for the Internet, the traditionalbest-effortservice,
thecontrolled-loadservice and theguaranteedservice. The controlled-load service closely
approximates the behavior of the best-effort service under unloaded conditions. This service
was designed for applications highly sensitive of overload conditions such as adaptive real-
time applications. Delay or loss parameters are not specified for this service. The guaranteed
service gives bandwidth and delay “guarantees”, i.e., it ensures that datagrams arrive within
a guaranteed delivery time and will not be discarded in case of congestion.

Two specifications are used to describe QoS for a controlled network service. The Traffic
Specification (TSpec) describes the traffic pattern for which the service is being requested,
and the Service Request Specification (RSpec) specifies the QoS a flow wishes to request [9].
Table 1 summarises the set of general control and characterization parameters which should
be employed by all QoS control services [8].

Both the controlled-load and guaranteed service uses the TOKENBUCKET TSPEC to
describe the traffic characteristics of a flow [7, 10]. For the guaranteed service theRSpec
specifies a rate and a slack term. The maximum end-to-end queuing delay is given by the
parametersCtot (total delay a datagram might experience due to rate parameters of the flow)
andDtot (total rate-independent worst case transmit time variation). The guaranteed service
is not concerned about delay variation, i.e., it does not minimize jitter [7].



QOS FILTERING AND RESOURCE RESERVATION 293

Table 1. General control parameters for QoS service types.

Parameters Description Value

AVAILABLE PATH BANDWIDTH Available bandwidth along bytes/sec
the data path

MIMIMUM PATH LATENCY Minimal latency of the packet microseconds
forwarding process associated
with a network element

TOKEN BUCKET TSPEC Describes traffic shape employing -token rater (bytes per packet/sec)
a token bucket filter -bucket depthb (bytes)

-peak ratep (bytes per packet/sec)
-maximum packet sizeM (bytes)
-minimum policed unitm (bytes)

PATH MTU Maximum transmission unit bytes

NUMBER OF IS HOPS Number of integrated service integer
aware hops

NON IS HOP Indicates the presence of bit flag
network elements not capable
of implementing QoS
control network services

4. QoS filters in the internet

Receiver selected QoS is only sensible if individual reservations per receiver are accom-
panied by a mechanism to reduce the resource requirements of a data stream such as QoS
filtering. In order to integrate resource reservation and QoS filtering we have extended
the current definition of RSVP. In the enhanced version, RSVP++, the concept of QoS
filtering is incorporated in the functional model and a new QoS service class is defined.
Filters are controlled using a new object type in RSVP messages as described in detail
below.

4.1. The extended functional model

The functional model of RSVP contains five basic components responsible for the provi-
sion of QoS. All RSVP messages are handled by theRSVP Process. Every time there is a
reservation request for a new data flow theAdmission Controlchecks if this request can be
accommodated and thePolicy Controlverifies the right of the user to make reservations.
Incoming data packets are passed in thePacket Classifier. This module determines the
route and QoS of the packet. Subsequently the packet is queued by thePacket Scheduleras
indicated by the traffic shape and forwarded to the next node. Additionally, the packet sched-
uler is responsible for resource allocation on the link-layer medium. If a QoS request can
not be supported, RSVP returns an error packet to the originator of the request. Otherwise,
Admission Control accepts the request, sets parameters to the Packet Classifier and
Scheduler to obtain the desired QoS and forwards the request to the next node. Admission



294 MAUTHE ET AL.

Figure 4. RSVP functional model.

Control, Packet Classifier and Packet Scheduler constitute theTraffic Control. Figure 4
illustrates the RSVP functional model.

In [2] we introduced a flow management model with comparable components and a
similar structure. The main difference is a component calledFilter Allocator. This module
is responsible for the instantiation and control of QoS filters. QoS filters operate on entire
(i.e., unfragmented) application data units such as MPEG frames. They are located at the
same system level as RTP mixers or translators [6]. In order to enable QoS filter operations
in an RSVP/Internet environment we extend the RSVP functional model by including a
Filter Allocator andQoS Filtermodule. The Filter Allocator is controlled by the RSVP
process that passes QoS filter requests (which are part of the extended flowspec) to the
Filter Allocator. The Filter Allocator then instantiates the respective QoS filter by spawning
aFilter Agentresponsible for all QoS filter operations on one flow. The data flow is uniquely
identified by the flowID4 in each message. In the extended model this identifier is used to
determine if and what kind of QoS filter operations are to be performed. After filtering
the data is passed to the Packet Classifier that treats it according to the reservation for the
respective flow. If filtering is not required, no QoS filters are instantiated and packets are
directly passed to the packet classifier. The Filter Allocator and QoS Filter component build
theQoS Adaptationmodule. In the case where no QoS adaptation module is present in an
intermediate node (i.e., QoS filter operations can not be performed), a QoS filtering request
is simply ignored by the RSVP Process. However, resources are still reserved at this node
and the reservation request (encapsulating the QoS filter control details) is passed on to the
next up-stream node. Figure 5 shows the extended functional model for RSVP++.

4.2. The QoS adaptation service

In addition to the currently specified best-effort, controlled-load and guaranteed service,
we propose aQoS adaptation servicethat adapts the structure of a media stream to avail-
able resources and user requirements in a sensible manner and reserves the required re-
sources on intermediate links. In order to adapt data streams, QoS filters are activated
in network nodes during the reservation process. The QoS adaptation service also uses the
TOKEN BUCKET TSPEC to describe the characteristics of a flow. In addition, a parameter



QOS FILTERING AND RESOURCE RESERVATION 295

Table 2. QoS adaptation data types.

Media type Data types

Video MPEG-1,

MPEG-2,

MPEG-4

JPEG,

H.261,

H.263

Audio CD STEREO,

CD MONO,

PCM,

ADPCM,

GSM,

CELP

Figure 5. Extended RSVP++ functional model.

DATA TYPE is used to specify the media type transmitted. Table 2 gives the audio and
video data types currently considered.

Further, theQoSadspec, a structure that provides information about QoS filters, is em-
ployed to control QoS filters. This structure is used in theAdspecto provide information
on the kind of filters available in intermediate nodes on the path from the sender to the re-
ceiver(s). In theSender Tspecit indicates which kind of filter operations the sender allows,
and in theFlow Specit is used to instantiate and control QoS filters. The list of filters is
given in Table 3.5

The currently implemented QoS filters can be controlled using one parameter only. A
number of QoS filters can operate in parallel on a data stream to adapt its QoS to user
requirements and resource availability. Users are not expected to specify all the different
QoS filters and the parameters that are required to achieve a particular QoS. A set of profiles
is used to match the available/requested QoS for a data stream and QoS filters. This mapping



296 MAUTHE ET AL.

Table 3. QoS filter types.

Filter mechanism Filter type

Frame dropping Simple frame dropping filter, priority based frame dropping filter

Codec filters Transcoding filter, compression/decompression filter

Color reduction Color-to-monochrome filter, DC-color filter, dithering filter

DCT-filters Low-pass filter, re-quantization filter, limiting filter

Mixing filter Interleaving frame mixer, intra-frame mixer, video & audio multiplexer, audio mixer

Splitting filter Individual QoS splitter, hierarchical splitter

is part of the QoS negotiation process and done by the extended RSVP module in the end-
system. Thus, the use of QoS filters does not complicate the specification of QoS for the
user.

The QoS adaptation service can operate in two modes, viz.controlled-loadandguar-
anteed. In the controlled-load mode a dynamic adaptation to changes in network QoS is
possible, i.e., QoS filters can be instantiated dynamically. However, it is not expected that
this occurs frequently since the controlled-load service itself displays the behavior of a
“best-effort service under unloaded conditions”. Hence, the achieved QoS should be stable
and fluctuation should be rare.

4.3. Resource reservation and filter instantiation

QoS filter instantiation and control is fully integrated into the RSVP resource reservation
process using mainlyPathandResvmessages. APathmessage collects (in addition to infor-
mation about resource availability stored in theAdspec) information about the availability
of QoS filtersen route. Each Filter Allocator keeps information about QoS filters present
in network nodes further up-stream. Once thePathmessage reaches the receiver, resource
and QoS filter availability are known and can be attuned with the user requirements. In
this process the optimal combination of QoS filters to match resource availability and the
flowspec are computed and placed in the reservation request.

4.3.1. Filter instantiation and control. The reservation request including QoS filter infor-
mation is issued by the receiver and travels up-stream towards the sender along the reverse
path. Apart from reserving the necessary resources, the Filter Allocator in a network node
also puts the required QoS filter(s) in place. The reservation request is forwarded without
any change if the Filter Allocator detects that similar QoS filter operations can be also
executed further up-stream. If this is not the case, filters are instantiated and theFlow Spec
andQoSadspecare changed accordingly. Any Filter Allocator in up-stream nodes acts in
the same way. Hence, a filter is always propagated up-stream to the most optimal point
(in terms of resources) in the dissemination tree. When reservation requests are merged
this also effects the propagation of QoS filters. The request of a receiver with higher QoS
requirements has priority. A QoS filter for the lower quality data stream(s) is installed and the



QOS FILTERING AND RESOURCE RESERVATION 297

Figure 6. Join of a new participant.

newQoSadspecis forwarded in the merged reservation request. This newQoSadspecwill
usually be equivalent to the one of the highest quality data stream at this node. AResvConf
messages is sent to the user with the lower QoS requirements if this was requested.

The release of QoS filters is entirely in line with the release of resources in RSVP.
Whenever aResvTearor PathTearmessage arrives all QoS filters associated with this
message will be removed. If a reservation times out, all QoS filters associated with the data
stream will be released along with the resource reservation.

4.3.2. Join and leave of participants.When a new user joins the communication filters
might have to be instantiated in nodes where the reservation request of the new participant
is merged with already existing reservations. The case where the new participant has lower
quality requirements is relatively straight forward. A filter is simply instantiated for the
new data stream in this node, no change of the reservation request is required. Figure 6
illustrates the case where the QoS requirements of the joining user are higher than existing
reservations. When the reservation request (a) of the joining user reaches Node 3, QoS filters
for the existing data streams are installed (b) and the new request is forwarded to the next up-
stream router (c). ThisResvmessage will release any up-stream filter that adapted the data
stream to the requirements of the existing users on this sub-tree and reserves new resources
(d). Thus, the filter is effectively propagated down stream. If the new reservation request
fails (indicated by aResvErrmessage) the old reservation and any previously instantiated
filter remains in place and the new filter(s) instantiated at the merging point are released.

When a participant leaves, its reservation is either explicitly released (using aResvTear
message) or it times out. If, at a merging point, the reservation of the leaving participant
was lower than the merged reservation request (previously passed up-stream), then the QoS
filter and any state information associated with this data stream are released.

If the reservation of the leaving participant was matching the merged reservation request
(as depicted in figure 7) and all other down stream reservations are lower, the ResvTear
message (a) causes the generation of a new, lower reservation request and the release of the
filter(s) of the now highest quality receivers(s) on this sub-tree (b). This new reservation
request is propagated up-stream together with the respective QoS filter (c) which is then
installed in the next up-stream node (d).

4.3.3. Non-QoS filtering clouds. Non-RSVP clouds affect the QoS adaptation class in
the same way than the controlled-load service and guaranteed service. No additional



298 MAUTHE ET AL.

Figure 7. Leave of participant.

Figure 8. Configuration with non QoS filter node.

mechanisms for the QoS adaptation class in this case are required. However, the case of
“non-QoS filtering clouds” (i.e., RSVP routers without the QoS adaptation module) requires
special treatment. When not all intermediate nodes are capable of performing QoS filtering
it is possible that although the requested QoS filter type is available further up-stream, it
cannot be instantiated because the reservation request was merged with a request for higher
QoS in a non-QoS filtering capable node. An example for this case is illustrated in figure 8.
Node 2 is a non-QoS filtering capable node. The QoS filter type requested by C2 and C3
is available in Node 1. Hence Node 3 will propagate its filter request further up-stream (a).
However, since the reservation request was merged with that of C4 in Node 2, the QoS filter
has to be instantiated at a down stream node (ideally it would be placed in Node 2). Since
Node 2 is a non-QoS filtering capable node, any data related to QoS filtering is meaningless
to its RSVP module. Thus, it simply copies and forwards the QoS filtering request (b). From
the point of view of the QoS adaptation module in Node 3 this causes an error and a special
strategy to deal with this case is required.

In order to enable the next up-stream QoS filtering node to discover that reservation
requests have been merged by a non-QoS filtering node, theQoSadspechas to contain
additional information about the original QoS associated with the filter request. Therefore,
the relevant QoS parameters (e.g., token bucket rate and size) are also part of theQoSad-
spec. When the reservation requests are merged in the non-QoS filtering capable node, the
QoSadspecof the lowest QoS requested (i.e., the one with a definite QoS filter request) is
copied in the newResvmessage. The next up-stream QoS filtering capable node is now able
to discover if incongruent requests have been merged by comparing the QoS parameters



QOS FILTERING AND RESOURCE RESERVATION 299

of the Flow Specwith those in theQoSadspec. If this is the case aResvErrmessage is
sent indicating the failure of instantiating the requested filter (c). The error message also
contains theFlow Specof the merged data stream and theQoSadspecof the lowest QoS
stream. According to this information the down stream Filter Allocator(s) can determine
which QoS filter request was unsuccessful further up-stream and where the respective QoS
filter(s) has to be instantiated (d).

Following the instantiation of the QoS filter(s) a newResvmessage is sent containing the
adjustedQoSadspecandFlow Spec. The node that previously issued theResvErrchanges the
QoSadspecin the periodicPathmessages indicating that the particular QoS filter operation
which failed is not available further up-stream. This avoids any attempt to propagate the
same QoS filter request in subsequentResvmessage which would cause the same error.

The QoS filter can be propagated again further up-stream if the receiver with the higher
quality requirements leaves the communication session. In this case the last QoS filtering
capable node will place a non emptyQoSadspecin the ResvTearmessage. Hence, any
intermediate non-QoS filtering capable node will forward theResvTearmessage regardless
of whether reservation requests were previously mergeds.6 However, the fact that there
was a merge of reservation requests previously is indicated by setting theFlow Specin
theResvTearmessage to zero. This causes a state change in the next up-stream QoS filter
capable node which in its next Path message indicates that a propagation of the QoS filter
that initially failed is again possible. TheResvTearmessage will not be forwarded any
further by this node.

5. Implementation issues

A prototype of the integrated QoS filter control as part of RSVP has been implemented
at Lancaster University within the GCommS project [3] under the label RSVP++. The
implementation concentrates on the QoS filter related and integration aspect. It comprises the
modified RSVP protocol (i.e., RSVP++), the RSVP Daemons in routers, RSVP Modules
in the end-systems and adapted QoS filter components. Resource reservation and traffic
control are not part of the prototype. The development environment and experimental testbed
consists in 486 66 MHz and Pentium 166 MHz PCs connected via a standard ethernet
network. The PCs can be operated as end-systems or routers.

The development environment does not allow the direct access and programming of
routers. Hence all RSVP++ components are implemented as user processes and all RSVP
messages exchanged between them are UDP encapsulated. Messages to multiple partic-
ipants are duplicated at this level, no network level multicast is used. IP multicast could
be used directly if the respective functions would be implemented in the IP multicast
forwarding.

5.1. System components

The major components of the extended functional model of RSVP++are theRSVP Module,
RSVP Daemonand theQoS Adaptation Module. Figure 9 shows all components of the
RSVP++ system and how they are related. The QoS adaptation module consists of the



300 MAUTHE ET AL.

Figure 9. RSVP++ components.

QoS Filter-D (the filter control daemon) andQoS Filters-A(the QoS filter agents). The
QoS filter mechanisms are not affected by their integration in the RSVP++ system and
operate as described in [11]. The main control instance in an intermediate note is theRSVP
Daemon. The RSVP Module in the end-system is an agent associated with an application
process that translates application requirements into RSVP messages.

TheRSVP Daemonis responsible for the management of RSVP sessions, this includes
the periodic exchange ofPathandResvmessages to up-date reservation information and
maintain the “soft-state” of a session. Whenever a message arrives the RSVP Daemon
checks if it is a new request or a refresh message. In the former case it creates a new
management entry and informs the other components. When it is a refresh message the
information currently held is updated and in the case of changes other components are
informed. The RSVP Daemon does, however, not interpret the information contained in
the actual messages that is opaque data to it. It only extracts this information and passes it
to the respective modules. When a timer expires the RSVP Daemon acts according to the
RSVP specification. That is, it sendPathTearrespectivelyResvTearmessages and passes
the infomation to the QoS Filter-D. QoS filtering related information can be part ofResv,
Path, ResvConf, ResvErr, PathTearandResvTearmessages.

The QoSAdaptation Moduleconsists of one QoS Filter-D and a number of QoS Filter-As.
The QoS Filter-D is responsible for the management of the components performing the
filtering, viz. the QoS Filter-As. The QoS filter daemon keeps all status information related
to QoS filters and their control. With this information it is able to decide whether QoS
filters can, and should, be propagated or if it is responsible for instantiating them locally. If
a filter should be propagated it asks the RSVP Daemon to send a newResvmessage with
the respective QoS filter request. For each stream the QoS Filter-D instantiates one QoS
Filter-A which serves all filter requests for that stream at this particular node. The QoS
Filter-A accommodates all requests for a particular stream. Those requests might be for
different filters and/or from different clients.

The RSVP Daemon and the components of the QoS Adaptation Modules run as separate
processes and communicate using messages. This design makes it possible for the different



QOS FILTERING AND RESOURCE RESERVATION 301

tasks to run independently. As a result both resource reservation and QoS filtering modules
can be replaced without affecting the other component. Even the RSVP protocol could be
replaced by another resource reservation protocol with similar features. The QoS filters
only rely on the information passed between the RSVP Daemon and the QoS Adaptation
Module and the capability of the resource reservation protocol to carry this data but not on
the protocol itself.

TheRSVP Modulein the end-system is the application interface to RSVP++. Applica-
tions initiate reservations and control filters via this interface. The IETF does not specify
an API for RSVP, hence the implemented RSVP Module only conforms to the RSVP spec-
ification itself. The actual interface definition was influenced by an existing application
framework. There is a distinction between the sender RSVP Module and the receiver RSVP
Module. An RSVP Module is associated with every sending and receiving process. The
sender can create sessions and sendPathmessages along the established multicast route.
The receiver can join an existing session but neither create nor delete it. The RSVP Module
handles all incoming RSVP messages and only informs the user in the case of major state
changes (e.g., when a session is deleted). It is also responsible for sending periodic refresh
messages and dealing with time-outs indicating that there is a problem in an up-stream (or
down-stream) router.

The application framework of the experimental systems consists of a file server (that
incorporates a daemon and a source agent) and a client constructed around the MPEG
1 software video player [5]. Figure 10 shows an example of the application framework
with four clients connected to the server via one respectively two intermediate systems7

Figure 10. RSVP++ application framework.



302 MAUTHE ET AL.

(i.e., RSVP++ router modules). The client window on the upper left hand side shows an
image after re-quantization filtering. This is filtered at node 4712. Node 4713 is the down-
stream node of 4712; the right hand images are filtered at this node. The lower right hand
one displays the result of low-pass filtering.

5.2. Message formats and RSVP QoS filtering objects

Continuous media data units are UDP encapsulated using the RTP standard header
[6] for the required sequence numbers, timing information, and payload types. The payload
type field in RTP is currently 7 bit, i.e., there can be 128 different payload types. This is for
the time being sufficient but may prove to be not enough considering the rapidly increasing
number of new encoding standards and media formats.

All QoS filtering related information is carried in two structures:Data type which gives
the type of the media stream that has to be filtered and corresponds to the payload type carried
in the RTP header, andQoS ad spec containing all relevant information for the instantia-
tion and management of QoS filters. These structures are part of the receiverFlow Spec
object ofResv, ResvTear, ResvErr, ResvConfmessages, and theSender Template object
of PathandPathTearmessages. Further, theQoS ad spec is also part of the RSVPAdspec
object in aPathmessage. TheAdspec carries information about available resources and in
RSVP++, also available QoS filtersen route. No additional objects or RSVP messages are
necessary, i.e., the extension of the RSVP messages and objects in RSVP++ is restricted
to two additional structures.

TheQoS ad spec contains four structures to control QoS filters and a duplicate of the
flow spec which is needed to check if reservations were merged in non-QoS filtering capable
RSVP routers. Figure 11 shows the structure of theQoS ad spec .

The filter index contains all information required for the management of the QoS
video filters. It is essentially a 32 bit long bit map that enables a QoS filter agent to instantiate
and control different filters. The filters are colour reduction filters, low pass filters, frame
dropping filters, re-quantization filters and smoothing filters. As part of theAdspec this
structure carries information about QoS filters available in any up-stream node. This is
indicated by a ‘1’ if the filter is available and ‘0’ otherwise. The sender uses this structure as

Figure 11. QoS ad spec structure.



QOS FILTERING AND RESOURCE RESERVATION 303

Figure 12. Data structure for QoS filter control.

part of theSender Template to inform the receiver which filter operations are permitted.
Finally, theFlow Spec in a reserve message carries concrete filter instructions including
all required parameters for filters to reduce the quality in discrete steps. The structure is
shown in figure 12.

Compared with other RSVP objects the overhead incurred by theQoS filter spec
andData type is relatively low (i.e., 10∗32 bits) and does not require much additional
bandwidth.

6. Conclusion and future work

The provision of QoS in a heterogeneous communications environment is still one of the
most pressing problems in distributed multimedia systems. Particularly in open systems
were a number of participants want to communicate it is necessary to find an efficient way
of supporting individualistic QoS for disparate receivers. The Internet resource reservation
protocol RSVP is receiver oriented and allows different levels of QoS for different receivers.
However, it does not specify how the QoS requirements of a data stream can be reduced to
accommodate the specific QoS requirements of a receiver.

The QoS filters developed at Lancaster University provide mechanisms to change the
structure of a media stream and hence to adapt its QoS requirements. Our experiences
with the use of QoS filters have shown that it is possible, in heterogeneous environments,
to meet the distinct requirements of different participants within distributed multimedia
applications. In order to provide optimal QoS support it is, however, necessary to tie resource
reservation and QoS filter instantiation and control. In this paper we introduce an enhanced
version of RSVP which fully integrates QoS filter control in the functional model of RSVP.
A special QoS service class, the QoS adaptation service, is defined for the specification of
resource and QoS filtering requirements. Additional, a new RSVP object, theQoSadspec, is
used to convey QoS filter control information. RSVP++ is capable of interoperating with
standard RSVP implementation such that system openness is ensured.

The implementation of RSVP++ concentrates on the QoS filter aspects; resource man-
agement is not part of the current system. The main components are the RSVP Daemon,
the QoS filter daemon (QoS Filter-D) and filter agents (QoS Filter-A). For the control of
the video filters a structure of 32 bits suffices though provisions to accommodate more
and other QoS filter types have been made. QoS filters are an effective tool to reduce QoS



304 MAUTHE ET AL.

requirements of a continuous media data stream. By integrating QoS filter control and
resource reservation, QoS requirements of heterogeneous receivers can be accommodated.

QoS filters can influence the system performance in various ways. However, the additional
overhead introduced through QoS filtering operations on the transmission delay is limited.
In fact, in some cases the overall end-to-end delay is reduced by applying QoS filters
rather than increased. The extra information that has to be carried in RSVP messages is
also restricted (i.e., 10∗ 32 bits). There are additional management costs for QoS filters
mainly during set-up and when a resources reservation changes. However, these processes
can be handled in parallel to the resource reservation. Hence, in an environment with
active communication and resource management, QoS filters will not heavily increase
costs or decrease the performance of the overall system and are therefore suited to provide
individualistic QoS to heterogeneous receivers.

Notes

1. Note, QoS filters change the structural composition of a data stream to adapt its QsP requirements. They are
completely different from RSVP filters that determine how reserved bandwidth should be shared between
multiple streams. Since the QoS filtering concept was developed concurrently with RSVP and has been known
in the research community under this name for some time we do not want to replace it by a new expression. In
order to avoid confusion QoS filters are always addressed by their full name throughout this paper.

2. Note, reservations are made for sessions and, together with the concept of filtering, they might apply to a
number of flows.

3. Note, RSVP filters and QoS fiters are different concepts. The former specify how resources should be shared
between different streams, whereas the latter change the structure of data streams and reduces their resource
requirements.

4. In IPv4 the flow ID is replaced by a combination of IP address and port number.
5. Note, most currently specified filters only apply for video streams. Filters that can be used with audio streams

are Codec Filters, Audio Mixers and Splitters.
6. Note, aResvTearis usually suppressed in these circumstances.
7. The client windows on the left hand side are connected to node 4712 (i.e., there is only one intermediate system

between the sender and the clients) whereas those on the right hand side are connected via node 4713 linked
to 4712 (i.e., there are two intermediate systems).

References

1. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol (RSVP)—Version 1
functional specification,” Internet Draft, IETF, 1996.

2. F. Garcia, D. Hutchison, A. Mauthe, and N. Yeadon, “QoS support for distributed multimedia communica-
tions,” in Proc. International Conference in Distributed Processing, Dresden, Germany, Chapman & Hall,
1996, pp. 463–477.

3. A. Mauthe, L. Mathy, and D. Hutchison, “Communication services for multimedia systems,” in Proc. High-
Performance Networks for Multimedia Applications, Schloss Dagstuhl, Germany, 1997.

4. J.C. Pasquale, G.C. Polyzos, E.W. Anderson, and V.P. Kompella, “Filter propagation in dissemination trees:
Trading off bandwidth and processing in continuous media networks,” in Proc. 4th International Workshop
on Network and Operating Systems Support for Digital Audio and Video, Lancaster, 1993, pp. 269–278.

5. L. Rowe and B. Smith, “A continuous media player,” in Proc. International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV’92), San Diego, California, 1992, pp. 334–
344.

6. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for real-time applica-
tions,” Request for Comments, RFC-1889, Category: Standards Track, IETF, 1996.



QOS FILTERING AND RESOURCE RESERVATION 305

7. S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality of service,” Internet Draft,
Draft-ietf-intserv-guaranteed-svc-06.txt, IETF Integrated Services WG, 1996.

8. S. Shenker and J. Wroclawski, “General characterization parameters for integrated service network elements,”
Internet Draft, Draft-ietf-intserv-charac-02.txt, IETF, Integrated Services WG, 1996a.

9. S. Shenker and J. Wroclawski, “Network element service-specification template,” Internet Draft, Draft-ietf-
intserv-svc-template-03.txt, IETF, Integrated Services WG, 1996a.

10. J. Wroclawski, “Specification of the controlled-load network element service,” Internet-Draft, Draft-ietf-
intserv-ctrl-load-svc-03.txt, IETF Integrated Services WG, 1996.

11. N. Yeadon, “Quality of service filtering for multimedia communications,” Ph.D., Lancaster University, 1996.
12. N. Yeadon, F. Garcia, A. Campbell, and D. Hutchison, “QoS adaptation and flow filtering in ATM networks,”

in Proc. Second IWACA ’94, Heidelberg, Springer-Verlag, Heidelberg, 1994, pp. 191–202.
13. N. Yeadon, F. Garcia, D. Hutchison, and D. Shepherd, “Filters: QoS support mechanisms for multipeer

communications,” Journal on Selected Areas in Communications, JSAC, Vol. 14, No. 7, pp. 1245–1262,
1996.

14. N. Yeadon, A. Mauthe, F. Garcia, and D. Hutchison, “QoS filters: Addressing the heterogeneity gap,” in Proc.
European Workshop IDMS ’96, Berlin, Germany, 1996, pp. 227–244.

15. L. Zhang, R. Braden, D. Estrin, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol (RSVP)—Version 1
functional specification,” Internet Draft, 1994.

16. L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP—A New Resource ReSerVation Protocol,”
IEEE Network Magazine, 1993.

Andreas Mauthe received a Ph.D. in Computer Science from Lancaster University in 1998. His work was con-
cerned with end-to-end support for multimedia multipeer communications. From 1994 to 1997 he was employed
as a Research Associate at the Computing Department of Lancaster University, UK. The main areas of his research
was multimedia group communication and collaboration, QoS provision and resource management.

In December 1997 Andreas Mauthe joined the Digital Media Division of TECMATH in Kaiserslautern,
Germany. Initially he worked on two European funded projects in the area of electronic commerce, collabo-
ration between radio and television broadcasters and digital asset management. Since January 1999 he is Chief
Development Officer. In this role he is responsible for the development of media archive (a multimedia content
management system mainly deployed in the broadcast industry).

Dr. Nicholas Yeadoncompleted his Ph.D. entitled “Quality of Service Filtering for Multimedia Communications”
in May 1996 at Lancaster University. His Ph.D. centred on continuous media filtering mechanisms to dynamically
adjust compressed media data streams in distributed heterogeneous environments.



306 MAUTHE ET AL.

After his Ph.D. he worked for two years as a Research Associate at Lancaster on the development of multi-
media based distributed group applications for very low speed, mobile, networks. He now works at the British
Broadcasting Corporation, Research and Development Department. While at BBC R&D he has been involved in
quality preservation of cascaded compressed audio streams and in the evaluation and development of the DVB
Multimedia Home Platform.

Francisco J. Garciais a computer science honours graduate from Lancaster University and in 1993 was awarded
a Ph.D. in the area of protocol support for distributed multimedia applications. From 1993 till 1995 he worked
at Lancaster University as a senior research associate on the Quality of Service Architecture project (QoS-A)
looking at the design and implementation of new transport services. Here he took an interest in compression
technology and applied it to research on flow filtering mechanisms to provide Quality of Service (QoS) support
for heterogeneous groups. During this time he was also actively involved in ISO/IEC JTC1/SC21 WG1 on the
development of a QoS Framework. In October 1995 he joined Hewlett Packard Laboratories in Bristol where he
worked on highly scalable distributed measurement systems. Currently he is a Senior Member of Technical Staff
(SMTS) od Agilent Laboratories, Edinburgh.

David Hutchison is Professor of Computing at Lancaster University, where he has worked for the past fifteen
years. He has published numerous papers, and edited several books, on services and support mechanisms for
distributed multimedia applications. A prominent theme in his research is Quality of Service. The Distributed
Multimedia Research Group in which he works is internationally renowned and is involved in many research
collaborations with industry and with other universities, both within and without the UK. He serves on advisory
and assessment panels for the EPSRC and the European Commission, and is a technical expert adviser at OFTEL.
During a recent sabbatical year, he was an academic visitor at HP Labs in Bristol, UK, at EPFL in Lausanne,
Switzerland, and at BT Labs in Ipswich, UK.


