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Regulation of T cell apoptosis
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Proliferative expansion of lymphoid cells is required for
effective immune responses against invading microor-
ganisms, but after the infection is controlled, the
expanded effector cells must be eliminated to prevent
non-adaptive accumulation of cells. Higher vertebrates
have developed extensive networks of signal transduc-
tion pathways to ensure controlled activation and expan-
sion of cells during immune responses and apoptotic
deletion of lymphoid cells that are no longer needed at
the end of immune responses. Extracellular signals re-
ceived by cell surface receptors that trigger intracellu-
lar signaling cascades are essential elements that con-
trol both processes. These signal transduction pathways
converge to regulate cell fate at both transcriptional and
post-transcriptional levels. Here we review the role of
pathways, especially those triggered by TNF receptor-
related molecules, that determine the fate of T cells during
development and activation. In addition, we introduce the
possibility that these same pathways may be abnormally
programmed and so lead to immune cell accumulation
during inflammatory diseases such as asthma.

Keywords: airway immunity and inflammation; Fas death re-
ceptor; T helper type 1 and 2 cells; TNFR-related molecules.

Introduction

The immune system of higher vertebrates is a complex
cellular defense network that provides targeted protec-
tion against microbial agents and degenerated or dys-
functional host cells. In that context, rapid proliferative
expansion of specialized subsets of immune cells is critical
for effectiveness of the immune system. While some of
these immune cells persist following infections, a signifi-
cant percentage must be removed through the process of
apoptosis or programmed cell death (PCD). In contrast to
accidental cell death by necrosis, PCD is precisely initi-
ated and controlled by signaling cascades1−5 that lead to
the formation of apoptotic bodies. These structures can
then be eliminated by neighboring phagocytic cells to

Correspondence to: M. J. Holtzman, Washington University
School of Medicine, Campus Box 8052, 660 South Euclid Avenue,
St. Louis, MO 63110 Tel: 314-362-8970; Fax: 314-362-8987;
e-mail: holtzmanm@msnotes.wustl.edu

avoid inflammation and secondary tissue damage. In this
review, we will summarize the major pathways for regu-
lating apoptosis in T cells and so lay the basis for defining
how deficiencies in these pathways may contribute to in-
flammation.

Extracellular signals for apoptosis

The microenvironment in tissues provides cells with a
complex matrix of growth factors, hormones, and cy-
tokines. In turn, these ligands serve to engage cell surface
receptors and trigger intracellular cascades that often in-
hibit cell death and support cell survival. In the absence of
survival signals, at least some types of cells undergo PCD
as a default mechanism.6 In the case of T cells, T cell re-
ceptor (TCR) interaction with peptides in the context of
major histocompatibility complexes (MHC) on antigen-
presenting cells (APCs) can deliver a stimulatory cellular
signal.7 This “signal 1” appears to be insufficient to me-
diate full activation of T cells, so if the cells do not receive
an additional co-stimulatory signal (“signal 2”), TCR sig-
naling can result in a state of unresponsiveness (anergy)
and trigger PCD (Figure 1). By contrast, when signal
2 is provided, e.g., by interaction of the co-stimulatory
molecule CD28 with either of its ligands CD80 (B7.1)
or CD86 (B7.2),8,9 concomitant engagement of the TCR
engagement causes activation of T cells. Subsequent pro-
duction of pro-survival cytokines and up-regulation of
anti-apoptotic cellular proteins lead to clonal expansion
of T-cells and induction of effector functions.

In addition to the action of the TCR and costimulatory
molecules, T cell fate is also determined by cytokine-
dependent pathways. Lymphocytes originate from pluri-
potent hematopoietic progenitor cells where a series of
soluble factors and cell-cell contacts determine if cells dif-
ferentiate into T cells, B cells, or Natural Killer (NK) cells.
For example, engagement of the interleukin- (IL-) 7 recep-
tor (IL-7R) by its ligand is crucial for early steps of T and
B cell development.10,11 In this setting, IL-7 mediates re-
combination of antigen receptors and promotes cell-cycle
entry and proliferation of immature lymphocytes.12−18 In
addition, IL-7 exhibits anti-apoptotic effects by increasing

Apoptosis · Vol 5 · No 5 · 2000 459



M. J. Holtzman et al.

Figure 1 . Schematic diagram for the two-signal model of T cell ac-
tivation. In the first case (left box), T cell activation results from the
engagement of the TCR by antigen (Ag) bound to self MHC (sig-
nal 1), but the absence of additional costimulatory signals leads
to anergic or apoptosis. In the second case (right box), signal 1 is
received coordinately with a costimulatory signal (signal 2, e.g.,
CD28 engagement by CD80 (B7.1) or CD86 (B7.2), so T cell acti-
vation leads to clonal expansion and differentiation into an effector
cell.

expression of bcl-2 and decreasing expression of the pro-
apoptotic bcl-2 family member bax in thymocytes.15,19

Animals defective in signaling through the IL-7R par-
tially overcome the block in lymphocyte differentiation
when a bcl-2 transgene is constitutively expressed in the
lymphoid compartment.20−22 This finding argues for the
importance of IL-7 for prolonged survival during lym-
phocyte development but also suggests additional effects
regulated by IL-7 signaling pathways.

TNFR-related proteins as cellular
regulators of apoptosis

Despite the anti-apoptotic nature of signals received by
cell surface receptors, repeated stimulation of mature lym-
phocytes can still lead to PCD or activation-induced cell
death (AICD). An overall scheme for how effectors of
apoptosis are engaged in response to extracellular events
is still under construction, but it appears that distinct
members of the TNFR (TNF receptor) superfamily reg-
ulate this process in many cell types, including T cells.
In particular, activation of lymphocytes normally results
in the up-regulation of death domain-containing mem-
bers of the tumor necrosis factor (TNF) receptor (TNFR)
superfamily and/or their ligands. Members of the TNFR

superfamily are characterized by several conserved
cysteine-rich repeats in their extracellular domain, a sin-
gle transmembrane region, and a cytoplasmic tail with
little sequence conservation.23 This superfamily can be
divided into two subfamilies based on presence or ab-
sence of a death domain (DD) in the cytoplasmic tail
(Table 1). TNFR-I (TNFR p55, TNFR p60), Fas (CD95),
DR3 (AIR, Apo-3, LARD, TR3, TRAMP, Wsl-1), DR4
(TRAIL-R1), DR5 (TRAIL-R2, Trick2, KILLER, Apo2),
and DR6 contain a death domain of approximately 80
amino acids in length. Multimerization of these receptors
triggers interaction of the death domain with intracellular
proteins that contain similar death domains.24

Most ligands of TNFR-related proteins are homo-
trimeric cytokines that belong to the TNF family.25 Struc-
tural studies of TNFR-I and one of its ligands, lym-
photoxin β, as well as resonance structure analysis of
ligated CD95 suggest the clustering of intracellular death
domains by self-association.26−28 The recently identified
SODD (silencer of death domains) that can interact with
the DDs of TNFR-I and DR3 is thought to be the first
member of a class of proteins that inhibits spontaneous
self-aggregation of receptor DDs.29 Crosslinking of recep-
tors results in release of SODD and recruitment of intracel-
lular adapter molecules like TRADD (TNFR-associated
death domain containing protein) and FADD/Mort-1
(Fas-associated death domain containing protein/Media-
tor of receptor-induced toxicity). Recruitment of these
proteins to the cytoplasmic domains of the receptors leads
to formation of multi-protein complexes that result in ac-
tivation of caspases and consequent apoptosis30−36 (Figure
2, left box).

TNFR-related molecules that lack DDs include
TNFR-II (TNFR p75, TNFR p80), CD27, CD30 (Ki-1),
CD40, Ox40 (CD134, ACT35) and 4-1BB (CD137, ILA).
These receptors initiate signaling events that lead to cellu-
lar survival, proliferation, and cytokine production37−44

(Figure 2, right box). Ligand engagement and multi-
merization of these receptors results in recruitment of
TNFR-associated factors (TRAFs).45 TRAFs are intracel-
lular adapter proteins that initiate formation of multi-
protein complexes and trigger activation of MAPK/ERK
(mitogen-activated protein kinase/mitogen and extracel-
lular signal-regulated kinase) cascades. These events can
result in activation of transcription factors of the AP-1
and rel families. Both AP-1 and NF-kB are involved in
transcription of survival genes and therefore may have
mainly anti-apoptotic function.46,47 In some cases, this
cascade may also be triggered by TNFR-I receptors. For
example, TNFR-I may also recruit TRAF-2 via a TRADD
intermediate and so generate a cell survival signal.

In addition to distinct receptor complex formations,
the action of TNFRs is also regulated by their pattern
of expression and the distribution of the corresponding
ligand. Thus, some members of the family like TNFR-I
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Table 1 . Characteristics of the TNFR superfamily summarized as two subfamilies based on the presence (A) or absence (B) of a death
domain in the cytoplasmic tail of the receptor

Receptor Site of expression Recruited proteins Reference

(A) Receptors containing a death domain

TNFR-I (CD120a, Ubiquitous TRADD (156–161)

TNFR p55, TNFR p60)

p75 neurotrophin receptor TRAF6 (162)

CD95 (Fas, Apo-1) Ubiquitous FADD, FAP (163, 164)

DR3 (AIR, Apo-3, LARD, Spleen, thymus, PBL TRADD (48–52)

TR3, TRAMP, Wsl-1)

DR4 (TRAIL-R1, Apo-2) Most tissues TRADD (?), FADD (?), RIP (?) (165, 166)

DR5 (TRAIL-R2, Ubiquitous TRADD, FADD, RIP (166–171)

Trick2, KILLER)

DR6 Ubiquitous TRADD (172)

(B) Receptors lacking a death domain

TNFR-II (CD120b, Myeloid, activated T and B TRAF1, 2 (23, 157, 173–176)

TNFR p75,TNFR p80)

LT-βR (CD18, TNFR-III) Leukocytes TRAF3, 5 (177, 178)

CD27 B, T, medullary TC Siva, TRAF2, 3, 5 (179, 180)

CD30 (Ki-1) NK, M, activ. T and B TRAF1–3, 5 (181)

CD40 B, MØ, DC, basal epithelial cells TRAF2, 3, 5, 6 (182)

Ox40 (CD134, ACT35) Activated T TRAF1–3, 5 (183–185)

4-1BB (CD137, ILA) Activated T TRAF1-3 (186–188)

HVEM (ATAR, TR2) Lung, spleen, thymus TRAF1–3, 5 (189–191)

TACI Lymphoid cells CAML (192)

GITR (AITR) Activated T ? (193)

OPG (FDCR-1) LN, FL, BM, spleen, thymus, B, DC ? (194–196)

RANK DC TRAF1–3, 5 (197)

DcR1 (TRAIL-R3, TRID) Ubiquitous – (167, 168, 198, 199)

DcR2 (TRAIL-R4, Ubiquitous ? (200–202)

TRUNDD)

DcR3 FL, fetal brain and lung; – (137)
adult spleen, colon, lung

Abbreviations: AIR, apoptosis-inducing receptor; AITR, activation-induced TNFR family related protein precursor; ATAR, another
TRAF-associated receptor; DcR, decoy receptor; DR, death receptor; FDCR, follicular dendritic cell-derived receptor; GITR,
glucocorticoid-induced TNFR family-related protein precursor; HVEM, Herpes virus entry mediator; ILA, receptor induced by lym-
phocyte activation; LARD, lymphocyte-associated receptor of death; LT-βR, lymphotoxin β receptor; OPG, osteoprotegerin; RANK,
receptor activator of NF-κB; TACI, transmembrane activator and CAML-interactor; TRAIL, TNF-related apoptosis-inducing ligand;
TRAMP, TNF receptor-related apoptosis-mediating protein; TRICK, TRAIL receptor inducer of cell killing; TRID, TRAIL receptor without
an intracellular domain; TRUNDD, TRAIL receptor with a truncated death domain; B cells, BM bone marrow; DC, dendritic cells;
FL, fetal liver; LN, lymph nodes; MØ, macrophages; CAML, calcium-modulator and cyclophilin ligand; FADD, Fas-associated death
domain-containing protein; FAP, Fas-associated phosphatase; RIP, receptor-interacting protein; TRADD, TNFR-associated death
domain-containing protein; TRAF, TNFR-associated factor.

are expressed ubiquitously, but other members exhibit a
more restricted expression pattern (Table 1). For example,
DR3 shows structural and functional homology to TNFR-
I, but DR3 expression is restricted to cells in spleen, thy-
mus, and peripheral blood and can be up-regulated upon
T-cell activation.48−52 In contrast, DR3 ligand (DR3L) is
found in many tissues and cell types while TNF is mainly
expressed in activated T-cells and macrophages.53−55

Intracellular signal transduction
pathways for apoptosis

After cell surface receptors for mediating death or sur-
vival are activated, the signal must be transmitted to the
nucleus. Phosphorylation and dephosphorylation of in-
tracellular substrates by receptors with kinase or phos-
phatase domains in their cytoplasmic tails is widely used
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Figure 2 . Schematic diagram for representative pathways that mediate cell death (left box) or survival and growth (right box). The
death box features pathway initiation by TNFR superfamily members (e.g., TNFR-I) that contain a death domain. This domain mediates
recruitment of death domain-containing adapter proteins (e.g., TRADD) and FADD that serve to activate the caspases. Caspase
activation then mediates degradation of essential structural proteins leading to programmed cell death. Other extracellular signals (e.g.,
cytokine withdrawal) may trigger pro-apoptotic BCL-2 family members (e.g., BAX) that leads to mitochondrial damage and necrosis or
apoptosis (via apoptosome formation). This pathway is also subject to inhibition by anti-apoptotic members of the BCL-2 protein family
(e.g., BCL-2). The survival/proliferation box features TNFR superfamily members (e.g., TNFR-II) that lack a death domain and can
trigger signal transduction pathways that support cell survival. In this case, recruitment of TRAF3 leads to activation of a MAP kinase
cascade that activates transcription factors (e.g., AP-1) with subsequent transcription of genes that support cell survival. In addition,
cytokine stimulation (e.g., by IL-7) may lead to receptor activation and nuclear signals that inactivate retinoblastoma protein (pRb) and so
allow for cell cycle progression to S-phase. The death and survival/growth pathways must be tightly balanced to maintain homeostasis
of a multi-cellular organism.

as a mechanism for the integration of signals from the
environment.56 Since TNF receptors lack an enzymatic
domain in their cytoplasmic tail, they depend on recruit-
ment of cytoplasmic proteins to initiate cellular responses.
Many of these proteins are enzymes, (e.g. kinases, phos-
phatases, and proteases, while others are simple adapter
molecules that function as scaffolds for the formation of
multi-protein complexes or as chaperones for enzymes
that fulfill downstream effector functions.57 These sig-
naling events are linked in complex networks of signal
transduction that are necessary to determine the fate of a
cell in response to the variety of signals that are received.
Downstream effects of these signaling cascades can ini-
tiate transcription of new genes that lead to changes in
cellular programs and result in activation, proliferation,
and/or differentiation of cells. Alternatively, signals that
are received at the cell surface can be initiators of apop-
totic pathways that lead to the elimination of a particular
cell without the consequences of necrotic cell death, e.g.
inflammation or autoimmune disease.

In some cases, it appears that the same receptor can
lead to cell death or survival depending on the context.
Thus, Fas mediates deletion of activated mature T cells
at the end of an immune response, death of virus-infected
or cancerous target cells by cytotoxic T cells and NK
cells, and elimination of immune effector cells at immune-
privileged sites.2,58 The importance of Fas in this pro-
cess is underscored by the observation that inactivating
mutations of Fas or FasL cause autoimmune disease in
mice and humans.59−62 By contrast, IL-2 ordinarily pro-
motes cell survival, yet mice lacking IL-2 or functional
IL-2 receptor also develop severe lymphoproliferation and
autoimmune disease.63−68 In this case, it appears that
stimulation of cells through the IL-2 receptor leads to
increased cell surface expression of FasL and decreased
levels of FLIP (FLICE-like inhibitor protein) an intracel-
lular inhibitor of Fas-induced PCD.69 Thus, signaling
pathways that support cell survival and cascades that cul-
minate in apoptosis are tightly linked during the immune
response.
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Protein phosphorylation and
regulation of apoptosis

As noted above, regulation of protein activity by phos-
phorylation is a common mechanism used for a variety of
signal transduction pathways.70 Co-stimulatory signals
of T and B cells result in activation of protein kinase C
(PKC) that is tightly associated with the regulation of in-
tracellular calcium levels.7,9 A second network of kinase
signaling is regulated by members of the MAP kinase
family.71 The most upstream kinases of MAP kinase cas-
cades are MAP kinase kinase kinases (MAPKKKs). Sig-
naling through small guanine binding molecules like Ras
results in activation of the MAPKKK Raf-1 that can ac-
tivate MAPKKs which results in phosphorylation of ef-
fector MAPKs, e.g. JNK and p38. Both of these mem-
bers of the MAPK family appear to be critical regulators
of cell survival.72 Several kinases, e.g. PAK2, distinct
PKC isoforms, and MEKK-1, are activated after prote-
olytic cleavage by caspases.73−78 Mutants of these enzymes
that lack the caspase recognition sequence delay the in-
duction of PCD. Overexpression of truncated forms of
these kinases can trigger apoptosis that can not be blocked
with caspase inhibitors. Taken together these findings are
consistent with putative function of these kinases down-
stream of caspases. The substrates of kinases that can in-
duce PCD upon phosphorylation by kinases are yet to be
determined.

Mitochondria as relay stations for
survival pathways

Mitochondria are critical components of signaling path-
ways that lead to apoptotic cell death.79 A change in mi-
tochondrial transmembrane potential (19m) is one of the
first irreversible steps of PCD in many cell types. This
change along with increased calcium concentration, gen-
eration of reactive oxygen species (ROS), activation of
caspases, and depletion of ADP and ATP, two physio-
logical inhibitors of a pore complex known as mitochon-
drial megachannel or permeability transition (PT) pore,
can result in depolarization of the inner mitochondria
membrane.80 This event or damage of the outer mito-
chondrial membrane can result in release of cytochrome
c, a soluble component of the respiratory chain that is
normally retained in the space between outer and inner
mitochondrial membrane. Complexes of cytochrome c and
Apaf-1 (apoptotic protease-activating factor 1), the cellu-
lar homologue of the C. elegans protein Ced-4, that are
formed in the cytoplasm trigger activation of pro-caspase
9 in structures known as apoptosomes81,82 (Figure 2).
Subsequent activation of effector caspase 3 triggers en-
donuclease activity of DFF (DNA fragmentation factor)
/CAD (caspase-activated DNase).83−85 This event appears

to be an irreversible step in apoptosis. Alternatively,
the apoptosis-inducing factor (AIF) may directly induce
DNA degradation and activate caspase-3 independent of
cytochrome c.86−89 Degradation of Bcl-2 by caspases
favors mitochondrial depolarization and/or disintegration
of the outer mitochondrial membrane and results in
same sequence of events. Alternatively, pro-apoptotic
Bcl-2 family members like Bid and Bad can function
as sensors of cytosolic death stimuli. Upon post-translati-
onal modifications, both proteins can bind to Bcl-2
or Bcl-xL in the outer mitochondria membrane and
thereby result in cytochrome c release from mito-
chondria.90−93

Caspases serve as killer proteins

The first evidence for the involvement of caspases in apop-
tosis came from studies in C. elegans.94 Later, apoptotic
gene products of this nematode were shown to have struc-
tural and functional counterparts in mammalian cells.
Members of the caspase family contain a conserved pen-
tapeptide (QACXG) with a central cysteine at their
active site.95 Caspases exist as inactive precursor molecules
(zymogens) in the cytoplasm. Proteolysis by upstream
caspases or auto-catalytic activity induced by dimerization
of zymogen isoforms leads to cleavage of the zymogens.96

The crystal structures of active caspase-1 and caspase-3
revealed the existence of two independent catalytic sites
within tetrameric complexes.97−99

Similar to the complement system, caspases are orga-
nized in cascades that amplify the initial death signal
(Figure 2). Activation of downstream effector caspases re-
sults in cleavage of a number of cellular proteins and ini-
tiation of pathways that induce PCD.96 The most promi-
nent caspase targets are involved directly or indirectly
in cellular ultrastructure. Thus, proteolysis of lamins
leads to the breakdown of the nuclear lamina,100,101 and
degradation of gelsolin, focal adhesion kinase (FAK), and
p21-activated kinase 2 (PAK2) effects cytoskeletal struc-
ture.78,102,103 In addition, inactivation of proteins essen-
tial for DNA repair, mRNA splicing, and DNA replica-
tion may also facilitate PCD,104−107 while degradation of
substrates like Bcl-2, Bcl-xL, and I-CAD can inactivate
proteins vital for cell survival.83,85,108,109

In contrast to other posttranslational modifications,
proteolytic cleavage is irreversible and therefore must be
tightly controlled. Specificity of caspases for their targets
is achieved by four residues N-terminal of the cleavage
site and can be used to subdivide the protease family into
three groups recognizing either a WEXD, a DEXD, or an
(L/V)EXD sequence motif. Interestingly, not all proteins
containing recognition sites of caspases are degraded, sug-
gesting an important role of the three-dimensional struc-
ture of the substrates. The high efficiency of caspase activ-
ity combined with the restricted subset of proteins that are
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cleaved by caspases emphasizes the regulated mechanism
that leads to disassembly of apoptotic cells.

Bcl-2 family members balance pro-
and anti-apoptotic pathways

Bcl-2 was the initial member of a protein family that
now contains members with pro- and anti-apoptotic acti-
vities.110 Bcl-2 expression can interfere with cell death
induced by CD3 crosslinking, growth factor withdrawal,
or treatment with glucocorticoids, phorbol esters, iono-
phores, or γ -irradiation.111,112 Unlike classical onco-
genes (or inactivated tumor suppressor genes) that pro-
mote cell cycle progression and cellular proliferation
(Figure 2), Bcl-2 and its closest homologue Bcl-xL pre-
vent PCD and maintain cells in the G0 phase of the cell
cycle.113−116 Thus, anti-apoptotic members of the Bcl-2
family appear to inhibit cell cycle progression,117,118

whereas the absence of these proteins or expression of pro-
apoptotic family members like Bax results in an acceler-
ated cell cycle.119,120

The precise mechanism for how Bcl-2 family members
achieve pro- or anti-apoptotic function remains uncertain.
Despite their capability of homo- and heterodimerization,
members of both subfamilies seem to mediate protective
or death-promoting effects independent of the interaction
between distinct family members.121 These findings have
been emphasized by studies of the death machinery in the
nematode C. elegans.122 Gene elimination studies in the
worm have demonstrated that the Bcl-2 homologue Ced-9
functions as an inhibitor of the protease Ced-3.123 Sim-
ilarly, Bcl-2 expression in mammalian cells functions to
prevent proteolytic activation of the downstream effector
caspase-3.124−127 Bcl-xL can block activation of the effec-
tor caspase after Fas-induced activation of caspase 8 by
maintaining mitochondrial integrity.128 However, over-
expression of Bax is sufficient to induce PCD even in the
presence of the peptide inhibitors of caspases.129

Proteins of the Bcl-2 family are targeted to the mem-
branes of distinct organelles including mitochondria,130

and both pro- and anti-apoptotic members of the Bcl-2
family mediate their effects at least in part by regulat-
ing mitochondrial morphology and/or function. The pro-
apoptotic Bax protein may form channels in the outer
mitochondrial membrane, whereas Bcl-2 interferes with
that mechanism and maintains the integrity of mitocho-
ndria.131 Downstream effects like Bax-induced loss of mi-
tochondrial transmembrane potential, increased genera-
tion of ROS, and plasma membrane permeability were not
inhibited by decreased caspase activity.129 Furthermore,
cytochrome c release from the intermembrane space of mi-
tochondria induced by various apoptotic stimuli is signifi-
cantly decreased in the presence of Bcl-2 or
Bcl-xL.132−134 These observations and the intracellular lo-

calization of Bcl-2, Bcl-xL, and Bax at the mitochondrial
membranes suggest a role of the organelle in the suscepti-
bility of cells to die in response to extracellular signaling
events.

Dysregulation of programmed cell
death linked to disease

During development and after maturity, cell death is nec-
essary to maintain homeostasis and to eliminate cells that
are no longer needed or may be potentially harmful to the
organism. Both uncontrolled proliferation of cells or the
lack of controlled cell death would disrupt the integrity
of the organism. In fact, several diseases, e.g. AIDS, neu-
rodegenerative disorders, cancer and autoimmune disor-
ders may result from an imbalance between cell survival
and PCD.135

The balance between cellular life and death that is nor-
mally regulated by a network of proto-oncogenes and
tumor-suppressor genes needs to be strictly controlled to
avoid uncontrolled proliferation of cell clones. Both hy-
perproliferation and the inability to die give rise to benign
tumors that may eventually result in malignancies after
acquiring additional mutations. One hallmark of many
tumor cells is either the loss of genes that are involved
in PCD or increased expression of decoy proteins that in-
terfere with the crosslinking of death receptors by their
natural ligand.136,137 Many of these cells therefore escape
the defense mechanisms of the immune system and/or
treatments that are designed to eliminate malignant cells
by inducing PCD.

Studies of transgenic mice overexpressing Bcl-2 or
Bcl-xL reveal that the development of the lymphoid com-
partment is a strictly regulated process dependent on con-
trolled cell death and interference in PCD can give rise
to tumors.138−140 Overexpression of Bcl-2 as a transgene
in T cells or B cells leads to increased cell numbers in the
particular lymphoid compartment and subsequently, in
the event of additional mutations, to malignant transfor-
mation and tumor formation.138,141,142 Increased Bcl-2
levels due to a chromosomal translocation event interfere
with PCD. This event allows the accumulation of addi-
tional mutations that result in a malignant phenotype of
cells and the formation of follicular lymphomas.

Abnormalities in apoptosis may also be critical in host
defense. Infection of CD4+ T-lymphocytes with the hu-
man immunodeficiency virus (HIV) results in depletion
of these lymphocytes due to PCD.143 The lack of helper
T-cells subsequently effects other lymphoid lineages, e.g.
B-cells and CD8+ T-cells, which depend on cytokines
produced by CD4+ cells for their survival and effector
functions and results in clinical manifestation of immun-
odeficiency. In addition, deregulation of the immune sys-
tem can also lead to proliferation of B-cells, hypergamma-
globulinemia, and increased auto-antibody production.
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Abnormal T cell death in
airway inflammation

As noted above, the cell surface receptor Fas is upreg-
ulated during activation of T cells through the antigen
receptor,144 and the coordinated activation of Fas in this
setting transduces an apoptotic signal that may dampen
the response of CD4+ T helper (Th) cells.145,146 Overacti-
vation of CD4+ T cells in the peripheral blood and airway
tissues is an invariant feature of asthma,147 so we reasoned
that a potent mechanism for augmenting the numbers of
activated T cells in this disease would be resistance to
the normally programmed pathway for cell death. We
expected that T cell apoptosis in asthma was mediated
via antigen activation of the TCR, so we concentrated on
a Fas-dependent pathway for T cell death that is linked
to TCR-dependent apoptosis and elimination of activated
T cells after they respond to foreign antigens (deletional
tolerance).148

In our initial study, we found that mitogen-stimulated
peripheral blood T cells of asthmatic subjects expressed
cell surface Fas but failed to undergo the normal degree
of apoptosis following Fas receptor ligation, thereby pro-
viding initial evidence for a defect in programmed cell
death in the pathogenesis of asthma.149 In that context,
the findings suggest that the increased level of activated
T cells that mediate this (and other) inflammatory dis-
ease may be due to decreased elimination of activated T

Figure 3 . Scheme for regulation and dysregulation of T cell apoptosis in asthma. The left box depicts a molecular cascade leading
from TCR activation to upregulation of Fas and FasL and consequent Fas-mediated apoptosis. The right box presents a cellular scheme
for TCR- and concomitant cytokine-dependent generation of T helper (Th) effector cells. In normal subjects, IFN-γ /IL-12 and IL-4
promote balanced Th1 and Th2 cell differentiation (upper scheme). However, in asthma, antigen-dependent downregulation of IFN-γ
and upregulation of IL-4 may result in a T cell population with decreased Th1 and increased Th2 effector cells, respectively. This
imbalance in T cell phenotypes may be manifest as decreased sensitivity to Fas-mediated cell death as described in the text.

cells as well as previously cited increases in T cell re-
cruitment and activation.150 Further investigation of the
mechanism(s) underlying defective T cell apoptosis in
asthma indicates decreased efficacy of antigen-driven T
cell activation, an event that is required for Fas-dependent
apoptosis.148 The observed abnormality and the conse-
quent T cell phenotype in asthma is therefore distinct
from inherited defects in the Fas gene that lead to au-
toimmune disease.151,152 T cells from asthmatics exhib-
ited normal apoptotic responses to γ -irradiation (depen-
dent on ICE-family proteases), ceramide, and mitogen
challenge, suggesting functional integrity of the apop-
totic pathway. Furthermore, the defect in Fas-dependent
apoptosis is overcome by pre-stimulation with allogeneic
accessory cells (instead of mitogen). Taken together, the
findings suggest that selective resistance to Fas-dependent
apoptosis reflects altered antigen-driven, accessory cell-
dependent signaling and that ineffective activation of Fas
signal transduction may contribute to T cell-dependent
immunoinflammation in asthma (Figure 3).

Studies of T cell clones have indicated that Th2 ef-
fector cells may be more resistant to Fas-induced apop-
tosis.153,154 Accordingly, we recently analyzed whether
the induction of Fas sensitivity is associated with the dif-
ferentiation of functionally distinct T cell subsets in nor-
mal control and asthmatic subjects. In cultures from both
types of subjects, allogeneic antigen stimulated the gen-
eration of two IFN-γ -producing T cell subsets, one that
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generated IL-2 plus IFN-γ (Th1-like) and another dis-
tinct one that generated IFN-γ alone.155 However, mito-
gen stimulated only the development of T cells producing
IFN-γ alone, and these cells were found only in cultures
from normal control but not in asthmatic subjects. As
observed earlier, allogeneic antigens but not with mito-
gen rendered T cells from asthmatic subject sensitive to
Fas-mediated apoptosis, whereas both stimuli resulted in
T cells from control subjects with similar sensitivities to
Fas-mediated apoptosis. These results suggest that induc-
tion of Fas sensitivity in T cells may be linked to IFN-γ
production that is compromised in polyclonally activated
T cells in asthma.

Conclusion

Controlled elimination of cells that are no longer needed or
may be potentially dangerous is critical for proper home-
ostasis, and this process is especially critical for proper T
cell function in immunity. In that context, T cells have
developed complex signaling cascades that allow tight
control of cellular survival, proliferation, and differenti-
ation. The intricacies of this network as well as mech-
anisms for crosstalk between pathways that trigger cell
death versus survival serve to complicate the development
of therapeutic approaches that may interfere with cell fate.
However, recent data indicates a primary role for death
pathway dysfunction in the pathogenesis of autoimmune
and inflammatory diseases. Defining the molecular basis
for T cell death versus survival and growth will therefore
provide a more rationale basis for maintaining normal im-
mune responses and correcting destructive inflammatory
responses.
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