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Abstract. Encompassing a very broad family of ARCH-GARCH models, we show that the AT-
GARCH (1, 1) model, where volétility rises more in response to bad news than to good news, and
where news are considered bad only below a certain level, is a remarkably robust representation of
worldwide stock market returns. The residual structure is then captured by extending ATGARCH
(1,1) to an hysteresis model, HGARCH, where we model structured memory effects from past
innovations. Obvioudly, this feature relates to the psychology of the markets and the way traders
process information. For the French stock market we show that votalitity is affected differently,
depending on the recent past being characterized by returns all above or below acertain level. In the
same way alonger term trend may also influence volatility. It is found that bad news are discounted
very quickly in volatility, this effect being reinforced when it comes after a negative trend in the
stock index. On the opposite, good news have avery small impact on volatility except when they are
clustered over afew days, which in this case reduces volatility.
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1. Introduction

The ARCH methodol ogy developed by Engle (1982) and generalized by Bollerslev
(1986) has been very successful to model time varying volatility. A huge literature
has emerged from those models and several surveys are available (see Bollerslev,
Chou, and Kroner (1993), Bera and Higgins (1993), as well as Bollerslev, Engle,
and Nelson (1994). A casual analysis of this literature shows that there exists a
multitude of competing models, that they are mostly applied to the U.S. market,
and that none of them attemptsto capture possibleresidual structure beyond ARCH
features of the first order.

In this paper we start by nesting popular models within a common frame-
work, then by using a likelihood ratio test strategy we show how a best possible
model can befound. There exists other research which attemptsto compare ARCH
models. Pagan and Schwert (1990) and Engle and Ng (1993) compare models by
evaluating their ability to forecast volatility. Whereas Pagan and Schwert consider

* Thefirst author is a the Canadian Imperial Bank of Commerce and the second author is at the
HEC School of Management. Thisresearch was done while thefirst author was at the HEC School of
Management. This research was partially supported by the HEC Foundation and FNEGE (Fondation
Nationale pour |’ Enseignement de |a Gestion des Entreprises).
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the mean square errors of volatility forecasts as the criterion for evaluation, Engle
and Ng adopt the closeness of forecasted volatility to a benchmark provided by a
non-parametric model as a criterion. Encompassing of models with non stochastic
volatility has already been performed by Higgins and Bera (1992), Ding et al.
(1993), and Hentschel (1991, 1995). Higgins and Bera propose anon-linear gener-
alization of ARCH models, suchthat ARCH, GARCH and LOG ARCH modelsare
special cases. The model of Ding et al. allows for an asymmetric impact of news,
whereby positive past returns do not have the sameimpact asnegativereturns. They
also consider modelling a power of volatility rather than just its square or its log.
The model of Hentschel, which allows for asymmetries and a level effect comes
closest to our research. However, our basis model is somewhat more flexible and
allows easier interpretation.

An application to 21 countries in the FT-Goldman Sachs data base at the daily
frequency shows the usefulness of a model allowing for asymmetries and a level
effect.

We establish that for all these countries the way market participants react to
extreme price movements depends on the direction and magnitude of events. For
positive events, it seemsthat tradersand investors processinformation in an efficient
manner. On the contrary, stock marketstend to overreact to negative events. Asym-
metry is sometimes referred to as the ‘leverage effect’, following Black (1976),
but this phenomenon is also well documented in the ‘stock market overreacton’
literature (see, e.g., De Bondt and Thaler (1985)). Interestingly, we show that this
overreaction occurs, at a world-wide scale, when the magnitude of the bad news
goes beyond some level.

An additional contribution of this research is the quest for a more complicated
structure in residuals in addition to the first order ARCH effect. We call such a
structure hysteresis, and the associated econometric model the HGARCH. The
idea behind hysteresisis to perform a ‘technical analysis for second moments of
returns. It characterizesthe fact that a positive or a negative shock will not havethe
same impact on volatility, whether it comes after several consecutive days where
all the innovations were above or below acertain level, or whether the longer term
trend of past innovationswas above or below acertain level. Thisisasort of ‘size’
or ‘threshold’ effect in a dynamic context, and it relates to the way traders process
information. The impact of a shock on volatility will depend on the cumulative
size of past innovations. If it goes beyond a threshold level, then volatility reacts

! From acasual analysisof trading activities, one might suspect that this phenomenon has become
more pronounced in the recent years since banks started to sell huge nominal amounts of complex
derivative instruments on the OTC markets. As a result, most of the banks carry on their books the
same market exposure. Either the stock market is flat and there is no need for the banks to readjust
their hedging position. Or, on the contrary, the market moves unexpectedly in one direction and,
simultaneously, all the banks need to buy the stock market (futures contracts) when the market goes
up, and they have to sell when the market goes down. These trading patterns may trigger liquidity
problems and amplify market movements, and are most likely to generate sudden burstsin volatility
(cf. Group of Thirty report (1993)).
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more strongly. Since psychological features may play an important role we test
the HGARCH model for France, which is the country we know best,? and where,
according to French officials, the market is characterized by the highest ratio of
notional principal in OTC equity derivativesto stock market turnover. French banks
have been very active in manufacturing guaranteed capital and performance funds,
and other structured productswherethe CAC40 isthe benchmark index. Therefore,
we suspect that if we can detect this hysteresis feature, the French stock market
must be the ideal candidate.

In Section 2 we study statistical properties of the CAC40 and show that returns
are fat-tailed, not normally distributed, and that volatility is heteroskedastic. In
Section 3 we present a generic ARCH model of the asymmetric type, show how
popular models are encompassed, and consider a statistical procedure to select the
most appropriate model. We then extend this model to accommodate for hysteresis
by proposing a HysteresisGARCH (HGARCH) model where we differentiate
between short term and longer term cumulative innovations. In Section 4 we
estimate al the models using maximum likelihood techniques. Focusing on the
French stock market, we show that all the nested asymmetric models still have
fat-tailed residuals. As a consequence, the non linearities apparent in the data are
not fully captured by the existing models. Our new specification permits to capture
some of them. In Section 5 we discuss the estimation results for the 21 countries
in the FT-Goldman Sachs database. Finally, we summarize the main contributions
of this paper and make suggestions for further research.

2. DataDescription for the French Stock Mar ket

2.1. THE DATA

Our primary data consist of daily closing levels for the new French stock index,
CACA40, for the period from July 1987 to November 1995 for a total of 2077
observations.3 Figure 1 plots daily compound returns of the CACA40 for the full
sample period.

We can decompose the series of daily rates of returnry,t =1,...,T as

re = E(r|Zi-1) + yi,

2 Actually, traders suggested to us the possible existence of such a psychological phenomenon.

3 The CACA40 is a value weighted index composed of France's 40 most liquid blue chips traded
on the Paris stock exchange. This index is adjusted for splits and stock dividends but not for cash
dividends. Thisindex constitutes the underlying asset for futures and options contracts traded on the
MATIF (Marché aTermeInternational de France) and the MONEP (Marché des Options Négociables
de Paris), respectively, as well as for structured derivative products sold on the OTC market. The
older SBF240 is a broader index composed of 240 stocks. It is apparently more representative of the
French stock market, although most of the stocks which compose this index are very thinly traded.
As a conseguence the SBF240 suffers from severe serial correlation due to non syncronous trading
of its components. Our source for the CAC40 series is the SBF (Soci été des Bourses Frangai ses).
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VOLATILITY CLUSTERING
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Figure 1. Volatility clustering. Daily continuously compounded returns on the CAC40 over the
time period July 1987 to November 1995.

where E(r|Z;—1) represents the conditional mean given the information set Z; _;
available at time ¢ — 1 and where y; is a non-predictable component (meaning that
E(y|Z;-1) = 0).

In this section we will characterize the empirical properties of the two compo-
nentsfor the CAC40. By drawing on the existing literature, we first examinewhich
variables may forecast returns.

French (1980), Rogalsky (1984), Gibbons and Hess (1981), and Harris (1986)
document negative mean returns for U.S. stocks on Mondays, while Fama (1965)
and Godfrey, Granger and Morgenstern (1964) document higher return variances
for U.S. stocks on Mondays.

AsTable | shows, the same‘Monday effect’ and in addition a‘ Thursday effect’
affect rates of return of the French CAC40. In order to capture a potential day of
the week effect we haveincluded dummiesin the conditional mean equation. Even
though, day of the week effects are globally significant, later estimation results do
not change for series filtered for a Monday or any other day of the week effect. In
this light we decided not to filter the returns data for any day of the week effect.

Other specific calendar effects characterize the French stock market, namely
a settlement day and an end of the month effect. The Paris Stock Exchange

is organized as a forward market with a monthly settlement day. Payment for
transactions concluded during the period between the previous settlement and the
current one are due at the end of the month.# In addition, at the end of each month

4 See Crouhy and Galai (1992).
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Table . Search for a deterministic component in the CAC40 data

Coefficient Day of week  End of month  Settlement
Constant — 0.0135 0.0417
(0.0349) (0.0594)
Monday —0.2290 — —
(0.0227)*
Tuesday 0.0144 — —
(0.0607)
Wednesday 0.0519 — —
(0.0604)
Thursday 0.1252 — —
(0.0608)"
Friday 0.0662 — —
(0.0612)
End of month — 0.0963 —
(0.1583)
Settlement day — — 0.1465
(0.2688)

Results from the OLS regression of r; on a set of day-of-the-
week dummies, and end-of-the-month dummy, and a settlement-
day dummy.

In this Tablewe report heteroskedasticity robust standard erros.
In all Tables,” (**) denotes parameter estimates statistically dif-
ferent from 0 at the 5% (10%) level.

option contracts on the CACA40 expirewhich may be the source of trading patterns.®
To take into account these effects we introduced corresponding dummies in the
conditional mean equation, as shown in Table I, the estimates were small and non
significant.

Thus, faced with the risk of just introducing spurious noise by filtering the
datafor calendar effects, we decided instead to continue our research with the raw
returns series.

Bollerdev (1986), French, Schwert, and Stambaugh (1987), Baillie and DeGen-
naro (1990), and Hamao, Masulis, and Ng (1990) adjust the conditional mean
return for a first moving average, MA(1). Alternatively, provided that only the
first autocorrelation coefficients are mildly significant, alow order autoregressive
adjustment can be adopted, e.g. AR(1). [See, Lo and MacKinlay (1988), Akgiray
(1989), Engle and Ng (1993), and Nelson (1991)].6

Figure 2 and Table Il show that the pattern of autocorrelations indicates little
serial correlation. For the sample, however, the traditional Ljung-Box statistic

5 SeedeJong et al. (1989).
6 Asapractical matter there s little difference between the AR(1) and the MA(1) adjustment for
returns when the AR or MA coefficients are small asit isthe case for the CAC40.
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AUTOCORRELATION FUNCTION FOR RETURN SERIES
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Figure 2. Autocorrelation function for return series. Daily continuously compounded returns
on the CAC40 over the time period July 1987 to November 1995. The band is centered at zero

with width 2/+/T'. x: Raw CAC40 returns (r+); o: 72; 4: |r¢|.

rejects the null hypothesis that the correlation coefficients are jointly zero. This
effect can be attributed to heteroskedasticity. Indeed, when we perform atest for
joint autocorrelation with the correction for heteroskedasticity suggested by White
(1980), we accept that returns are not autocorrelated at the 5 percent confidence
level.’

Having established that our returns data does not need to be filtered for a
conditional mean, we show in Table |l that the datais |left skewed, leptokurtic (and
thus non-normal), as well as heteroskedastic. As Table Il further shows, there is
substantially more correlation between squared and absolute returns, than thereis
between the raw CACA40 returns themselves. This means that large absolute (or
squared) returns are more likely to be followed by alarge absolute return than by
a small absolute return: big shocks are indeed clustered together as confirmed in
Figure 1. More generally, the distribution of the next absolute return can depend on
several past absolutereturns. No linear stochastic process can provide asatisfactory
explanation for this structure of autocorrelations. In this paper we explore various
models of conditional changesin the variance of returns.

7 SeeTablell for the definitions.
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Table 1. Summary statistics for the French CAC40 index over the period from July 1987

to November 1995

Statistic

Raw CAC40 Squared CAC40  Absolute CAC40

2

Tt T
Number of observations (T) 2077 2077 2077
Mean 0.0092 1.5575 0.8908
Standard deviation 1.2483 4.8783 0.8742
Median 0.0112 0.4507 0.6714
Minimum —10.1376 0.0000 0.0000
Maximum 8.2254 102.7704 10.1376
Skewness (S) —0.5906 12.0544 3.2901
(—10.9887)* (224.2783)* (61.2138)*
Kurtosis (K) 7.8241 186.9931 21.1937
(72.7861)* (1739.5547)* (197.16)
JB 5418.57" 3.10™ 4.10%
p(1) —0.0029 0.2085* 0.1696*
p(2) 0.0262 0.2882* 0.2145*
p(3) —0.0108 0.1858* 0.2027*
p(4) 0.0385 0.0918* 0.1395*
p(5) —0.0035 0.2253* 0.1831*
p(6) —0.0197 0.0915* 0.1488*
p(7) 0.0578* 0.2847* 0.1744*
p(8) 0.0323 0.2917" 0.2284"
p(9) —0.0186 0.2285* 0.1756*
p(10) 0.0545* 0.1710* 0.1880"
p(11) —0.0209 0.1886" 0.1540*
p(12) —0.0039 0.0352* 0.0747*
p(13) —0.0259 0.0993* 0.1335*
p(14) 0.0236 0.0657* 0.1095*
p(15) —0.0212 0.1428* 0.0932*
p(16) —0.0020 0.1806* 0.1378*
p(17) —0.0016 0.0631* 0.1005*
p(18) —0.0303 0.0970* 0.0918*
p(19) —0.0139 0.0463* 0.0870"
p(20) 0.0186 0.0164 0.0470*
2/NT 0.0439 0.0439 0.0439
B-P 220.11* 87.72* 198.10*
L-B(10) 21.75¢ 992,74 710.15*
L—B(20) 29.34* 1245.30* 952.77*
L-B-W(10) 6.65 21.85 38.65"
L-B-W(20) 10.86 39.35 49.43"
Note: Given a time series of rates of return: {r:},¢ = 1,...,T, with r, =

1001n(S;/S¢—1) where S; is the closing level of the index on day ¢, the skewness,
S, and excess kurtosis, K, of the sample are defined as follows: (Note continues on next

page)
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Note Table Il (continued)

T T

1
S = mz(rt_F)a/ga and K = HZ(Tt—F)Ll/g“_g’

t=1 t=1

where 7 and o respectively denote the sample mean and standard deviation. If the sample
distribution is normal, S and K are asymptotically normally distributed: S ~ A(0,6/T)
and K ~ N(0,24/T). Under the normality assumption, the skewness and excess kurtosis
coefficient should be zero. In addition, if we denote by S’ and K’ the standardized skewness
and kurtosis, i.e. ' = S§/1/6/T and K’ = K/+/24/T, then the Jarque-Bera (3-B) statistic
5’ + K'* follows a chi-square distribution with 2 degrees of freedom. The ¢ statistics of the
skewness and kurtosis are in parenthesis.

The Breusch—Pagan test (B—P), obtained by regressing a squared variable on two of its
squared lags is distributed as a y? with two degrees of freedom.

The asymptotic distribution of the autocorrelation coefficient at lag k, p(h), isnormal with
mean 0 and standard deviation 1v/T (see Anderson (1942)).

Thejoint test for autocorrelation among H lags, given by the Ljung-Box statistic is defined
by

p(h)?
T—h

L-BH) =T(T+2) )

h=1

wherep(h) = 1 ryre_p, /2172 TheLjung-Box statistic corrected for heteroskedasticity
as suggested by White (see Beraand Higgins (1993) p. 358) is

L-B-W(H)
Zt ri_art e Zt Te—AT(—HTE -t ~(1)
=0, @Y : : : | e,

S recare—nry oo Y, riogr? v(H)
where y(h) = % ZtT:_lh rere—p. Under the null hypothesis of no autocorrelation of the r;
both statistics are asymptotically distributed as a chi-square with H degrees of freedom.

The critical values for the x2 with 1, 2, 10 and 20 degrees of freedom are respectively 3.84,
5.99, 18.31 and 31.41 at the 5 percent confidence level.

3. Methodology
3.1. THE ENCOMPASSING MODEL

From the dataanalysis presented in the previous section, we conclude that variance
showspredictability. Many modelsin theliteraturetry to capturethis predictability.
As a matter of fact there are so many models that several surveys exist (see
Bollerdlev, Chou and Kroner (1993), Bera and Higgins (1993), Bollerslev, Engle
and Nelson (1994)) and soon we can expect surveys of surveys.
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Thereexist several possibilitiesto comparethese model s. Rather than to compare
forecasting abilities of models as in Pagan and Schwert (1990), or asin Engle and
Ng (1993), we think that models should be nested and that formal tests should be
used to select the best one.

The following encompassing model allows us not only to compare arestrictive
class of models, but also to estimate models which so far haven't gotten any
attention in the literature.

(i) conditional return:

re = floe) +yi,  Withy, = oyey, 1
e areiid. and & ~N(0,1). @

f denotes the conditional expected return at time ¢. Volatility may play arolein
the mean equation due to our discrete time approximation of a continuous time
process.®

(i) conditional volatility:

Current volatility is linearly conditional on lagged innovations (or returns) and
conditional volatility:

ot -1
b1
- Yi-1 %
- + - gJt==
=0t _2;(aliﬂ{yt_i/affi>7} + ali]l{ytfl/affi@}) o2,
1= —
9 o1
tf
+3 g T €
j=1 !

whereag, af;, ag;, azj, 1, B2, B3 and y are parameters. This mode! will be extend-
ed in Section 3.4 to allow for current volatility to depend on past innovationswith
a more complex structure which, from our point of view, better corresponds to
the way traders process information. Positivity and stationarity conditions for the
parameters are considered in an Appendix.

Expression (3) can also be written in the more compact form

q b1 1

0_57’1 -1 p Ut—j _
B = a0+ 2 ci(Yi—i,o1—i) + Z aZjTa
1 i=1 j=1 1

8 I in continuous time the stock index S;, follows a geometric Brownian motion dS; = uS;dt +
o Sydw,, where dw, is a Wiener process, then dIn(S;) = (u — 0.56%)dt + odw,. In a discrete
time approximation the left-hand side becomes In(S;/S:—1) which is exactly the way continuous
compound returns are computed
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Tablel11. Models encompassed by the general specification

@
S
@
N
®
w
<
2
Q

0 0 1 In(o)=ao+ (aflfy,_1svy +ag Ly, i<o)lyi- 1—’y|+azln(at 1)
0 0 2 In(o)=ao+ (L, 15y +ar Ly, <) @i—1—7)? + azln(o_1)
0 1 1 In(oy) = ao+(a1 H{st >y T ag H{Et 1<’Y})|Et 1— 7| + azln(o¢—1)
0 1 2 |n(0't)—ao+(al H{st >y T ag H{Et 1<’Y})(‘€t 1— ) + azln(o¢—1)
1 0 1 Ot _ao+(a1 H{yt 1>vr T ag H{yt 1< 7})|yt 1_7|+O‘20t*1

1 0 2 Ut:a0+(a1 H{yt >y Hog H{yt 1< )(yt 1— ) + a20¢—1

1 1 1 oi=ao+ (o, sy +a7l, . 1<'Y})|Et 1=+ 02011

11 2 or=oaot (ol _py + oyl icy)(E-1—7) + 02001

2 0 1 Utz_a0+( H{yt 1>v T ag ]I{yt 1<“/})|yt 1_7|+O‘20t2 1

2 0 2 Utz_a0+( H{yt >y Hog ]I{yt 1<“/})(yt 1= ) +O‘20t2 1

2 1 1 oi=a0t (o psay +orl, op)le-1 =7 + azof 1

2 1 2 ol—aot(of Leroomy +on e, ugn)(E-1=7)° + 020ty

For themodel (81, B2, 33) = (1,0, 1), if we set v = O we obtain the TGARCH(1, 1) model.
The EGARCH(1, 1) model can be recovered from 1, 82, 83) = (0, 1, 1) and by setting vy = 0.
For (B1, B2, B3) = (2,0, 2) if weimpose o = a; weget an AGARCH(1, 1). Further restricting
~ = 0yieldsaGARCH(1, 1).

For (61, B2, Bs) = (2,1,2) and o = o; weget an AVGARCH(Z, 1).

The model with (81, 82, 33) = (1,0, 1) could be called an ATGARCH(1, 1).

where ¢;(y;—i, i) Will bereferred to asthe core.

Table 1l summarizes the various specificationswhich this model encompasses.
ThisTableand aformal propositionin the Appendix showsthat thisfamily includes
popular models as well as several others which have not received attention in the
literature. It should be noticed that this nesting procedure helps to obtain a better
taxonomy of existing models.

This model contains the linear ARCH model and its generalized version, the
GARCH model, introduced by Engle (1982) and Bollerslev (1986) respectively,
i.e

P
ARCH(p): of =w+ Y iyl (4)
i=1
and
GARCH(p, q): of —w—i-ZaZyt Z—i—Z,B]ot i (5)
=1

where the system’s coefficients w, the «;’s and the ;’s are non-negative. For
covariance stationary of the volatility process the coefficients of the lagged errors
and lagged conditional variances must sum to lessthan one. Since GARCH models
involve past volatility and returns, it follows, as noted by Mandelbrot (1963):
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.. .large changestend to be followed by large changes— of either sign —and small
changes by small changes. .. In other words volatility comes in waves, i.e. cam
periods follow turbulent ones.

However, with GARCH models, positive and negative innovations of the same
magnitude produce the same amount of volatility. This feature contradicts empiri-
cal evidencewhere stock returns appear to be negatively correlated with changesin
returns volatility, i.e. volatility tendsto risein response to bad news (returns lower
than expected) and to fall in response to good news (returns higher than expect-
ed). As a consequence GARCH models will underpredict (overpredict) volatility
following bad (good) news. This suggeststhat amodel in which o7 responds asym-
metrically to positive and negative innovations should be preferable to standard
GARCH models.

The EGARCH (Exponential-GARCH) moded developed by Nelson (1994)
explicitly accommodates for the asymmetric relationship between innovations and
volatility changes. The conditional variance in the EGARCH(Z, 1) ismodeled as

EGARCH(1, 1):

_ _ 2
In(of) = w + agi_i +b Pgﬁ_i' - ;-I BIn(oZ_q). (6)

By modeling the log of the conditional volatility, it is not necessary to restrict
parameter values to avoid negative conditional variances as in the ARCH and
GARCH models. It involves the normalized shocks e; = y;/o0;. The contribution
of apositiveinnovation on the log of the conditional varianceis: (b + a)y;—1/01—1
whilefor anegativeinnovationitis (b— a)|y;—1|/o¢—1. A negative e would confort
the hypothesis that negative shocks generate more volatility than positive shocks.
The use of logsincreasesthe impact of large shocks on the next period conditional
variance.

The existence of astrong leverage effect, i.e. bad news affecting more volatility
than good newsisthuswell supported by the empirical evidence, sincetheestimated
coefficient ¢ is statistically negativefor several stock markets: the U.S. (see Nelson
(1991)), Japan (see Engle and Ng (1993)), and the U.K. (see Poon and Taylor
(1992)), and in al cases a negative shock has an impact on volatility almost twice
as big asa positive one.

Engle(1990) and Sentana (1991) proposethe Asymmetric GARCH or AGARCH
model which isa GARCH model where the minimum of the News Impact Curve
(NIC), first defined by Engle and Ng (1993) occurs at a nonzero level, A

AGARCH(1,1): o2 =w+aly, 1— N2+ Bo?,. 7
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The leverage effect hypothesis requires that A be positive so that the minimum of
the parabola occursfor a positive level X of the innovation. In that case we should
observe a negative correlation between innovations and next period volatility.®

A closely related model isthe AVGARCH where

AVGARCH(1,1): 02 =w+ afe;1 — N2+ Bo?4 (8)

such that the minimum of the NIC occursat y;—1 = Ao—1. Themodel differsfrom
AGARCH in that not past returns, but rather past normalized shocks matter asin
the case of EGARCH.

Glosten, Jagannathan and Runkle (1989) with their GIR model, and Zakoian
(1991) with his Threshold GARCH maodel or TGARCH, alow both sides of the
NIC to have different slopes

GR(L1): of =w+ayis+yyialfy, 1< + 6071, ©)

where Icongitiony 1S an indicator function which is equal to one when the condition
is satisfied, and O otherwise.

p q
TGARCH(p,q): or=w+ Y (o yl — iy )+ Bioijs (10)
i=1 j=1

wherey,” , = max(y;—;,0) andy, , = min(y;_;,0).

This encompassing model contains also models which have not obtained atten-
tion in the literature. For instance, the model obtained by setting in model (3)
Br=10=0,083=1p=q=1couldbecaled an ATGARCH(1, 1) sincethere
is both an asymmetry and a threshold effect:1°

ot = o+ (air]l{yt—?“/} + aIH{yt—1<7}|yt*1 =7 + 2011
If instead we select 51 = 1, B, = 1, B3 = 2 then we get what might be called an
AVT-GARCH(1, 1).

3.2. COMPARISON WITH EXISTING MODELS

Hentschel (1991, 1995) proposes the model

A
Our model is different from his since:

o} o), —1
L :wo+aog\_l(|a€t—b| —c(er — b))” + B i\ :

® See also Campbell and Hentschel (1992).

19 11 the following, we will often consider restrictions of model (3) and regroup all constant terms
in ap without changing notation. Also, for the case p = ¢ = 1 we will suppress the second index of
thea’'s.
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(i) by allowing adifferent power for the Box—Cox transform of the volatility and
for the core, here aog\_l(-)” , We are able to generate more models,

(ii) we believe that the interpretation of past innovations is easier within our
framework where we directly model asymmetries.

In order to interpret our model it is hence forth not necessary to trace the NIC. Our
work also differs from his, in that we investigate the possibility that higher order
lags may explain volatility.

Ding, Granger and Engle (1993) propose the Asymmetric Power ARCH (A-
PARCH). Where

P q
op = a0+ Y ailly—il —vye-i)’ + D Bjor ;.
i=1 J=1

Again, there are differences with our model since

(i) we alow not only past returns to have an impact on current volatility, but
we alow both for past innovations y;_; and past standardized innovations
Yi—if ofii to matter,

(i) we allow for athreshold parameter () which we show is a crucial parameter
in characterizing asymmetry,

(i) their model does not truly impose a Box—Cox power transform since their
model does not allow for § = 0 corresponding to the log case,

(iv) their model doesnot allow different powersfor o, and thecore (|y;—i| —yy—i)-

Inthemodel of Higginsand Bera(1992), thereisno differentimpact onvolatility
of positive and negative past returns, therefore, their model omits asymmetries,
which we show to play an important role.

Our model aims at providing easily interpretable estimates and, therefore, it
does not include a non-parametric part asin Gallant and Tauchen (1989), Gallant,
Hsieh and Tauchen (1991), or Gourieroux and Monfort (1992).*! The reasons are

(i) itishard to interpret the non-parametric estimates,
(ii) the estimates are not efficient, and
(iii) the estimation procedure is quite slow.12

1 Seedso Bollerslev et al. (1992, pp. 12-14).

12 We experimented with several non-parametric models where we approximated the core by a
series of Hermite polynomials. This allowed us to confirm that the shape of the NIC obtained out of
the parametric model is similar to the one obtained out of the encompassing model. An aternative
approach to ARCH-type models is given by Harvey and Shephard (1993) or Ruiz (1994) where
volatility is stochastic.
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3.3. STATISTICAL SELECTION OF A BEST MODEL

Maximum-likelihood estimation allows selection of the best performing model
within a nested family. Nested hypothesis can be tested using the generalized
likelihood ratio

A— SUPyco, £(0; 7) (11)

SUpyco L(8; )
of the maximized-log likelihood functions £ under the null and the enlarged para-
meter space (O and O, respectively). Under the null O, the statistic —2InA
follows a chi-square distribution with degrees of freedom equal to the number of
restrictions on the parameters in the constrained model.*® This is an asymptotic
result which holds under mild assumptions as long as the hypothesis O is nested
within ©.

A parameter ¢ can also be tested individually for being equal to some parameter
6o. If we have an estimate # then the asymptotic distribution of v/7'(§ — o) is
N(0,J-11J~1) where J isthe Hessian matrix and I the matrix of cross products
of the likelihood (see also Gourieroux, Monfort and Trognon (1984)). This result
holdsin particular if the true distribution of the residualsis not normal.

For numerical purposesit may be difficult to directly estimate a model asrich
as (3) because of possible over-parameterization. For this reason we recommend
estimation of restricted versions of (3) followed by the general estimation where
starting values correspond to the parameter estimates of the restricted model with
the largest likelihood value.

3.4. EXTENSION TO MODELS WHICH ACCOMMODATE FOR HY STERESIS

In the previous section we have examined how lagged returns and conditional
voltality may influence today’s volatility, and whether volatility responses are
symmetrical or not. We now extend the model to allow for hysteresis.

Because of psychological reasons market makers may behave differently if
they have, day after day, lost or won money. For this reason we now consider
the possibility that richer structures may affect volatility. The first possibility we
consider isthat the conditional volatility may be affected by pastinnovationshaving
been above or below a certain threshold level during a certain time period, such
as 2 or 3 days. What could also matter is the overall magnitude of certain events:
volatility might bemoreintenseif for several daystradershavelost beyondacertain
threshold, moreover, this intensity could depend on the magnitude of cumulative
losses during the days considered.

A second possibility is that a longer time trend, above or below a certain
threshold, may affect the conditional volatility. If atrader hashad alosing position

1% See, for example, Graybill, Mood and Boes (1982, pp. 419-421 and 440-442).
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for the last weeks he might be reacting more nervously to any newsarrivals than if
the trend has been a good one.

This phenomenon relates to the economic and psychological rationales already
discussed in the introduction concerning market overreaction. In all previous mod-
els past returns or innovations may have an impact on volatility, but they are
modelled as independent shocks, and no consideration is made concerning the
influence some patterns of past returns might have on current and future volatility.

In order to modd the impact on volatility of historical patterns we propose to
extend the previous models by differentiating the very short term, up to afew days,
and the longer term, up to a few weeks. For the short term effect we will only
consider trading patterns where al the innovations are above or below a certain
threshold. For the longer term we distinguish between trends above or below a
certain level. We adopt the following specification for modelling hysteresiswhere

2= Yoy —

yr = oger, € ~N(0,1) (12)
ot -1
B1
: N
= ao+ Z(aﬁﬂ{zt,pO} + O‘Ii]l{ztfiéo}ﬂzt*”ﬂa + Z 052]‘#
i—1 j=1

+ —
Fag iz, 50,2 01500 T @311z <0, 2 0150}

a+1 B3
+(OZIH{zt,pO,...,zt,a,1>o} + aZH{thzSO,...,ztfa,gO}) Z 2o
k=2
b+1 B3
+ _
o H{Z?izl #t-1>0} Tos H{Z?izl Zt—lSO}) ; . 13

The parametersa and b are sel ected based on economic priors. The second and third
term in Equation (13) associated with parameters of , a3 and o , o, correspond
to the short term effect, while the last term associated with o4 and a5 allows for
the longer term effect. In an Appendix we will consider positivity and stationarity
conditions for this model.

4. Empirical Estimation

In this section we are going to present the results of the estimations. First, we will
estimate a large set of models to get a good prior on what a satisfactory set of
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starting values could be for the general model (3). Once we have estimated the
general model we will test restrictions of it. We will then investigate the robustness
of this model. Asalast step we will present the results of the Hysteresis GARCH
model. 14

4.1. ESTIMATION RESULTS

Experiments with various estimation methods and different values for the para-
meters p and g, for the given sample size, indicate a serious problem of over-
parameterization. It was never possible to achieve convergence of the general
model (3) with values of p and ¢ larger than one.

In Table IV we first present the results of various restricted versions of our
general model. We notice that the largest likelihood is obtained for the ATGARCH
model where 51 = 1, 8> = 0 and 83 = 1 corresponding to a linear specification
of volatility and where innovations rather than their standardized version are used.
If the time required for an estimation can be considered a criterion for valuing a
model, then, for this alternative measure too, this model turns out to be the best.

We use the estimates of this model as starting values for the general model, the
results of which are reported in the last column of Table V.15

4.1.1. Linear versus quadratic or log specification

The general model has a likelihood of —3177.70. Since al other models in this
Table correspond to restrictions of 31, 32, 53 we can test those restrictions which a
chi-squarewith three degrees of freedom. A simple computation yieldsthat models
where the likelihood is smaller than — 3181.61 can be rejected against the general
model.

Among all estimateswe natice that the only model with alikelihood larger than
this valueisthe model where 81 = 1, 3, = 0, 33 = 1. From now on we will focus
on this ATGARCH model.

41.2. sy =0?

We notice that for the ATGARCH model + is highly significant which suggests
that there is an important threshold effect at around —0.85 percent.

14 All estimations were carried out using the Constrained Maximum Likelihood GAUSS subrou-
tines. All estimations were performed on a Pentium computer running at 133 Mhz and require at most
afew minutes. The Berndt, Hall, Hall and Hausman (1974) BHHH algorithm was used most of the
time.

15 Clearly, once we have estimates for the general model we use aternative starting values to
convince ourselves that the estimates correspond to a global maximum.
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4.1.3. Isaj equal to oy ?

To what extent do past returns have an asymmetric impact on volatility? The like-
lihood principle requires again to reestimate the model by imposing the restriction
af = a; . Wethen obtain

oy = 0.0702 + 0.1362 |z;—1] + 0.8316 o1,

(0.0313)*  (0.0255)* (0.0357)*
withy = 0.3075, £ = —3197.36,
(0.1314)*

where z; = y; — «y. Here we have one restriction which can be tested with a chi-
square with one degre of freedom. The generalized likelihood ratio statisticis 37.2,
high enough to allow rejection of symmetry at any level of significance.

4.1.4. Conclusion for the nesting procedure

From the statistical inference we reach the conclusion that ATGARCH(Z, 1), i.e.
model 101, is the best specification for the general model (3).

For this model the parameter «, is 0.8759 which shows the important impact
of past volatility on current and future volatility.1® High past volatility tends to be
followed by highvolatility and similarly for small volatility. The difference between
of and o reveals strong asymmetry. Since o is insignificant, good news have
very little importance on volatility changes. The large value of o7 indicates that
bad news, on the contrary, tend to have a strong impact on volatility.

The level parameter vy is negative, v = —0.85 percent and statistically signifi-
cant, i.e. the minimum of the NIC is reached for a negative return. Thisreinforces
the asymmetric impact of bad news. Only when returns are negative beyond the
critical level of —0.85 percent they are considered as bad news and have a stronger
impact on volatility. This result comforts the intuition we developed earlier in the
introduction.

Those two results clearly document that for daily data on the CAC40, a sig-
nificnat asymmetry and a shift in the news impact curve exist. As Figure 3 shows,
the effect of asymmetry shifts the NIC towards negative values and the TGARCH
effect rotates the NIC. This suggests that returns below the —0.85 percent have a
strong impact on volatility. Each additional point of ‘bad news' increases volatility
by about 0.2 point. For returns above —0.85 percent and, of course, for positive
returns, volatility increases positively but at the negligible rate of 0.01.

4.2. How GooD Is ATGARCH(1,1)?

We have shown in the previous section that ATGARCH(1, 1) is aquite satisfactory
model sinceit removes heteroskedasticity from the data. However, residualsremain

% The half life of ashock to volatility is 5 days.
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NIC FOR ATGARCH(1,1) MODEL
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Figure 3. News Impact Curve for the ATGARCH(1, 1) model. Plot of how current volatility is
affected by past returns ceteris paribus in the ATGARCH(1, 1) model.

fat tailed. This suggests that a more general model allowing either for volatility in
the mean or for more lags might lead to an improvement.

4.2.1. ATGARCH (1, 1) in mean

We consider for the conditional mean aconstant, aswell asalinear, and aquadratic
function of volatility. The estimation results are shownin Table V.

Inspection of the estimates of 1 and 6, indicate that both coefficients are not
significant. Also, the linear and quadratic mean both nest the constant volatility
model. The generalized likelihood ratio for testing the linear model is —2In(A) =
0.04 and for testing the quadratic model is 0.18, thus, adding alinear or aquadratic
volatility term to the mean, does not improve the model.

A possible reason why we don’t capture any mean effect may be that the daily
series are very noisy in comparison with the smoother estimated volatility series.
Omission of volatility from the mean can, therefore, not explain the remaining fat
tailedness of the residuals.

4.2.2. Extensionsto ATGARCH(p, q)
Even though one could extend the ATGARCH(Z, 1) to a higher order we limit
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AUTOCORRELATION FUNCTION FOR RESIDUALS
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Figure 4. Autocorrelation function for the residual series of the ATGARCH(1, 1). Theband is
centered at zero with width £2/v/T'. x: residuals (g;); o: €2 +: |e4]-

our analysisto the second order (p, ¢ < 2), since thisis enough to show that this
extension does not yield any improvement.

Again, it is possible to conduct the estimations in nested form. An
ATGARCH(2,2) can be viewed as the general, less restricted model, where
ATGARCH(2,1) or ATGARCH(1, 2) represent a first level of restriction. A fur-
ther restriction yields the ATGARCH(Z, 1). Estimation results are presented in
Table V1.V

First, computations of the generalized likelihood ratios to test the
ATGARCH(2,1) and ATGARCH(1, 2) against an ATGARCH(2,2) are 0.42 and
5.48, respectively. Since those two statistics follow respectively a chi-square distri-
bution with 1 and 2 degrees of freedom, we cannot reject the restrictions. Second,
to test the further restriction of an ATGARCH(1, 1) against ATGARCH(2,1) or
ATGARCH(1, 2) weobtain asstatistics 3.04 and 0.84. Sincetherestrictionsinvolve
a chi-sguare with one and two degrees of freedom, we cannot reject the restric-
tion corresponding to ATGARCH(Z, 1). Those results suggest that the strategy of
simply adding more lags to the ATGARCH is not appropriate.

17 We give consideration to positivity and stationarity constraintsin an Appendix.
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Table V. Extension of ATGARCH(1, 1) to allow for volatility in the mean

ATGARCH(1, 1)

With no With linear With quadratic
Param. volatility in mean volatility in mean volatility in mean
6o 0.0175 0.0430 0.0336
(0.0232) (0.1372) (0.0475)
01 — — 0.0243 —
(0.1271)
62 — — —0.0142
(0.0350)
o 0.0966 0.0960 0.0954
(0.0265)" (0.0265)" (0.0265)"
o 0.0116 0.0115 0.0115
(0.0142) (0.0143) (0.0143)
o 0.2252 0.2253 0.2273
(0.0644)" (0.0658)" (0.0659)*
%) 0.8764 0.8772 0.8776
(0.0323)" (0.0323)" (0.0325)"
vy —0.8863 —0.8832 —0.8866
(0.1776)" (0.1796)" (0.1765)*
L —3178.67 —3178.65 —3178.58
J-B 986.38" 998.14" 999.47*
B—P(2) 2.62 251 242
L-B-W(10) 15.44 15.03 14.68

The estimated modedl is
re = 0o + 010¢ + O207 + ey

or = a0+ (a Lgy,_p>ay + o1 Ly, _icop)lye-1 =21 + 02041,

4.3. TESTING FOR SHORT AND LONGER TERM HY STERESIS

Before estimating the general model we performed an hysteresis-bias test in the
spirit of Engle and Ng (1991) to check if hysteresis patterns can be detected in
the residuals of the ATGARCH(1, 1). Let ¢; be the estimated residual, a positive-
hysteresis-bias test can be defined as the ¢-ratio for the coefficient §; in the OLS
regression |;| = do + 6111[21, 15t_s>0]% S0, e1—s + 1, and anegative-hysteresis-

biastest can be defined in the same way for anegativetrend. If residualswerewhite
noise, al tests should yield an insignificant §;. On the other hand, a significant 61
means that the past trend can help in explaining current volatility. Asindicated in
Table VII, the positive-hysteresis-bias tests yield significant negative statistics for
small values of b, suggesting the possihility that historical patterns may have some
explanatory power for the residuals. Clearly, thistest is not very powerful andin a
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Table V1. Extension of ATGARCH(1, 1) to ATGARCH(p, ¢) with

Pq<2
Param. ATGARCH(2, 2) ATGARCH(2, 1) ATGARCH(L, 2)
o 0.1166 0.1111 0.0963
(0.0404) (0.0343)" (0.0284)"
o 0.0174 0.0151 0.0119
(0.0337) (0.0290) (0.0139)
a; 0.1259 0.1252 0.2251
(0.0606)* (0.0631)** (0.0610)*
o 0.0000 0.0000 —
(0.0422) (0.0295) —
o, 0.1394 0.1276 —
(0.1120) (0.0894) —
a1 0.7804 0.8568 0.8764
(0.3065)* (0.0425)* (0.3047)"
ax 0.0671 — 0.0000
(0.2632) — (0.2875)
y —0.8437 —0.8702 —0.8779
(0.1720)* (0.1743)* (0.1789)"
L —3176.81 —3177.23 —3179.17
JB 919.3* 891.69" 983.81"
B-P(2) 2.77 2.74 259
L-B-W(10)  15.39 15.43 15.57

The general ATGARCH(2, 2) model is

ot = Qo + (arl]l{yt_p“/} + O‘l_l}l{yt_lév} lye—1 =]

+ (O‘Irz]l{yt_p“/} + O‘IZH{yt_zév}”yt*Z -7

+ a210t-1 + a2oi-2.

We further restrict it to ATGARCH(2, 1) and ATGARCH(L, 2)

complete likelihood estimation results may be different. For the moment we only
consider those results encouraging.

The choice of avaluefor a follows from Table V111 where the number of series
of consecutive positive and negative returns is displayed. We see that it is not
reasonable to select a greater than 3 since when « is equal to 4 the percentage
of zeros in the corresponding dummy would be almost 95 percent. Therefore, we
will restrict a to values of 2 and 3. For convenience we call this pattern isosigned
returns of order 2 and 3. We chose b to correspond to one, two or three trading
weeks.

The general model (13) contains many parameters. We use arestriction of the
(1, B2 and (33 parameters corresponding to the ATGARCH. Table IX presents the
results of the estimation.
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Table VII. Hysteresis-bias-tests for the
residuals of the ATGARCH(1, 1)

b Hysteresis-biastest Estimate

5 positive —2.147
5 negative -1.275
10 positive —2.138
10 negative 0.250

Let &, be the estimated residua and
T condition @n indicator function taking the
value 1 when condition istrue and O oth-
erwise. The positive-hysteresis-bias test
is defined as the t-ratio for the coeffi-
cient 61 in the OLS regression |e;| =

b
do+6al Y e F Y eiEts

and the negative-hysteresis-bias test is
defined in the same way for a negative
trend.

TableVI11. Frequency of seriesof consecutive positiveand negative
returns

Length of monotonicity  Positive history  Negative history

1 1053 1024
2 551 523
3 275 250
4 133 113

First we observe that the significance and magnitude of the ATGARCH coef-
ficients found in the previous estimation is preserved and stays unaffected by the
extension of the model to aricher structure.

When weallow for an indicator variable corresponding to isosigned innovations
(b = 0) we notice that returns which are constantly larger than our —0.86 percent
threshold decrease volatility, whereas returns constantly smaller increase volatility
for very short patterns (a = 2). Only the constantly larger returnsdecrease volatility
whena = 3.

This result confirms that there remain nonlinearities in the residuals which can
be captured by tendencies of markets. It also showsthat positive news can decrease
market’s volatility. Negative patterns matter only for ashorter horizon. This means
that when rsults are constantly bad then volatility adjusts after 2 days. A bad result
for athird day does no longer matter.
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When the regressionincorporates not only an indicator variable but also the sum
of over or under performance, estimates remain similar (the estimates correspond
to coefficientsaf, ;). Only very short time horizons matter for negative returns.

All this is consistent with the view that bad news are rapidly incorporated in
volatility revisionsbut good newstend to lower volatility over alonger time horizon
provided that they are clustered.

Estimations where only the trend effect is allowed (a = 0,6 > 0) show that a
negativetrend in the index tendsto increase volatility, while apositive trend has no
impact. We notice that for horizons of 5 and 10 days, corresponding to one or two
trading weeks, apositive trend does not affect volatility. A negative trend, however,
tends to increase volatility. For an horizon of 3 trading weeks this phenomenon
ceasesto exist.

We choseto regroup the modelswherea = 2, b = 10to verify that both features
are orthogonal. Indeed, when both features are combined as in the last columns of
TablelX, they appear with similar coefficientsthan when considered separately. Of
course, we have amodel with many parameters and the likelihood ratio test would
allow usto accept the restricted models.

Thustheimpact onvolatility of ashock today will not depend only onitssignand
magnitude, but also on the way past returns are distributed. Returns seem to adjust
very quickly to negative events with a strong increase in volatility. This finding
seems to corroborate the economic and psychological rationales to stock market
overreaction. Theshort term pattern of returns hasno further influence on volatility.
However, we find that a negative event has a higher impact on volatility when it
comes in the context of a negative two-week trend. Positive shocks have almost
no effect on volatility, except if they come in a series where, in such instances,
volatility decreases.

Negative events may well induce traders to quickly cut their losses, thereby
creating market pressures that depress prices further down, which in turn trigger
additional margin calls which force traders to sell more securities in order to
generatethe required liquidities. During this process prices may reach levelsbelow
what is justified by the information itself. In addition to this economic rational,
there also are psychological reasons why markets overreact. Losses may indeed
affect investment decisionsto a greater extent than an equivalent amount of gains,
because risk aversion increases or investors become irrational .18

5. International Evidence

Having found that the ATGARCH model is convenient to estimate, we applied this
model to 21 stock market indices extracted from the FT-Goldman Sachs data base.
We use data covering the period between January 1986 and November 1995.The
French index in the FT-Goldman Sachs data base is different from the French
official indices CAC40 and SBF240, it includes approximately 100 stocks.

18 See, e.g., Kahneman and Tversky (1979) and Arrow (1982).
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Table X contains sample statistics for the compound returns. The number of
observationsvaries across countries dueto non-trading days. For emerging markets,
such as Hong-Kong, Japan, Malaysia, Singapore and Mexico we typically find a
higher volatility than for other markets.

Many countries appear to have a high first order autocorrelation of returns.
Also the distribution is highly nonnormal. All markets, except Australia, seem
to have heteroskedastic stock returns. The Ljung—Box—White statistic for joint
non-autocorrelation among the first ten autocorrelations is significant for many
countries even though this measure has been corrected for heteroskedasticity. For
this reason we decided to AR(1) filter all those markets where this statistic turned
out to be significant.

In Table XI we present the results of the ATGARCH estimation. The value for
ay in the range of 0.6 to 0.92 indicates that volatility tends to persist not only for
France but for al countries in the database. Countries with lower «, are mostly
located in the Asian—Australian hemisphere. Those countries economies emerged
only recently and since their stock markets are rather small, one can expect that
any changein newsfrom those countries tendsto imply rapid changesin volatility.
Volatility is going to be dominated by current news rather than by the level of past
volatility.

The coefficients of asymmetry o and o also exhibit the same pattern as for
France. Good news have less impact on changesin volatility than bad news. This
phenomenon is exacerbated for smaller or younger stock markets. For instance
Australia, Canada, Hong Kong, Malaysia and Singapore show a strong increase in
volatility after bad news.

That negative news do not necessarily mean bad news is indicated by the
uniformly negative v ranging between —0.2 and —1.04.%° At aworld-wide level,
only news below acertain level, lead to a strong increasein future volatility. There
is no apparent correlation between a country’s stock market age and depth on one
side, and the magnitude of the critical level () on the other.

After the ATGARCHY(1, 1) effect has been accounted for, residuals don’t show
any trace of heteroskedasticity, but still reveal strong nonlinearities. However, the
hysteresis effects, as they were modelled for the French market, are, most of the
time, insignificant for the countries besides France. This showsthat information is
processed in the same way in most markets, except for some complex patterns. It
is beyond the scope of this paper to relate the psychology of each market to the
corresponding ad hoc hysteresis model.

6. Conclusion

This paper shows that heteroskedasticity in stock returns as already documented
for the U.S. stock market, also prevails internationally. In an exhaustive study we
nest the most popular models already proposed in the literature and test for the

2 |taly and the United Kingdom are the exception with a statistically insignificant .
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Table X1. ATGARCH(1, 1) model for a set of countries

Country ¥ o o a; @2 L

Belgium —0.5179 0.0614 0.0794 0.3769 0.8000 —2591.42
(0.1275)*  (0.0351) (0.0184)* (0.1651)* (0.0709)*

Denmark —0.5789 0.2095 0.0924 0.4112 0.6077 —2940.10
(0.1183)*  (0.0929*) (0.0346)* (0.1447)* (0.1425)*

France —0.6007 0.1041 0.0298 0.2351 0.8372 —3582.2
(0.1732)*  (0.0309)* (0.0140)* (0.0548)* (0.0360)*

Germany —0.5355 0.1089 0.0159 0.2243 0.8482 —3727.38
(0.0004)*  (0.0577) (0.0157) (0.0759)* (0.0552)*

Ireland —0.0406 0.1079 0.0507 0.3679 0.8160 —3704.94
(0.1875)*  (0.0498)* (0.0155)* (0.1286)* (0.0508)*

Italy 0.2177 0.0133 0.0605 0.0890 0.9288 —4099.27
(0.1845) (0.0062)* (0.0186)* (0.0167)* (0.0149)*

Netherland —-0.2291 0.0409 0.0331 0.1704 0.8889 —3036.06
(0.1156)**  (0.0169)* (0.0155)* (0.0538)* (0.0307)*

Norway —0.7657 0.1313 0.0491 0.2980 0.8177 —4174.35
(0.2025)*  (0.0794)  (0.0238)* (0.1271)* (0.0862)*

Spain —0.6518 0.0624 0.0530 0.2429 0.8615 —3549.05
(0.1977)  (0.0313) (0.0157) (0.0731)* (0.0371)"

Sweden —0.7440 0.0965 0.0178 0.2491 0.8623 —3753.54
(0.1982)*  (0.0357)* (0.0222)  (0.0598)* (0.0441)*

Switzerland —0.5760 0.1377 0.0000 0.3458 0.8016 —3342.53
(0.2191)*  (0.0536)* (0.0317)  (0.1339)* (0.0649)*

United Kingdom  —0.0496 0.0633 0.0885 0.1762 0.8262 —3106.75
(0.1060) (0.0369) (0.0332)* (0.0702)* (0.0758)"

America

Canada —0.5163 0.0775 0.0439 0.3043 0.7977 —2312.20
(0.0020)  (0.0383)* (0.0149)* (0.1174)* (0.0818)*

Mexico —0.3989 0.1186 0.1228 0.2363 0.8081 —4834.30
(0.1447)*  (0.0337)* (0.0264)* (0.0417)* (0.0368)"

USA —0.2913 0.0336 0.0325 0.1755 0.9028 —3032.21
(0.1081)*  (0.0301)  (0.0137)* (0.1009)  (0.0583)*

Asia

Hong Kong —0.7390 0.1749 0.0486 0.4386 0.7712 —4249.45
(0.1548)*  (0.0697)*  (0.0247)* (0.1236)* (0.0618)*

Japan —0.2025 0.0853 0.0845 0.3337 0.7938 —3730.84
(0.1148)**  (0.0532)  (0.0242)* (0.1431)* (0.0791)*

Malaysia —0.9399 0.1955 0.0579 0.4655 0.7340 —4017.22
(0.1804)*  (0.0747)* (0.0178)* (0.1430)* (0.0638)"

Singapore —0.8107 0.3755 0.0931 0.6538 0.5243 —3925.77
(0.1443)*  (0.1069)* (0.0379)* (0.2193)* (0.1106)*

Austraia

Austraia —0.6045 0.2550 0.0813 0.5950 0.5828 —3381.04
(0.2180)  (0.2054)  (0.0354)* (0.4562) (0.2782)*

New Zealand -0.3622 0.1378 0.1084 0.2875 0.7581 —3947.36
(0.1208)*  (0.0638)* (0.0265)* (0.1100)* (0.0796)*
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statistically most relevant specification for the stock markets of 21 countries. On
purely statistical grounds the model which allows for asymmetry and a shift of the
NIC (the ATGARCH(1, 1) model) appears to be an amazingly robust description
of volatility for all these countries. The asymmetry in the impact of positive and
negative returns on volatility is strong. Negative returns below a certain level
strongly increase volatility, while returns above this level, and of course positive
returns, have a negligible effect on volatility. These empirical results comfort the
economic and psychological rationales for market overreaction.

After the ATGARCH(1, 1) effect has been accounted for, residuals still reveal
strong nonlinearities and patterns in more remote information still have predic-
tive power. An attempt to capture the remaining structure in volatility within the
ATGARCH(p, q) framework fails. Extensionsincluding volatility in the condition-
al mean were not fruitful, either. However, atrend in the stock index and patterns
of recent returns have some descriptive power, at least for the French market which
we described, as the best candidate for exhibiting volatility clustering, asymme-
try and hysteresis features. For France we propose an extension to the simple
ATGARCH(1, 1) wherewe allow for hysteresis. A shock of either sign may affect
volatility differently depending on the recent past being characterized by either
all positive or all negative returns (the isosigned returns effect). In the same way,
a longer term trend of either sign may also influence the impact on volatility of
current innovations. This is some sort of size, or threshold effect in a dynamic
context. The impact of a shock on volatility will depend on the cumulative size
of past innovations. If it goes beyond a certain threshold level, then volatility will
react more strongly.

The estimation results lead to the conclusion that bad news are discounted very
quickly in volatility, while this effect is reinforced when it comes after a negative
trend in the stock index. On the contrary, good news have a very small impact
on volatility except when they are clustered over a few days, which in this case
substantially reduces volatility.

Thisresearch can be extended by looking at the psychology of various markets
and by attempting to capture this through specific ad hoc patterns.

Appendix
PROPOSITION. The encompassing model (3) contains as specia cases, when
p=q=1
(i) GARCH(L,1) for 1 = 2,0f =ay,B2=0,7y=0,83 =2
(i) AGARCH(1,1) for 81 = 2,af =a7,8,=0,03 = 2.
(iii) AVGARCH(1,1) for 1 = 2,af =a7,B2=1,033= 2.
(iv) TGARCH(1,1) for 81 = 1,3, =0,y =0,3 = 1.
(V) EGARCH(1,1)for 5y =0, =1,7v =0, = L.
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Proof. First setin (3) aj; = a;; = 0fori > 1,and ap; = Ofor j > 1.
(i) SettingB1 =2,0f =a; = a1, =0,7=0,8; = 2in(3) weobtain

12 2 12 1
301 — 3 = a0+ aryiy + (3071 — 3)

andthereforeo? = 2ap+1—ax+2a1y? | +az0? ; whichisindeed theexpression
for aGARCH(1, 1) process as defined in (5) with an obvious change in notation.
(ii) Setting 81 = 2,0 = o] = a1, 2 = 0, B3 = 2informula(3) gives
lo? —1=ao+ar(y-1— 1)+ 2307 1 — )
andthereforeo? = 2ag+1—az+2a1(y; 1—7)%+az0?_; whichistheexpression
for an AGARCH(1, 1) process as defined in (7).
(i) Setting 1= 2,af = a] = a1,B2 = 1,63 = 2in(3) yields

2
-1

I (%— - 7) +an(bo? g~ 1)
Ot—1

and therefore
Yt 2
Ut =200+ 1—ax+ 201 (— — ’Y) + Otzatzfl,
Ot—1

which isthe expression for an AVGARCHY(1, 1) process as defined in (8).
(IV) Settlng /Bl =1, /82 = 037 = 07 53 =1lin (3) g|VeS

oy —1=ag+ (af]l{yt_po} + g Iy, <copyt—1| + 202(0t-1 — 1)
and therefore oy = 1+ ag — ap + (O‘i—}l{yt—l>0} + aIH{yt_1<0}|yt*1| + apoy_1
which isthe expression for a TGARCH(1, 1) process as defined in (10).
(v) Notice that limg, (0’ — 1)/B1 = In(c) and therefore setting the para-
meters 61 = 0,6, = 1,7 = 0, 53 = 1 we obtain
In(or) = o + (al Ly >0y T Iy, 1<0}) ‘yz l‘ +azIn(og-y). (14)

Since an EGARCH is given by

_ _ 2
In(oy) = d0+ayt 1y [Iyt 1 _ H + BIn(oy_1)
Ot—1 Ot—1 ™
. 2
=ap—b = + (a +b) H{yt >0}

+a—b)" Y- 111{% <0} + BIn(o;_1), (15)
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by identifying termsin (14) and (15) one also obtains that an EGARCH process an
be recovered from the general model. O

Appendix

Here we present restrictions on the parameters of empirically relevant models so
that the conditional variance remains well defined. Empirically we notice that a
model wherep = ¢ = 1in model (3) is most relevant, for this reason we will now
focus on this restriction.

For the case where 3, # 0 we can rewrite our general model, with an obvious
change of notation, as

opty = a0+ (of Is0) + 07 Iic)) |26 + ao), (16)

wherewe have z; = ytofz - 7.
When 81 = 0 our model becomes

In(0141) = a0 + (o T(zs0p + 01 Tizcoplze] ™ + azIn(oy). 17

Positivity constraints

We always assume 1, 32, 33 greater than 0. Then, if ag, o, a7 and a; are all
positive for (16) we are assured that our model iswell defined.

For model (17), since the In function has the entire real line asrange thereisno
need to impose positivity restrictions on the parameters.

At some point we estimate the ATGARCH model with 2 lags

o2 = ao+ (il 50p + anliz,, <)) 2]

(ol 0y + Al 2t + 210041 + a0y

With an obvious analogue when 8; = 0.

We could follow Nelson and Cao (1992) who give less restrictive assumptions
than Bollerslev (1986) for positivity in a model with lags and search for general
conditions guaranteeing positivity. Empirically, we found that all lagged models
could be rejected using a likelihood test with or without the strict positivity con-
straints of Bollerslev. For this reason, we decided not to investigate the general
case, but to report in Table VI only the result for the model where ag, o3, a7; and
ap; areall positivefor: = 1,2and j = 1, 2.

For the Hysteresis Garch model of Equation (13), positivity constraints would
require o , a3, af o, and aid , a5 to be positive. We decided, however, to esti-
mate our model without restrictions on the parameters to see, if at least in sample,
we can find additional elements explaining residuals.
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Sationarity conditions for the general model
Define w; = (af Iy, + @3 Igz50)|2|” so that (16) can be rewritten as
ofjrl = ap + wy + ooyt Forward iteration yields

S
1-a3

1—a

-1
aﬂlrs = ag ( ) + Wips1+ QW2+ -+ ) Twy + ozt

We will have stationarity if o, s remainsfinite as s goes to infinity. Since further
realizationsof w, are unknown we can replacethem by their expectations. Consider
now any future w;. We have

Elw,] = of E[z%|z > O|Pr[z > 0] + ay E[2/%|2 < O]Pr{z < 0. (18)

Since z; = o7 "2, — ~, we obtain under the assumption of normality that

Prlz, > 0] = Pr

Oy

and

Pr[zt<01=<1>< 1 ) (20)

1—
o; B2

where ®( - ) representsthe cumulative distribution function of anormal distribution.
We notice that

“+00 B 1
E[2%|z > 0] = /u i (o P20 — )Ps o ePl-pldn (@)
and
u:7/017ﬁ2 a 1
E[2%|2, < 0] = [ "= ol ﬂzu)ﬁs\/—z_ﬂ exp{—Lu du.  (22)

To obtain stationarity one should have parameters so that the fixed point o defined

by
g e (e )
“ 1—a2+1—a2 alE[Z |Z>O] 1 ¢ 01_52

+a; E[2%)z < 0)¢ <017 ﬁ2>> (23)

remains finite.
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For the particular casewhere 81 = 2,3, = 0,33 = 2,0 = a; = a3,y =0
corresponding to a GARCH(1, 1) model we obtain the condition
2 @0

2
o~ = + 0" >0 "= —.
l-a 1—a 1—-a1—ap

Thelast expressioniswell defined if a3 + a» < 1 thewell known condition for
stationarity of the GARCH(1, 1).

Having shownthat our condition isreasonable, we also notice that the constraint
(23) could be imposed numerically since (19), (20), (21) and (22) can al be easily
computed using quadrature methods.

Clearly, imposing those constraints is numerically extremely demanding. For
practical purposes, one can convince oneself that the final estimates correspond to
a stationary solution.

The case where 81 = 0 can be treated in similar manner but by using (17).

For the Hysteresis GARCH model a very similar analysis can be performed.
The main difference residesin the conditioning of expectations since then we have
expressions such as

a?fE[]I{Zt71>0,...,zt,a,1>0}|Zt71 > 07 sy Zt—q-1> 0]
-Pr[zt_l >0,...,2i_q_1 > 0]
+O[§ E[H{ztflgo,...,zt,a,1<0}|Zt*l < 07 ceey Zt—a—1 < 0]

Pz 1 <0, 201 < O]

Assuming normality and independence of the z; such probabilities could again be
easily evaluated through quadrature.
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