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Abstract

The method of parameter optimization of combined structures, which consist of a dielectric grating and a
metallic or multilayer dielectric mirror, was proposed. It is based on the use of the waveguide properties
of the combined diffraction grating. Its main advantage lies in the possibility of determining the optimum
parameters of the combined grating without solving the diffraction problem.

1. Introduction

With the development of lasers the requirements for the elemental basis of laser devices and, in particular,
for the radiation stability and efficiency of the diffraction gratings became more stringent. The use of
conventional metallic gratings is hampered or becomes impossible in solving a number of problems associated
with the development of pulsed narrow-band and superradiant lasers.

The creation of combined gratings, which was proposed in [1] for the first time, was a decisive step
toward improving the characteristics of diffraction gratings. In Fig. 1, the schematic diagram of a combined
diffraction grating is presented. The grating by itself is formed in the dielectric layer G. There is an interlayer
S under the grating followed by a metallic or multilayer dielectric mirror M. Such gratings possess a number
of significant properties from the practical point of view. Combined diffraction gratings with an extremely
high diffraction efficiency and radiation stability designated for pulse compression were described in [2, 3].
Studies of the properties of combined gratings set in the scheme of grazing incidence were the focus of [4, 5].
As was shown in these papers, the efficiency of the combined grating with a metallic mirror could far exceed
that of the conventional grating with a metal coating at a comparable absorption level.

Given the wavelength and angle of incidence of radiation as well as the material refractive indices and
grating profile, the problem of determination of the parameters of the most efficient grating is reduced to
the search for the optimum values of the grating depth h(G), interlayer thickness h(S), and (in the case of
the grating with a dielectric mirror) thickness of the layers of the mirror h(M)

i . A rigorous solution of the
problem of diffraction by a combined grating requires a significant volume of calculations. The time taken
to calculate the diffraction efficiencies of the grating with preassigned parameters with a contemporary PC
varies from several seconds to several tens of seconds. The authors’ experience in studying combined gratings
suggests that the dependence of the diffraction efficiency of such a grating on the layer thickness has a lot of
extremums. These factors render the use of the techniques of numerical optimization of parameters for the
multilayered combined grating to be extremely inefficient.

In the present paper, a procedure is proposed that allows one to determine the optimum parameters of the
combined grating in an analytical form or using much smaller computational resources as compared to the case
of direct optimization. An approach based on the waveguide properties of the combined grating was employed
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Fig. 1. Schematic diagram of the combined diffraction grating. Here, U is the upper half-space; G, the layer of the
diffraction grating; S, the matching dielectric layer; M, the metallic or dielectric mirror; D, the lower half-space; k, the
wave vector of the incident wave; θ, the angle of incidence of radiation; Λ, the grating period; and c, the filling factor
of the grating.

for the solution of this problem. The waveguide behavior of the interaction of light with the combined grating
was demonstrated in [1]. This allowed an analytical expression to be obtained for the efficiency of the metal–
dielectric combined grating with a small corrugation depth operating in the autocollimation mode. In this
paper, the waveguide approach was extended to more complex structures and arbitrary conditions of radiation
incidence.

2. Interaction of Radiation with the Combined Diffraction Grating

A so-called modal technique of solution of the problem of diffraction by the grating was used in the
calculations. A detailed description of it can be found in [6]. We focus on the basic specific features of this
method, which will help us to interpret the results obtained.

Let a plane electromagnetic wave be incident on the grating G from the upper half-space U. The field
distribution resulting from the diffraction of radiation by the grating should satisfy the Helmholtz equation(

∂2

∂x2
+

∂2

∂y2
+ k2(x, y)

)
F (x, y) = 0, (1)

the quasiperiodicity condition

exp(ikn(U) sin θΛ)F (x, y) = F (x+ Λ, y), (2)

and continuity conditions at the boundaries of the spatial regions with different refractive indices. The
function F (x, y) describes either the E or H field component depending on the polarization, k = 2π/λ is
the wave vector of the incident wave, θ is the angle of incidence of radiation upon the grating, and Λ is the
grating period.
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The solution of problem (1), (2) in the upper (U) and lower (D) half-spaces is the so-called Rayleigh
expansion

F (U)(x, y) = r(i) exp(iα0x− iβ(U)
0 y) +

n=+∞∑
n=−∞

rn exp(iαnx+ iβ(U)
n y),

F (D)(x, y) =
n=+∞∑
n=−∞

tn exp(iαnx− iβ(D)
n y),

(3)

where αn = kn(U) sin θ + (2π/Λ)n and β
(j)2
n = k2n(j)2 − α2

n. The radiation diffraction orders, which carry
away energy from the grating, correspond to the terms of expansion with real coefficients β(j)

n . The number of
such diffraction orders is defined by the relationship between the radiation wavelength and the grating period
and, when the diffraction to the lower half-space is concerned, by the refractive index n(D) of the grating
substrate.

The solution of problem (1), (2) in the interlayer S and layers of mirror M is also the Rayleigh expansion

F (S,M)(x, y) =
∑
m

[
a(S,M)
m exp(iβ(S,M)

m y) + b(S,M)
m exp(−iβ(S,M)

m y)
]

exp(iαmx), (4)

but in contrast to expansions (3) they simultaneously contain terms corresponding to the waves, which travel
both in the positive and negative direction of the Oy axis.

For a rectangular ruling one can separate the variables in Eq. (1) and construct an analytical expression
for the field in the vicinity of grating G:

F (G)(x, y) =
∑
m

[
a(G)
m exp(iµmy) + b(G)

m exp(−iµmy)
]
um(x). (5)

The constants µm and the form of functions um(x) in mode expansion (5) are determined when solving the
eigenvalue problem. The latter arises when integrating Eq. (1) with allowance made for the quasiperiodicity
condition (2) and continuity conditions for the field and its derivative at the half-period boundary (at x = cΛ,
where the constant c characterizes the filling of the grating — see Fig. 1). The coefficients µm in expansions
(5) and β

(j)
n in (4) have the same meaning. The number of real coefficients is limited by the number of

radiation diffraction orders, and the coefficient values are related with the effective refractive index of the
corresponding mode which is excited by the incident wave in the layer of grating G and in the layers S and
M.

Once the expansions of the field in all spatial regions are obtained, the system of linear equations for the
unknown mode amplitudes a(j)

m and b
(j)
m and amplitudes of diffraction harmonics rn and tn is constructed

using the continuity conditions at the layer boundaries of the combined grating. Solving this system, we can
determine the diffraction efficiency of the grating (Rn and Tn in different orders) as well as the intensity and
phase of radiation in any point of space.

3. Interaction of Radiation with the Multilayer Mirror

The interaction of radiation with the multilayer mirror is much simpler than with the diffraction grating
and we consider it in more detail. Using the Helmholtz equation (1), we construct the expressions for the
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field in all spatial regions:

FN+1(x, y) =
[
r exp(iβN+1y) + r(i) exp(−iβN+1y)

]
e(x),

...
Fi(x, y) = [ai exp(iβiy) + bi exp(−iβiy)]e(x),

...
F0(x, y) = t exp(−iβ0y)e(x).

(6)

Here, e(x) = exp(iαx), α = knN+1 sin θ, and β2
i = k2n2

i − α2; r(i), r, and t are the amplitudes of incident,
reflected, and transmitted waves, respectively; the subscripts “0” and “N + 1” denote the lower and higher
half-space, respectively. In order to find the unknown amplitudes r and t, we invoke the continuity conditions
at the layer boundaries:

Fi(x,Σi) = Fi+1(x,Σi),
σiF

′
yi(x,Σi) = σi+1F

′
yi+1(x,Σi),

(7)

where σi = 1/µi for TE polarization and σi = 1/εi for TH polarization and the designation Σi =
∑j=i

j=0 hj
is introduced. Here, µi and εi are equal to the magnetic permeability and permittivity, respectively, in the
ith spatial region. On substituting (2) in (3) and changing the variables, we arrive at the system of linear
equations 

t = ã1D
−
1 + b̃1D

+
1 ,

−ξ0t = ã1D
−
1 − b̃1D

+
1 ,

...

ãiD
+
i + b̃iD

−
i = ãi+1D

−
i+1 + b̃i+1D

+
i+1,

ξi(ãiD+
i − b̃iD

−
i ) = ãi+1D

−
i+1 − b̃i+1D

+
i+1,

...

ãND
+
N + b̃ND

−
N = r̃ + r̃(i),

ξN (ãND+
N − b̃ND

−
N ) = r̃ − r̃(i).

(8)

The following designations are introduced here:

τ±i = exp(±iβihi/2),
ei = exp(iβihi),

D±i = τ±i /(τ
+
i + τ−i ),

ξi = (σiβi)/(σi+1βi+1),
χi = (1− ξi)/(1 + ξi), (9)
ãi = ai exp(iβiΣi−1)(τ+

i + τ−i )τ+
i ,

b̃i = bi exp(−iβiΣi−1)(τ+
i + τ−i )τ−i ,

r̃ = r exp(iβN+1ΣN ),

r̃(i) = r(i) exp(−iβN+1ΣN ),
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and it is assumed that Σ0 = 0. From Eqs. (8) the recursions follow, which allow one to express all unknown
amplitudes in terms of the incident-wave amplitude:

r̃ =
ωND

+
N +D−NχN

ωND
+
NχN +D−N

r̃(i),

b̃N =
2r̃(i)

(1 + ξN )(ωND+
NχN +D−N )

,

b̃i−1 =
ωiD

−
i +D+

i

ωi−1D
+
i−1 +D−i−1

b̃i ,

t = (ω1D
−
1 +D+

1 )b̃1 ,

(10)

where

ãi = ωib̃i, ω1 = e1χ0, ωi+1 = ei+1
ωiD

+
i +D−i χi

ωiD
+
i χi +D−i

. (11)

Thus, the problem is solved. Using expressions (9)–(11), one can determine the field amplitude in all spatial
regions and, thus, the reflectance R and transmittance T of the mirror.

4. Properties of the Simplest Combined Diffraction Grating Set in the
Scheme of Grazing Incidence

We begin the study of the combined gratings with the case of the simplest structure, which consists of
only two layers. One of them is the layer of the grating G with a rectangular ruling profile and the other is
the continuous dielectric layer S. Let the refractive indices of the grating material n(G) and continuous layer
n(S) be equal to 1.5, while those of the upper and lower half-spaces are set equal to unity. We set the ratio
between the radiation wavelength and the grating period equal to 3/2; in this case, the energy is carried
away from the grating only through the specular reflection and a single diffraction order [harmonics with the
numbers 0 and −1 in Rayleigh expansions (3)].

Let us investigate the dependence of the diffraction efficiency of the simplest combined grating set in the
scheme of grazing incidence (the angle of incidence of radiation on the grating is θ = 89◦) on the parameters
h(G) and h(S). The chart of the surface layers R−1(h(S), h(G)) is shown in Fig. 2 by the gradations of gray
color. As can be seen from the figure, this dependence takes the form of narrow ridges arranged periodically
in the plane (h(S), h(G)).

We use mode expansion (5) to analyze the dependence of the diffraction efficiency on the grating depth.
The transverse field distribution within the grating is defined by the factors exp(±iµmy). As already noted
in Sec. 2, there are several real coefficients in the set µm. We have two such coefficients, µ0 and µ−1, in
our case, which can be related to the zeroth and minus first diffraction orders. Since the field distributions
periodical in the grating depth correspond to these modes, the former must make a major contribution to
the dependence R−1(h(G)). To verify this, we enter the condition{

µmh
(G) = π/2 + πk,

k = 0, 1, . . . ,
(12)

which defines the thickness of the quarter-wave layer for the mth grating mode. The horizontal lines in Fig. 2
were passed in accordance with condition (12) for the zeroth grating mode (coefficient µ0). It is readily seen
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Fig. 2. Dependence of the diffraction efficiency of a two-layer combined grating R−1 on the depth of the grating layer
h(G) and the thickness of the S layer h(S) (see the text).

that these straight lines pass through the maxima of the R−1(h(S), h(G)) dependence. Thus, the character
of the R−1(h(G)) dependence is defined primarily by the zeroth grating mode, since its excitation by the
incident wave is most efficient at grazing incidence and requirement (12) provides the resonant conditions
of excitation. Note, however, that the effect of other grating modes can also be appreciable. For example,
for h(G) values, which provide the fulfillment of condition (12) for two modes simultaneously, the efficiency
maxima become sharper (see top part of Fig. 2).

We consider now the dependence of the diffraction efficiency on the relationship between the grating depth
h(G) and layer thickness h(S). For this purpose, we approximate the grating by the continuous dielectric layer
and analyze the interaction of the resulting two-layer mirror G̃S with the incident radiation. We use the
coefficient µ0 for the calculation of the averaged refractive index ñ(G) of the layer, which approximates the
grating, since the zeroth grating mode was shown to have the main effect on the diffraction efficiency. For
this purpose, we use the relationship

µ0 = kñ(G) cos θ̃ = k
√
ñ(G)2 − sin2 θ, (13)

where θ is the angle of incidence of radiation on the grating and θ̃ is the “angle of refraction” of the incident
wave in the approximating layer. Figure 3 shows the dependence of the refractive index of the approximating
layer ñ(G) on the filling factor of the grating c calculated for various angles of incidence θ on the grating. The
dependence ñ(G) = cn(G) + (1 − c) obtained by the arithmetical averaging of n(G) over the grating period
is shown on the same graph by a dashed line. It is readily seen that the refractive index ñ(G) differs only
slightly from this empirical assessment at large angles of incidence.

The condition of the grazing incidence of radiation allows the G̃S structure to be considered as a two-
layer Lummer–Gehrke interferometer or, in modern terms, as a two-layer dielectric waveguide with a small
leakage. The interaction of radiation with such structures is known to have a resonant behavior. The
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Fig. 3. Dependence of the averaged refractive index ñ(G) of the layer approximating the grating on the filling factor of
the grating c. The angle of incidence θ is equal to 30◦ (curves 1 and 1′), 49◦ (curves 2 and 2′), 87◦ (curves 3 and 3′),
70◦ (curve 5), and 89◦ (curve 6). Curves 1, 1′, 2, 2′, 3, and 3′ correspond to the autocollimation mode, and curve 4 is
the arithmetical mean of the refractive index over the grating period.

maximum transmission of an interferometer or the excitation of the waveguide mode in it correspond to the
occurrence of resonance. We use the results obtained in Sec. 2 to write down the resonance condition. Using
formulas (9), (10), and (11), we find the relationship between the amplitudes of the incident and transmitted
waves:

t =
2r(i)

c1c2

(
1 + β0

β3

)
− s1s2

(
β1

β2
+ β0

β3

β2

β1

)
− i
[
s1c2

(
β0

β1
+ β1

β3

)
+ c1s2

(
β0

β2
+ β2

β3

)] , (14)

where

c1 = cos(β1h
(S)), s1 = sin(β1h

(S),

c2 = cos(β2h
(G)), s2 = sin(β2h

(G)),

β1 = k
√
n(S)2 − sin2 θ, β0 = k cos θ,

β2 = k
√
ñ(G)2 − sin2 θ, β3 = k cos θ.

(15)

The phases of the incident and transmitted waves are known to coincide in the maxima of transmission of
the Lummer–Gehrke interferometer. This means that the imaginary part of the denominator of the fraction
in expression (14) is equal to zero. By this means we obtain from Eq. (14) the condition for the transverse
resonance in the G̃S structure:

tan(β1h
(S))

(
β0

β1
+
β1

β3

)
+ tan(β2h

(G))
(
β0

β2
+
β2

β3

)
= 0. (16)

It should be noted that expression (16) coincides with the dispersion equation for the dielectric two-layer
leaky-mode waveguide. This suggests the equivalence of the waveguide approach and the way of describing
multilayer structures presented in Sec. 3.

567



Journal of Russian Laser Research Volume 21, Number 6, 2000

We can now compare the resonant properties of the combined grating GS and the waveguide G̃S. For this
purpose, we encounter in Fig. 2 dispersion curves corresponding to the solutions of Eq. (16). The solid lines
represent the dispersion curves of the two-layer waveguide with the refractive index of the grating layer ñ(G)

calculated with expression (13), while the dashed lines stand for the case of ñ(G) calculated with the empirical
formula. One can readily see that the dispersion curves virtually perfectly fit the ridges of the dependence
R−1(h(S), h(G)). In this case, we can reasonably restrict ourselves to the empirical assessment for ñ(G) for the
gratings of small depth. Thus, we draw the conclusion that the diffraction efficiency of the two-layer combined
grating set in the scheme of grazing incidence will be great if the condition of double resonance is met. What
this means is, first, the condition for the excitation of the waveguide mode in the structure approximating
the combined grating (16) and, second, the resonance condition in the layer of diffraction grating (12). Note
that an increase in the refractive index of the material of the grating causes an increase in the number of real
coefficients in the set µm, i.e., an increase in the number of transverse modes excited. This complicates the
interaction behavior and hampers the use of our approach.

5. Optimization of Parameters of the Combined Grating with the Metal
Mirror

The results obtained for the simplest model of the combined grating allow one to proceed to studies of
more complex and practically significant structures. The actual diffraction gratings are manufactured on a
mechanical base (substrate). A metal or dielectric mirror (see Fig. 1) can be used to reduce the penetration of
radiation from the combined grating to the substrate and thereby provide the resonant coupling of radiation
with a grating. Let us consider a combined grating with a metal film as a mirror M. Let the grating period be
1000 nm, the radiation wavelength be 1500 nm, the angle of incidence of radiation be 89◦, n(G) = n(S) = 1.5
(quartz), n(M) = 1.4 + i15 (aluminum), and the grating have a rectangular profile with the filling factor
c = 0.5.

Figure 4 presents the dependence R−1(h(S), h(G)) for the grating with an aluminum mirror. The surface
layers R−1(h(S), h(G)) are depicted as the gradations of gray color, while the regions of high absorption of the
grating are shown by hatching. We repeat for this grating the search procedure for the best values of h(G)

and h(S) described above. We find the refractive index of the top layer of the waveguide, which approximates
the grating, with expression (13). Since the refractive index of the waveguide substrate is a complex number,
there is no way to separate the real and imaginary parts in expression (14) in an explicit form. Therefore,
the dispersion equation for the two-layer waveguide on the metal substrate takes the form

Im
{
c1c2

(
1 +

β0

β3

)
− s1s2

(
β1

β2
+
β0

β3

β2

β1

)
− i
[
s1c2

(
β0

β1
+
β1

β3

)
+ c1s2

(
β0

β2
+
β2

β3

)]}
. (17)

The solutions of this equation corresponding to excitation of the waveguide modes in the structure G̃SM are
shown in Fig. 4 by the solid curves. The grating-depth values satisfying condition (12) are marked off by
horizontal straight lines. One can see from Fig. 4 that the dispersion curves pass through the regions of high
diffraction efficiency of the grating. Thus, the waveguide properties of the combined grating are retained
when using the metal mirror.

The level of radiation absorption is a no less important criterion than the diffraction efficiency in the
determination of the optimum parameters of the metal–dielectric combined grating. As is seen from Fig. 4,
the regions of high grating absorption coincide with the resonances in the waveguide G̃SM. Figure 5 shows the
variations of the diffraction efficiency and ratio between the grating absorption and efficiency with the position
of the point (h(S), h(G)) in the dispersion curve (curve a–a in Fig. 4). The abscissa is the false coordinate ξ.
The unity corresponds to the first resonance; three designates the second one. As is illustrated in Fig. 4, the
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Fig. 4. Dependence of the diffraction efficiency R−1 of the metal–dielectric combined grating on the depth of the
grating layer h(G) and the thickness of the S layer h(S) (see the text).

grating efficiency is somewhat lower in the points of double resonance (ξ = 1, 3), but the absorption–efficiency
ratio becomes the best. In the points ξ = 0, 2, we have resonance absorption rather than the high efficiency
of grating. Thus, the method of optimization proposed may work well for the combined gratings with a
metal mirror. The condition for double resonance allows one to determine the grating parameters with high
efficiency and optimum efficiency–absorption relationship.

In closing this section, we consider the effect of the grating geometry on the width of the spectral range
in which the grating still retains its high efficiency. Figure 6 shows the dependences of the grating efficiency
on the radiation wavelength constructed for two lower grating resonances (denoted by the letters A and
B in Fig. 4). It is readily seen that for the grating with the minimum interlayer thickness (point B) the
diffraction efficiency is rather small, but the spectral range of the grating is wide. For the grating parameters
corresponding to the point A, the resonant properties of the grating are more pronounced. This causes an
increase in the diffraction efficiency and narrowing of the efficiency maximum on the wavelength scale.

6. Combined Gratings with the Multilayer Dielectric Mirror

The main drawbacks of the combined diffraction gratings with a metal mirror are poor radiation stability
and appreciable absorption resulting from the finite conductivity of the metal. In this connection, the studies
of combined gratings with a multilayer dielectric mirror are of prime practical significance. The mirror, which
consists of alternating quarter-wave layers with high and low refractive index, can be used in the simplest
case. The layer width h of such a mirror is known to be defined from the condition

h

√
n2 − sin2 ψ = λ/4, (18)
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Fig. 5. Dependence of the parameters of the metal–dielectric combined grating on the position of the point (h(S), h(G))
in the dispersion curve (see the text). Curve 1 is the diffraction efficiency; curve 2 is the ratio between the absorption
and efficiency.

Fig. 6. Dependence of the parameters of the metal–dielectric combined grating on the radiation wavelength λ. Curves
A1 and A2 are respectively the diffraction efficiency and absorption at the grating parameters corresponding to the point
A in Fig. 4. Curves B1 and B2 are the diffraction efficiency and absorption at the grating parameters corresponding to
the point B in Fig. 4.

where λ is the radiation wavelength, n is the refractive index of the layer material, and ψ is the angle of
incidence of radiation onto the mirror. Our calculations show that the concrete value of the parameter ψ
does not have a profound impact on the properties of the combined grating. Figure 7 shows the dependences
of the maximum diffraction efficiency of the combined grating on the number of mirror layers for ψ values
equal to the angle of incidence of radiation onto the grating θ = 89◦, diffraction angle ϕ = 30◦, and the
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Fig. 7. Dependence of the maximum diffraction efficiency R(max)
−1 of the combined grating with the multilayer mirror

on the number of mirror layers N . Curve 1 corresponds to ψ = θ; curve 2, ψ = ϕ; and curve 3, ψ = (θ + ϕ)/2 (see the
text).

arithmetic mean of the incidence and diffraction angles. The maximum diffraction efficiency of the grating
was determined through direct numerical optimization. The refractive indices of the grating G and interlayer
S were equal to 1.5, the refractive indices of the mirror layers were 1.5 and 2.5, and the rest of the parameters
of the problem were the same as in Sec. 5. As is seen from Fig. 7, the efficiency of the combined grating
rapidly increases with the number of layers N and reaches virtually the maximum value at N > 20. The
grating with ψ = (θ + ϕ)/2 possesses the best characteristics because in this case the mirror has the highest
reflectivity both for the incident and diffracted radiation.

Figure 8 shows the chart of the surface layers R−1(h(S), h(G)) for the combined grating with the number
of mirror layers N = 20 and parameter ψ = (θ+ϕ)/2. We approximate the corrugated layer of the combined
grating by the continuous dielectric layer and consider the properties of the multilayer mirror obtained.
Derivation of the analytical expressions for the radiation transmitted and reflected by the mirror presents
difficulties with an increase in the number of layers. Because of this, the mirror parameters were determined
analytically with recursions (10) and (11) obtained in Sec. 3. The solid curves in Fig. 8 show the ranges of
h(G) and h(S) at which the phases of the waves incident and transmitted through the mirror coincide, i.e.,
the condition of transverse resonance is met. One can see from Fig. 8 that the coincidence of the waveguide
resonances and regions of high diffraction efficiency of the grating occurs also in the case of a large number
of dielectric layers.

Figure 9 shows the dependences of the diffraction efficiencies of the combined gratings with various
numbers of mirror layers N on the wavelength of radiation. The angle of incidence of radiation on the grating
is 89◦. In this case, the diffraction efficiency of the combined grating with a multilayer mirror is as much as
100%, being several times higher than that of a conventional grating with a metal coating (the corresponding
dependence for such a grating is shown by the dashed line). The width of the peaks of diffraction efficiency
of the combined grating is lower than in the case of the metal–dielectric combined grating (see Fig. 6). It is
conceivable that one can overcome this disadvantage of the purely dielectric grating by a more sophisticated
choice of the multilayer-mirror parameters.

In the analysis of the properties of combined gratings, we restricted our consideration to the case of the
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Fig. 8. Dependence of the diffraction efficiency R−1 of the combined grating with the multilayer mirror on the
parameters h(G) and h(S) (see the text).

Fig. 9. Dependence of the diffraction efficiency R−1 of the combined grating with the multilayer mirror on the radiation
wavelength λ. Curve 1 corresponds to N = 20; curve 2, N = 10; curve 3, N = 6; and curve 4 is the dependence for the
aluminum grating of the sinusoidal profile.
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Fig. 10. Dependence of the diffraction efficiency R−1 of the combined grating with the multilayer mirror on the
parameters h(G) and h(S) when the grating is set to the autocollimation mode (see the text).

grazing incidence. From the standpoint of the waveguide approach, such illumination geometry implies a
small leakage in the waveguide. Thus, the resonant behavior of interaction of the incident radiation with the
grating and its waveguide properties are quite pronounced. However, our approach proves to be well suited
for the study of the combined gratings at any angle ϕ, including ϕ = ψ, i.e., under the condition of waveguide
propagation of radiation diffracted by the grating. The chart of the surface layers R−1(h(S), h(G)) for the
dielectric combined grating set in the autocollimation mode is shown in Fig. 10. This chart was obtained at
n = 20, ψ = θ ≈ 87◦. The wavelength was adjusted to obtain the autocollimation mode; the rest of the grating
parameters were the same as in the calculation of Fig. 8. The solid curves show the regions of excitation
of the waveguide modes of a multilayer waveguide with refractive index ñ(G) of the layer approximating the
grating, which corresponds to the coefficient µ0 in expansion (5), while the dashed curves correspond to the
coefficient µ−1. It was inferred from Fig. 10 that the waveguide behavior of the interaction of radiation with
the grating substantially enriches the surface-layer pattern R−1(h(DS), h(G)) in the case of autocollimation
reflection of light. New ranges of the grating parameters at which high diffraction efficiency of the grating
is achieved arise in this pattern. The localization of these ranges in the vicinity of the dispersion curves of
the layer structure, in which the refractive index ñ(G) of the layer approximating the grating is defined by
the coefficient µ−1, generates a need for deeper insight into their origin. Note, first of all, that the condition
of the autocollimation reflection of light corresponds to that of resonant coupling of the leaky modes in the
corrugated waveguide:

Λ =
λ

2 sin θ
and n∗ = sin θ −→ Λ =

λ

2n∗
. (19)

This means that upon the autocollimation reflection two counterpropagating waves are excited in the
corrugated waveguide. These waves interfere, producing various distributions of the optical field at the
grating. The localization of this distribution relative to the grating depends on the phase of the reflected
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wave. The calculation of this phase in the points A and B belonging to the dispersion curves in Fig. 10
showed that the phase difference for the reflected and incident waves was equal to π. The distribution of the
field amplitude um(x) relative to the grating in the points A and B was also calculated. In the point A the
field was shown to be mainly localized in the grooves of the diffraction grating, while in the point B, outside
of them. In our judgment, such a difference of the field distributions in the grating is the physical cause of the
appearance of two values of the refractive index ñ(G) of the layer, which approximates the dielectric grating.
Variations in ñ(G) with the filling factor of the grating for various autocollimation angles are presented in
Fig. 3. It is apparent that the use of the single value of ñ(G) in the case of autocollimation reflection, which
is defined by the expression

ñ(G) = cn(G) + (1− c), (20)

gives the averaged pattern of the levels of the function R−1(h(S), h(G)). This pattern will be close to the
actual one at small grating depths (h(G) < 0.3Λ), which are of practical significance.

7. Conclusions

In this paper, the results of investigation of the properties of combined diffraction gratings were presented,
based on the modal approach to the solution of the diffraction problem. The high diffraction efficiency of
grating when operating in the scheme of grazing incidence was shown to be due to the occurrence of transverse
resonances in the combined structure. In this case, the resonant properties of the combined grating were found
to be equivalent to the properties of the dielectric waveguide. The coincidence of properties of the grating and
the waveguide approximating it allows one to determine the optimum parameters of the combined grating by
the solution of the dispersion equations for the layer structures rather than from the solution of the diffraction
problem. This greatly simplifies the optimization procedure.

The waveguide behavior of the interaction of radiation with the combined grating was shown to be
manifested not only when it was set in the scheme of grazing incidence, but also in other operation modes,
e.g., in the autocollimation mode.

The use of the analogy between the properties of the grating and the waveguide exhibits the most promise
for these studies and for optimization of the gratings combined with a multilayer dielectric mirror since the
direct numerical optimization of such structures presents difficulties.
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