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Abstract

The semiclassical dynamics of a quantum nonlinear oscillator with two degrees of freedom and anharmonic-
ity of the fourth order in a periodic laser field is studied both analytically and numerically. In the absence
of external excitation and dissipation, the equations of motion for the mean values of the coordinate and
momentum operators of both degrees of freedom reduce to the equation of a one-dimensional nonlinear
pendulum. The general solution of this equation is written in terms of the Jacobian elliptic functions. As
can be expected, the energy of the free oscillator is redistributed periodically between degrees of freedom.
The periodic excitation of the nonlinear oscillator may substantially change its motion pattern. Using as
an example an oscillator with two coupled vibrational degrees of freedom, it is numerically shown that
the amount of laser photons absorbed depending on the parameter values and initial conditions may vary
with time in a rather complex manner, including chaotic oscillations. A nonlinear oscillator is capable of
manifesting bistable behavior with allowance for dissipation. The analytical condition for the origination
of bistability is found. Examples of the bistable dependence of the number of quanta in the oscillator
vibrational mode on the level of laser excitation are presented.

1. Introduction

A nonstationary quantum harmonic oscillator with two degrees of freedom is a system with a quadratic
Hamiltonian. The exact solutions of the equation of motion of such a system can be obtained in a variety
of ways [1, 2]. A Hamiltonian with higher-order terms with respect to the coordinate and momentum oper-
ators, which describes the anharmonic quantum oscillator, gives rise, in general, to nonintegrable equations
of motion. The model of the anharmonic quantum oscillator with periodic excitation and single degree of
freedom is extensively used in various domains of physics. In molecular laser physics, this model describes
in general terms the excitation of oscillations in molecules under exposure to laser radiation (see [3] and
references therein). Multiphoton absorption of infrared laser radiation by polyatomic molecules may result
in their dissociation and stimulate chemical reactions [4]. From the classical standpoint, the dynamic (deter-
ministic) chaos and diffusion in the phase space are the main mechanisms of the multiphoton absorption and
dissociation [5, 6]. The model mentioned is used in quantum optics to describe light propagation through a
Kerr-type medium, for example, in problems of fiber optics.

The nonlinear quantum oscillator with two degrees of freedom is an apparent generalization of the one-
dimensional model. The laser selectively excites the chosen vibrational mode of a molecule, generally speaking,
of the anharmonic molecule. Furthermore, this mode is coupled with the other vibrational modes of the
molecule, whose set is modeled by the second degree of freedom. The self-radiation field of the medium is
the second degree of freedom in the problem of light propagation through a resonator with a nonlinear Kerr-
type medium. For the nonlinear quantum oscillator with two degrees of freedom, solution of the equations
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of motion is possible using numerical methods. One can show examples of the special selection of the
type of nonlinearity when an analytical solution is possible. The dynamical theory of Fermi resonance was
constructed in [7]. This phenomenon consists in coincidence of the fundamental-tone frequency of one of
the molecular vibrations with that of the first overtone of another type of vibrations. The corresponding
Hamiltonian describes two harmonic oscillators, which are coupled in a nonlinear manner. The solution for
such an oscillator was obtained in [7] in terms of elliptical functions.

In this paper, we study both analytically and numerically the dynamics of the nonlinear quantum oscillator
with two degrees of freedom in a periodic external field with a Hamiltonian of the type

Ĥ = Ĥ0 + Ĥint(t). (1)

The steady-state Hamiltonian in (1)

Ĥ0 = ~ωa

(
â†â+

1
2

)
+ ~ωb

(
b̂†b̂+

1
2

)
+ ~Qb̂†b̂†b̂b̂+ ~G (b̂†â+ â†b̂) (2)

describes the system, where one degree of freedom, denoted by “a” index, is modeled by the harmonic
oscillator and the second degree of freedom “b” is modeled by the anharmonic oscillator with the nonlinearity
factor Q. The nonlinear term in the Hamiltonian (2) arises as a result of the rotary wave approximation
applied to the conventional anharmonicity operator (b̂ + b̂†)4. The coupling of the degrees of freedom is
assumed to be linear with the coefficient G and is described by the last term in the Hamiltonian Ĥ0. The
operator

Ĥint(t) = ~Ω0

(
b̂eiωlt + b̂†e−iωlt

)
(3)

describes excitation of the mode by the external laser field. The latter is assumed to be periodic, classical,
and single-mode.

Depending on the relationship between the parameters of Hamiltonians (1)–(3) and relaxation times, the
Hamiltonian and dissipative dynamics as well as the quantum and semiclassical ones should be distinguished.
In the present paper, within the framework of the unified semiclassical approach based on the Heisenberg
equations of motion for the expected values of operators, the following investigations were carried out:

1. The general analytical solution of the equations of motion of the free nonlinear oscillator with the
Hamiltonian Ĥ0 was found.

2. The system of equations was obtained and the Hamiltonian dynamics of the periodically excited non-
linear oscillator with the Hamiltonian Ĥ0 + Ĥint(t) was numerically studied.

3. The bistability of a forced nonlinear oscillator with dissipation was studied both analytically and nu-
merically.

2. General Solution of the Equations of Motion of a Free Quantum
Nonlinear Oscillator with Two Degrees of Freedom

The Hamiltonian of the free quantum nonlinear oscillator with two degrees of freedom without regard
for dissipation has the form of (2). The Heisenberg equations for operators of quantum annihilation in the
corresponding modes take the form

d

dt
â = −i (ωaâ+Gb̂),

d

dt
b̂ = −i (ωbb̂+ 2Qb̂†b̂b̂+Gâ). (4)
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The equations of motion for â† and b̂† are derived by the Hermitian conjugation of Eqs. (4). Let us pass on
from the operators to the mean values in Eqs. (4) and introduce the new variables xa, ya, xb, and yb in the
following way:

< â >= xa + iya, < b̂ >= xb + iyb. (5)

In this case, the mean value of the product of operators will be considered to be equal to the product of their
mean values. Substituting expressions (5) into Eqs. (4), we obtain

ẋa + iẏa = −i (ωaxa + iωaya +Gxb + iGyb),

ẋb + iẏb = −i (ωbxb + iωbyb + 2Q (x2
b + y2

b )(xb + iyb) +Gxa + iGya).
(6)

Equating the imaginary and real parts, we obtain the following system:

ẋa = ωaya +Gyb,

ẏa = −ωaxa −Gxb,

ẋb = ωbyb + 2Q
(
x2

b + y2
b

)
yb +Gya,

ẏb = −ωbxb − 2Q
(
x2

b + y2
b

)
xb −Gxa.

(7)

The variables can be represented in the form

xa =
√
na cosφa, ya =

√
na sinφa,

xb =
√
nb cosφb, yb =

√
nb sinφb,

(8)

and, correspondingly, < â >=
√
na e

iφa and < b̂ >=
√
nb e

iφb . After substitution of Eqs. (8) into Eqs. (7) a
little manipulation yields

ṅa = −2G
√
nanb sin (φa − φb),

ṅb = 2G
√
nanb sin (φa − φb),

φ̇a = −ωa −G
√
nb

na
cos (φa − φb),

φ̇b = −ωb − 2Qnb −G
√
na

nb
cos (φa − φb).

(9)

From the first two equations of (9) the conservation law follows:

N = na + nb. (10)

We introduce the new designations

φ = φa − φb, n′ = na − nb, na =
N + n′

2
, nb =

N − n′

2
(11)

and subtract the second equation of (9) from the first one. We obtain

ṅ′ = −2G
√
N2 − n′2 sinφ,

φ̇ = ωb − ωa +Q (N − n′) +
2Gn′ cosφ√
N2 − n′2

.
(12)

Let us introduce the new variable n = n′/N which satisfies the following properties:

−1 ≤ n ≤ 1; n = 1, na = N, nb = 0;
n = −1, na = 0, nb = N ;
n = 0, na = nb = N/2.

(13)
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Furthermore, we designate
ω = ωa − ωb, M = NQ, R = M − ω. (14)

The system of equations (12) takes the form

ṅ = −2G
√

1− n2 sinφ,

φ̇ = −ω +M (1− n) +
2Gn cosφ√

1− n2
.

(15)

Differentiating the first equation of the system and substituting expressions for ṅ and φ̇, we obtain the
following equation:

n̈ = −4G2n− 2G
√

1− n2 (R−Mn) cosφ (16)

with the initial conditions
n(0) = n0, ṅ(0) = n1, φ(0) = φ0. (17)

From the first equation of system (15) we obtain

sinφ0 = − n1

2G
√

1− n2
0

. (18)

Since the system discussed is the Hamiltonian one, its energy is a conserved quantity. However, it is
convenient to use another conserved quantity obtained from the energy by dropping the constant factors and
terms. Such a conservation law can be written as

E = ωn+
M

2
n (n− 2) + 2G

√
1− n2 cosφ. (19)

Using this conservation law, one can express cosφ in terms of n as follows:

cosφ =
E − ωn− M

2 n (n− 2)

2G
√

1− n2
. (20)

Substituting the initial conditions into conservation law (19) and taking into account that

cosφ0 = s0

√
1− sin2 φ0 = s0

√
1− n2

1

4G2 (1− n2
0)

(21)

we have

E = ωn0 +
M

2
n0 (n0 − 2) + S, S = s0G

√
4− 4n2

0 −
n2

1

G2
, (22)

where s0 = ±1 depending on the quadrant in which the phase φ0 is situated. Substitution of expression (20)
into Eq. (16) and use of relationship (22) yield the main result of Sec. 2, namely, the differential equation for
the normalized difference n of the occupation numbers in the modes

n̈ = a3n
3 + a2n

2 + a1n+ a0. (23)

The coefficients in Eq. (23) are independent of time and n and are expressed in terms of the system parameters
and initial conditions in the following way:

a3 = −M
2

2
, a2 = 3

MR

2
,

a1 = −4G2 −R2 +
M2

2
n2

0 −MRn0 +MS,

a0 = −R
2

(
Mn2

0 − 2Rn0 + 2S
)
.

(24)
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The second-order equation (23) is equivalent to the following first-order equation:

ṅ2 = an4 + bn3 + cn2 + dn+ e = −aP4(n), (25)

where

a =
a3

2
= −M

2

4
, b =

2a2

3
= MR,

c = a1 = −4G2 −R2 +
M2

2
n2

0 −MRn0 +MS,

d = 2a0 = −R
(
Mn2

0 − 2Rn0 + 2S
)
,

e = n2
1 − (an4

0 + bn3
0 + cn2

0 + dn0) =

= n2
1 + 2RSn0 − (R2 +MS − 4G2)n2

0 +MRn3
0 −

M2

4
n4

0.

(26)

Integration of (25) yields

s1√
−a

n∫
n0

dn′√
P4(n′)

=

t∫
0

dt′, (27)

where s1 = ±1 depending on the initial conditions. As is evident from the first equation of system (15), the
sign of s1 is determined by the quadrant in which φ0 is situated.

Let us denote the roots of the polynomial P4(x) by αi (i = 1, 2, 3, 4). The integral on the left-hand side
of equality (27) reduces to an elliptic integral by the substitution n′ = f(φ′)

n∫
n0

dn′√
P4(n′)

= µ

φ∫
φ0

dφ′√
1− k2 sin2 φ′

. (28)

In this case, the function f(φ′) and coefficients µ and k depend both on αi in themselves and their relationship
with n and n0. Two different cases are possible:

1. αi are real (∀i). Let us assume that α1 > α2 > α3 > α4. There are two possibilities again in this case:

(a) α4 ≤ n, n0 ≤ α3. In this situation,

φ′ = f−1
1a (n′) = arcsin

√
(α1 − α3)(n′ − α4)
(α3 − α4)(α1 − n′)

,

k1 =

√
(α3 − α4)(α1 − α2)
(α1 − α3)(α2 − α4)

, µ1 =
2√

(α1 − α3)(α2 − α4)
.

(29)

The solution for the difference of occupation numbers looks like

n(t) =
α1r1asn2(m1t+ ψ1a, k1) + α4

r1asn2(m1t+ ψ1a, k1) + 1
,

r1a =
α3 − α4

α1 − α3
, m1 = s1

√
−a
µ1

, ψ1a = F
(
f−1
1a (n0), k1

)
,

(30)

where F(θ, k) is an elliptic integral of the first kind

F(θ, k) =

θ∫
0

dψ√
1− k2 sin2 ψ

. (31)
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(b) α2 ≤ n, n0 ≤ α1. In this case,

φ′ = f−1
1b (n′) = arcsin

√
(α1 − α3)(n′ − α2)
(α1 − α2)(n′ − α3)

, (32)

and the solution has the form

n(t) =
α2 − α3r1bsn2(m1t+ ψ1b, k1)

1− r1bsn2(m1t+ ψ1b, k1)
,

r1b =
α1 − α2

α1 − α3
, ψ1b = F

(
f−1
1b (n0), k1

)
.

(33)

2. α1 > α2 are real roots and α3 = β + iγ, α4 = β − iγ, γ > 0. In this instance,

φ′ = f−1
2 (n′) = 2 arctan

√
cos θ1
cos θ2

α1 − n′
n′ − α2

,

k2 = sin
θ1 − θ2

2
, µ2 = −

√
cos θ1 cos θ2

γ
, (34)

θ1 = arctan
α1 − β
γ

, θ2 = arctan
α2 − β
γ

,

and the solution has the form

n(t) =
α1 + α2r2 + (α1 − α2r2)cn(m2t+ ψ2, k2)

1 + r2 + (1− r2)cn(m2t+ ψ2, k2)
,

r2 =
cos θ2
cos θ1

, m2 = s1

√
−a
µ2

, ψ2 = F
(
f−1
2 (n0), k2

)
.

(35)

Thus, the semiclassical equations of motion of a free quantum nonlinear oscillator with two degrees of
freedom reduce to a single differential second-degree equation in difference of the occupation numbers. The
exact analytical solution in terms of the elliptic functions is obtained for this equation. The form of the
solution depends on the system parameters and initial conditions.

The phase portraits in the plane n–φ provide a pictorial representation of the behavior of the vibrations of
a free nonlinear oscillator with two degrees of freedom. These phase portraits are shown in Fig. 1 for various
relationships between the system parameters. Let us normalize Eqs. (15) to the coefficient of mode–mode
coupling G. As a result we obtain two control parameters, namely, the dimensionless frequency mismatch
ω/G ≡ (ωa − ωb)/G and the multiplicative nonlinearity factor M/G ≡ NQ/G, where N = na + nb is the
conserved quantity of the total number of quanta.

Figure 1a shows the phase portrait in the case where the nonlinearity equals zero (M/G = 0) and the
normalized mismatch is equal to unity (ω/G = 1). Figure 1b shows the phase portrait for the stronger
mismatch (ω/G = 5) and multiplicative nonlinearity factor M/G = 2. The phase portrait in Fig. 1c relates
to the case of small mismatch (ω/G = 0.2) and weak nonlinearity (M/G = 0.5). The phase portrait in Fig. 1d
is appropriate for the following parameters: ω/G = 3.1 and M/G = 3.

3. Dynamics of Excitation of the Nonlinear Quantum Oscillator by the
Laser Field

The Hamiltonian of the quantum nonlinear oscillator with two degrees of freedom is a nonstationary
operator in the periodic external field. This operator has form (1)–(3) without regard for dissipation. To
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Fig. 1. Phase portraits in polar coordinates of the nonlinear oscillator with two degrees of freedom and without the
external force and relaxation: ω/G = 1, M/G = 0 (a); ω/G = 5, M/G = 2 (b); ω/G = 0.2, M/G = 0.5 (c); and
ω/G = 3.1, M/G = 3 (d).

exclude the time dependence in this Hamiltonian, we change to a rotating coordinate system using the
following unitary transformation:

Û = exp
(
−iωlt (â†â+ b̂†b̂+ 1)

)
. (36)

Then the rearranged Hamiltonian has the form

Ĥeff = ~ (ωa − ωl) (â†â+
1
2
) + ~ (ωb − ωl) (b̂†b̂+

1
2
)

+ ~Qb̂†b̂†b̂b̂+ ~G (b̂†â+ â†b̂) + ~Ω0 (b̂+ b̂†). (37)
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The dimensionless equations of motion for mean values (5) in the rotating coordinate system are derived
using the Hamiltonian Heff

d

dτ
xa = ∆aya + yb,

d

dτ
ya = −∆axa − xb,

d

dτ
xb = ∆byb + q (x2

b + y2
b ) yb + ya,

d

dτ
yb = −∆bxb − q (x2

b + y2
b )xb − xa − Ω,

(38)

where τ = Gt, ∆a = (ωa − ωl)/G, ∆b = (ωb − ωl)/G, q = 2Q/G, and Ω = Ω0/G. This is a Hamiltonian
system with two degrees of freedom and having the integral of motion due to the conservation of energy in the
Hamiltonian Heff . As distinct from the free nonlinear oscillator from the previous section, the total number
of quanta of the forced oscillator N(τ) ≡ na(τ) + nb(τ) = x2

a + y2
a + x2

b + y2
b is not conserved but satisfies the

following equation:
dN(τ)
dτ

= −2Ωyb. (39)

To reveal the peculiarities of the redistribution of energy of the laser field in degrees of freedom, one should
calculate not only the total number of excitations N(τ) but also the number of quanta in these modes na(τ)
and nb(τ). The accuracy of the calculation of these parameters was controlled by means of the integral of
motion of system (38)

< Heff >= ∆a (x2
a + y2

a) + ∆b (x2
b + y2

b ) +
q

2
(x2

b + y2
b )

2 + 2 (xaxb + yayb) + 2Ωxb. (40)

The evolution of the total number of excitation quanta in both modes N(τ) was calculated for the following
initial condition:

xa(0) = ya(0) = xb(0) = yb(0) = 1. (41)

Depending on the relationship between the control parameters of system (38), the signal N(τ) can be
regular or chaotic (in terms of the exponential sensitivity to the small variations of the initial conditions).
The presence or absence of Hamiltonian chaos in the system was established by calculations of the maximum
Lyapunov exponent λ. The mismatches were chosen to be ∆a = 10 and ∆b = −2.5. Then the remaining
control parameters of system (38), namely, the normalized (to G) nonlinearity factor q and normalized Rabi
frequency Ω of the laser field, were varied.

Figure 2 shows the dependence N(τ) for q = 0.5 and Ω = 1. The signal presented in Fig. 1 not only looks
regular, but its regularity is confirmed by the calculated Lyapunov exponent, λ = 0. The signal with q = 2
and Ω = 3 shown in Fig. 3 has the maximum Lyapunov exponent λ ' 1 and represents the case of a chaotic
signal. Still further chaos with λ ' 1.3 arises in the system with q = 5 and Ω = 2.5 (see Fig. 4).

4. Dissipative Dynamics: Bistability

In this section, we consider the dissipative dynamics of the forced nonlinear oscillator with the Hamiltonian
Heff of type (37). The relaxation is phenomenologically introduced to the Heisenberg equations (38), which
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Fig. 2. Regular time dependence of the total number of excitations N of the nonlinear oscillator in the laser field
(q = 0.5, Ω = 1, λ = 0).

Fig. 3. Oscillations N(τ) with moderate Hamiltonian chaos (q = 2, Ω = 3, λ ' 1).
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Fig. 4. Strong Hamiltonian chaos of the excited nonlinear oscillator with two degrees of freedom (q = 5, Ω = 2.5,
λ ' 1.3.

now have the following form:

d

dτ
xa = ∆aya + yb − γaxa,

d

dτ
ya = −∆axa − xb − γaya,

d

dτ
xb = ∆byb + q (x2

b + y2
b ) yb + ya − γbxb,

d

dτ
xb = −∆bxb − q (x2

b + y2
b )xb − xa − γbyb − Ω,

(42)

where γa,b are the relaxation rates of excitations in the corresponding degrees of freedom normalized to the
value of G. The dynamics of the photons absorbed is determined by the expression

dN(τ)
dτ

= −2 (Ωyb + γana + γbnb). (43)

Since system (42) supposedly does not possess an analytical solution, we restrict our consideration to the
study of the stationary points (time-independent solutions). For this purpose, the left-hand sides of Eqs. (42)
are set equal to zero

∆aya + yb − γaxa = 0,
∆axa + xb + γaya = 0,

∆byb + q
(
x2

b + y2
b

)
yb + ya − γbxb = 0,

∆bxb + q
(
x2

b + y2
b

)
xb + xa + γbyb + Ω = 0.

(44)

In this case, Eq. (43) takes the form

γa (x2
a + y2

a) + γb (x2
b + y2

b ) + Ωyb = 0. (45)
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Using the first two equations of system (44), we express xa and ya in terms of xb and yb:

xa = − 1
K2

(∆axb − γayb), ya = − 1
K2

(∆ayb − γaxb), K2 = ∆2
a + γ2

a. (46)

Substituting this result into equality (45), we arrive at

rnb + Ωyb = 0, r = γb + γa
1
K2

, nb = x2
b + y2

b , (47)

whence it follows that
yb = − r

Ω
nb. (48)

The remaining two equations of system (44) on substitution (46) takes the form

zyb + qnbyb − rxb = 0,
zxb + qnbxb + ryb + Ω = 0,

(49)

where z = ∆b −∆a/K
2. We obtain from the first equation

xb = − q

Ω
n2

b −
z

Ω
nb. (50)

The net result can be obtained by substituting expressions (48) and (50) either into the second equation of
system (49) or into the definition nb = x2

b + y2
b . In any case, we obtain the following equation with respect to

nb:
q2n3

b + 2qzn2
b + (z2 + r2)nb − Ω2 ≡ P3(nb) = 0. (51)

Depending on the system parameters, this equation can possess different numbers of positive roots (it is
evident that negative roots are physically meaningless). Let us consider this dependence in greater detail.

1. z ≥ 0. Resorting to Euclid’s rule, it is easy to verify that there is only one positive root in this case.

2. z < 0. In this case, according to the Euclid’s rule, the equation possesses either a single or three positive
roots. To verify the number of them, one should consider the derivative of the left-hand side of (51)

P2(nb) = P ′
3(nb) = 3q2n2

b + 4qznb + z2 + r2. (52)

There are two possibilities in this case:

(a) z2− 3r2 < 0. Under this condition, the discriminant of the equation P2(nb) = 0 becomes negative,
and consequently the function P3(nb) does not have extrema. Thus, Eq. (51) possesses one positive
root.

(b) z2 − 3r2 > 0. In this case, the function P3(nb) has minimum and maximum respectively at the
points

nmax =
−2z −

√
z2 − 3r2

3q
, nmin =

−2z +
√
z2 − 3r2

3q
. (53)

It is easy to see that nmin and nmax are positive. The last conditions for the existence of three
roots are the inequalities P3(nmax) > 0 and P3(nmin) < 0. Rearranging them, we can obtain

−(z2 − 3r2)3/2 < z3 + 9zr2 + 13.5qΩ2 < (z2 − 3r2)3/2. (54)

The inequalities z < 0 and z2 − 3r2 > 0 are the prerequisites to bistability in the response of
the anharmonic oscillator to the external laser action. Namely, given the fulfillment of these
conditions, bistability equation (51) possesses three positive roots. Thus, the dependence Ω2(nb)
has a maximum and a minimum. As a consequence, the sigmoid function nb(Ω2) has three branches.
Hence, there is a certain interval of Ω2 where the system is bistable [8].
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Fig. 5. Curves of bistable behavior of the excited dissipative nonlinear oscillator with two degrees of freedom: ∆a = 10,
∆b = −2.5, q = 2, γa = 0.1, γb = 0.2 (a) and ∆a = 10, ∆b = −2.5, q = 4, γa = 1.5, γb = 1 (b).

Figure 5 shows the bistability curves for the same values of the normalized mismatches (∆a = 10, ∆b =
−2.5) as in the previous section. Curve a refers to the case with the nonlinearity factor q = 2 and rates of
damping of excitations in the modes γa = 0.1 and γb = 0.2. Different values of these control parameters
(q = 4, γa = 1.5, γb = 1) were taken when calculating the bistability curve b. The excitation of the anharmonic
oscillator gradually increases and follows the lower branch of the sigmoid bistability curve with the square
of the dimensionless Rabi frequency of the laser field Ω2. When some critical value of Ω2

cr is reached, the
mean number of quanta nb increases abruptly and tends to increase gradually with Ω2 following the upper
branch of the curve. With the decrease in Ω2, abrupt transition from the upper to the lower branch occurs
as another critical value Ω2

c is reached. Thus, a hysteresis loop arises with low and high levels of excitation
of the anharmonic oscillator.

The bistable behavior of the system is due to both the anharmonicity in one of the degrees of freedom
Q and the coupling between the degrees of freedom G. This coupling, at certain values of parameters, will
result in the formation of portions on the sigmoid curve with the differential gain dnb/dΩ2 > 1 (i.e., the slope
of the dependence of nb on Ω2 can be greater than unity). For the quantum-optical implementation of the
model with the Kerr-type medium, this situation bears a close analogy to the well-known phenomenon of the
differential amplification of the intensity of a light beam passing through a cavity with a two-level medium as
compared to that of an incident beam [9]. For the molecular implementation of the model, such a differential
gain implies the acceleration of excitation of the vibrational mode. This phenomenon can be of interest, for
example, for the acceleration of chemical reactions with the use of laser excitation.

5. Conclusions

We have studied the dynamics of the quantum nonlinear oscillator with two degrees of freedom in the
case of anharmonicity of the simplest type. The general exact analytical solution of the Heisenberg equations
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of motion for a free oscillator has been found in the semiclassical approximation. This solution describes the
periodic energy exchange between the degrees of freedom in terms of the elliptic functions.

Upon the turning on the periodic external force, the problem becomes nonintegrable even though damping
is ignored. We have numerically shown that the oscillator vibrations can be regular or chaotic depending on
the value of the anharmonicity coefficient and strength of the external excitation. An external difference in the
regular and chaotic signals has been demonstrated in calculations of the total number of oscillator excitations
or the number of absorbed photons in the case of laser excitation. The calculation of the maximum Lyapunov
exponent serves as evidence of this difference. The mechanism of the origination of Hamiltonian chaos in a
periodically excited quantum nonlinear oscillator with two degrees of freedom is presumably of the homoclinic
nature. In other words, it is associated with the transversal intersection of the stable and unstable manifolds
of the hyperbolic singularity. However, this assumption requires analytical and numerical proof, which will
be the subject of our subsequent study.

In Sec. 4, we have shown that a periodically excited nonlinear quantum oscillator with two degrees of
freedom and relaxation exhibits the bistability effect in certain situations. The prerequisite to the origination
of bistability has been analytically obtained. The characteristic sigmoid curves of the bistable dependence
of the number of quanta in the anharmonic mode on the square of the laser Rabi frequency have been
constructed.
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