;“ Journal of Mathematical Imaging and Vision 9, 173-191 (1998)
“ (© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Computing the Kantorovich Distance for Images

THOMAS KAIJSER
Defence Research Establishment, Division of Command and Control Warfare Technology, Box 1165, S-581
11 Linkbping, Sweden

thokai@lin.toa.se

Abstract. Computing theKantorovichdistance for images is equivalent to solving a very large transportation
problem. The cost-function of this transportation problem depends on which distance-function one uses to meast
distances between pixels.

In this paper we present an algorithm, with a computational complexity of roughly 6rdéf), whereN is
equal to the number of pixels in the two images, in case the underlying distance-functionLis-inetric, an
approximation of theL2-metric or the square of the2-metrig a standard algorithm would have a computational
complexity of ordet®(N?3). The algorithm is based on the classical primal-dual algorithm.

The algorithm also gives rise toteansportation planfrom one image to the other and we also show how this
transportation plan can be used for interpolation and possibly also for compression and discrimination.

Keywords: Kantorovich distance, image metrics, Hutchinson metric, transportation problems, primal-dual
algorithm

1. Introduction computing the match distance (Kantorovich distance),
is computationally expensive, and that, in some ap-
Roughly speaking the Kantorovich distance forimages plications the added computation does not result in
is defined as the cheapest way to transport one im- any substantial improvement. But they also say that
age into the other where the cost is determined by the when other comparison methods fail, the match dis-
distance-function chosen to measure distances betweertance seems worth considering. In [18] Werman com-
pixels. putes the Kantorovich distance in some very simple
It was Kantorovich [10, 11] who in the beginning two-dimensional cases, but otherwise the only compu-
of the 1940s introduced this kind of “transportation- tations made are for either one-dimensional images or
metric” for probability measuresand who proved that ~ for images with curves as support.
the metric also can be defined as a supremum of a set A few years earlier, in 1981, Hutchinson [7] used the
of integrals. This result is a special case of what in Kantorovich distance for measuring distances between
optimization theory is called the duality theorem. what can be called self-similar probability measures
The first to use the Kantorovich distance as obtained as limiting distributions for a fairly simple
a distance-measure between two-dimensional grey-type of Markov chains induced by affine, contractive
valued images were probably Werman et al. [17] (see mappings. These limit measures often have supports
also [18]). The conclusion in their paper was that the with fractal-lookingappearence. Hutchinson used the
Kantorovich distance is applicable in many domains Kantorovich distance to prove an existence and unique-
such as co-occurance matrices, shape matching, anchess theorem of such limit measures. (This theorem of
picture half-toning. They claimthatthe match distance, Hutchinson [7], Section 4.4, Theorem 1, was proved
as they call their distance-measure, has many theo-already in the 1930s by Doeblin and Fortet in a sub-
retical advantages but also remark that,unfortunately, stantially more general setting, see [6], Theorem 3.1.)
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In the latter part of the 1980s Barnsley and co-
workers coined the terminology ‘“iterated function
systems” (IFS), and “iterated function systems with
probabilities” (IFS with probabilities) for the systems
studied by Hutchinson (see e.g., [3, 4]). To prove limit
theorems for the case one has an IFS with probabili-

The factori depends on the underlying distance-
function as well as on the similarity of the two images
and, of course, also on the implementation of the algo-
rithm. Our computer experiments have givenalues
varying from 8 to 20. In case we use the square of
the L?-metricas underlying distance-function and the

ties, Barnsley and co-workers also use the Kantorovich two images are similar then we have found thé&t ap-

distance, which they call the Hutchinson metric, but

proximately 16(=4%). Moreover, in case we have two

in none of the papers or books of Barnsley and/or co- very dense but non overlapping binary images, with
workers is the Kantorovich distance actually computed. equal total grey value, (the assignment problem), then
In 1989 Jacquin published his thesis [8] (see also the factori has been as small ag84'°).
[9]) in which he describes a new technique to compress  In a recent paper [2], Atkinson and Vaidya have
images, nowadays often called fractal coding or block- proved that there exists an algorithm which has a com-
based fractal coding. In his thesis Jacquin also refers to putational complexity of orde®(N?log(N)®) in case
the Kantorovich distance (the Hutchinson metric), but one uses the.!-metric as distance-function and of
writes that “the main problem with this metric is thatit orderO(N2°log(N)) in case one uses the-metricas
is extremely difficult to compute, theoretically as well distance-function. In their paper Atkinson and Vaidya
as numerically” (see [8], Part I, p. 12). do not give any explicit computation times for their al-
In probability theory the Kantorovich distance has gorithm applied to large transportation problems, and
often been called the Vaserstein metric after the pa- therefore it is not so easy to compare the efficiency of
per [16] by Vaserstein. In [16] Vaserstein defines a their algorithm with the efficiency of ours. Nor did they
transportation plarbetween two probability measures apply their algorithm to images.
which “puts” as much mass as possible on the diag- The underlying method we use to compute the Kan-
onal of the product space of the state spaces of thetorovich distance is a well-known algorithm called the
two given probability spaces. A transportation plan primal-dual algorithm We have essentially followed
between probability measures (stochastic variables, the presentation of this algorithm as it is given in the
stochastic processes) is howadays often called a cou-book [13] chapter 12, by Murty. The primal-dual al-
pling (see, e.g., Lindwall [12]). Important literature gorithm is also described in the books [5] and [1].
on the Kantorovich distance in probability theory are  The main reason we have managed to decrease the
[14] and [15] by Rachev, where also many references computational complexity of the primal-dual algorithm
to other literature can be found. is that we are able to compute the so-called admissible
As already observed by Werman et al. [17], the main arcs in an efficient way.
drawback with using the Kantorovich distance is its ~ The plan of this paper is as follows. In the next
large computation time. In [17], the authors point out section we introduce some concepts, in particular, the
that the use of standard algorithms for transportation notion of atransportation imageand in Section 3 we
problems would imply a computational complexity of give the definition of the Kantorovich distance between

orderO(N?®) whereN denotes the number of pixels in
the two images.

The main purpose of this paper is to present an algo-

rithm for computing the Kantorovich distance function
which is substantially fastethan standard algorithms

images in terms of transportation images. We first give
the definition for images with equal total grey value,
and then a general definition.

In Section 4 we formulate the Kantorovich distance
as a linear programming problem, and in Section 5 we

in case the underlying distance-function between pixels presentthe dual formulation of this linear programming

is the L1-metric the L>°-metric, linear combinations
of the L -metricand theL *-metric, or thesquareof
the L?-metric

At present our computer programme is such that if

problem.

In Section 6 we present some computational data
when computing the Kantorovich distance between
the well-known Lenna image (subsampled to an im-

we subsample an image, thereby obtaining an image age of size 256« 256) and a fractal coded Lenna im-

whose side length is/2 of the original image, then the
computation time decreases by a factgp, §ay, and in
none of the examples we have triedhas been larger
than 20~ 4?2,

age, when the underlying distance-function is either the
L1-metric or the square of thé&2-metric The com-
putation times on a SUN4/690 machine (SuperStark)
are approximatelyl h for these examples. We also
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show two graphs representigtimal transportation
images

In Section 7 we discuss the possibility of using trans-
portation images focoding and in Section 8 we show

175

pairs(i, j). By an imageP with supportK we mean
aninteger-valuedhonnegative functiop(i, j) defined
onk.

Now given atransportation image, we can define two

how a transportation image between two images can images—aransmitting imageP; say, and aeceiving

be used fointerpolation

In Section 9 we introduce another concept associ-
ated with a transportation image, namely digtortion
image The distortion image is introduced in order to
detect imageliscrepancies

In Section 10 we make a short digress and define
the Kantorovich distance for probability measures, and
present the duality theorem in this situation.

In Sections 11 to 21 we describe the algorithm which
we have used to compute the Kantorovich distance. In
Section 11 we give a general outline of the primal-
dual algorithm for the general balanced transportation

problem, and then in Sections 12 to 21 we present the

details. It is in Sections 19 and 20 we present the
crucial ideaswhich have made it possible to compute
the Kantorovich distance for images of size 26856

in, so to speak, finite time.

In Section 22 we present an image of a set of opti-
mal dual variables, and in Section 23 we conclude the
scientific part of our paper by formulating a complex
but challenging problem related to the work described
in the paper. We end our paper with acknowledgments.

2. The Transportation Image
We shall start the definition of the Kantorovich distance
with a notion we have chosen to call a transportation
image.
A transportation images a set
T = {(in, jn, Xn, Yo, M), 1 <n < N}

of finitely many five-dimensional vectors. If nothing

elseis said, we assume that the last elementin each five-

vector of a transportation imagessictly positive and
we also assume that there arevertwo vectors in a
transportation image for which the first four elements
are equal. We call a generic vector in a transportation
image, dransportation vectarwe call the first pair of
elements thé&ransmitting pixelwe call the second pair
of elements theeceiving pixelwe call the fifth element
themasselement, and we call a paiti, j), (X, y)) of
a transmitting pixeli, j) and a receiving pixe{x, y)
anarc.

Before we proceed we need to specify what we mean
by an image. LeK be a finite set of integer-valued

image P, say, as follows: First, l6€; denote the union
of all transmitting pixels in the transportation image
and similarly letK, denote the union of all receiving
pixels. Next, for(i, j) € Ky, let A(i, j) denote the set
of indices in the sek(in, jn, Xn, Yn, Mp), 1 < n < N}

for which the transmitting pixel is equal 1@, j) that

is (in, jn) = (i, j). Similarly, for (x, y) € K,, define
B(X, y) as the set of indices in the set of transportation
vectors for which the receiving pixel is equalta ).

We now define théransmitting imageoy

}.

From the wayP; and P, are defined it is clear that
the total grey value of the transmitting image and the
receiving image are the same namely equal to the sum
SN m,. If atransformation imag& hasP as trans-
mitting image andQ as receiving image then we say
thatT is from P to Q.

D MG, )) eKa

neAd. )

P = {Pl(i» D=
and similarly we define theeceiving imagéy

Y M (X, y) €Ky

neB(x,y)

P = {Pz(X, y) =

3. The Definition

LetP={p(, j). (i, ) € Ki}andQ={q(x, y), (X, y)

€ K5} be two given images defined on two skisand

K, respectively.K; andK; may be the same, overlap
or be disjoint.

In order to define the Kantorovich distance we need
to specify adistance-function d, j, x, y) from an ar-
bitrary pixel(, j) in the supporK of the imageP to

an arbitrary pixelx, y) in the supporK, of the image

Q. This distance-function need not be a metric, but
such a choice has an advantage in a sense which we
will make precise later.

We shall first give the definition of the Kantorovich
distance in case the two imagPsand Q haveequal
total grey value Let ®(P, Q) denote the set of all
transportation images fror® to Q. Since we have
specified a distance-function we can now definetist
c(T) for any transportation imag€é = {(in, jn, Xn,
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Yn, My), 1 < n < N} from P to Q, simply as

N
C(T) = Zd(inv jn, Xns yn) - Mp.
n=1

Finally, we define the Kantorovich distandg (P, Q)
between P and Q—with respect to the distance-
functiond(i, j, x, y)—by

dk (P, Q) =inf{c(T), T € ©(P, Q)}.

An optimal transportation image Trom P to Q satis-
fiesc(T) = dk (P, Q).

Now suppose that we have two imagesandQ for
which thetotal grey values are differentet L(P) =
2k, P(@, j) denote the total grey value &, and let
L(Q) = ZKZ g(x, y) denote the total grey value of
Q. Let G(P, Q) denote the largest common divisor
of L(P) andL(Q), defineL(P) = L(P)/G(P, Q)
andL(Q) = L(Q)/G(P, Q). By using the numbers
L(P) andL (Q) we can now define two new images
andQ, with equal total grey value, by multiplying each
pixel value of the imagé by L(Q), and multiplying
each pixel value 0@ by L (P). We then simply define
dk (P, Q) by

dy (P, Q) = dk (P, Q)/(L(P)L(Q)).

In the rest of the paper we shall always assume that

we have two images with equal total grey value.

We call any function if” (P, Q) atransportation plan
from P to Q. A transportation plan for which we have
equality in both (1) and (2) will be called @mplete
transportation plarand we denote the set of all com-
plete transportation plans by(P, Q).

It is important to notice that to every transporta-
tion planmdi, j, x, y) € I'(P, Q) there corresponds
a unique transportation image

T = {(ina jm Xﬂa yn’ mn), 1 S n S N}
defined simply by
T ={0, j,x,y,m@, j, x, ¥)), m(, j, X, y) > 0}.
Note, however, thal has transmitting imag® and
receiving image only if the given transportation plan
is complete.
Conversely, if we are given a transportation image

T = {(in, Jn, Xn, ¥n, Mn), 1< n < N}

between two imageB andQ, then we can find aunique
functionm(, j, x, y) € I'(P, Q) simply by defining

M(in, jn, Xn, Yn) =My, 1<n<N
and defining

md@, j,x,y) =0

elsewhere. Recall that in our definition of a transporta-
tion image we assumed that there do not exist two or
more transportation vectors with the same values on the
Another way, and perhaps a more Straightforward first four elements and therefore the function defined
way to define the Kantorovich distance is as fol- above is well-defined.

lows. Let againP = {p(, j), (i, ) € K} andQ= Now let as abovel(i, j, X, y) denote a distance-
{q(x’ y),(x’ y) c KZ} be two given images defined on function between piXelS in the SKtl and the Sng.

two setsK; andK, respectively, and assume that the The Kantorovich distancey (P, Q) can then also be

4. A Linear Programming Formulation

images havequal total grey value defined by
LetI'(P, Q) denote the set of all nonnegative map-
. L "
pingsm(i, j, X, y) from K; x K, — R* such that de (P, Q) = inf{ Z ma. i. x. y) - dd. j. x. ).
i, j,x,y

Yo mh,j.x v < pl. i), VA ) ek (1)

(x,y)eKz

m(.7.7'7.) EA(P7 Q)} (3)

and

Since, we require that the functiond, j, X, y) is
nonnegative and the constraints defining the functions
in the setA (P, Q) are linear relations we see that the

> omG Xy Ay, YY) € Ko (2)
(i,))eKs
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definition of the Kantorovich distance is equivalent That the primal and dual formulations of the Kan-

to the formulation of dinear programming problem  torovich distance are equivalent is well known from

called thebalanced transportation problemwe call optimization theory. (For a fairly short proof of this re-

(3) the primal formulation of the Kantorovich distance. sult see, e.g., [1], Appendix C.6, where a proof based
The reason that one cannot apply standard algo- on the simplex method is given. Another proof based

rithms directly for computing the Kantorovich distance on graph theory is also given in [1], Section 9.4. See

is that the size of the transportation problem we obtain also the paper [10] by Kantorovich.)

is quite large. If, for example, we consider two images  Before concluding this section let us also mention

each of size 256« 256, then the number of sources thatincasé&; = K, = K andthe underlying distance-

and the number of sinks in our transportation prob- function is a metric, then the dual formulation can also

lem are 65536, the number of unknowns (variables) be formulated as follows. First, l&, denote all sets

is 282 = 4299801236 and the number of constraints {«(i, j), (i, j) € K} such thata(, j) — a(X,y) <

is 2 x 65536 = 131072. The standard estimate for d(i, j, X, y), V(i, j), (X, y) € K. Then

how long time a standard algorithm will take to solve

an integer-valued transportation problem with essen- dk (P, Q)

tially equal numbers of sources and sinks is that the p{

=su

time is proportional toN3 whereN is the number of Z a, J) - (pa, ) —qd, ),

sources. This implies that in case we have images of (,)eK
size 256x 256 then the number of operations would o
be roughly of order & 10, {ali, )} € Yor. (5)

That the definitions (4) and (5) are equivalent, in
case the distance-function is a metric, follows from the
duality theorem (see Theorem 10.1) and the fact that
in cased(, j, x, y) is a metric then, because of the
triangle inequality, the Kantorovich distance between
P andQ is equal to the Kantorovich distance between
P* = {p*(@, )} andQ* = {g*(i, ])} defined by

5. The Dual Formulation

Since the computation of the Kantorovich distance is
equivalent to solving a transportation problem, and
the method we shall use is based on the so-called
primal-dual algorithm, we shall now present tthgal
formulation—the dual version—of the linear program-
ming problem defined by (3).

Thus, let{a(, j), (i, j) € Ky} and{B(x, y), (X, y)
€ K3} denote variables associated to the pixels in the and
setsK; and Ky, respectively. We call these variables
thedual variables As before, letd(i, j, X, y) denote
a distance-function from pixels iK1 to pixels inK,
and let¥ denote all sets of dual variables satisfying

g @, j) = maxq(, j) — pda, j), 0. (7)

We shall not begin to describe the algorithm we
have used to compute the Kantorovich distance until
dd, j,x,y) —a(, j) =B, y) =0, Section 11. Before that we shall present two exam-

(i, j) € Ki, (X, y) € Ka. ples and indicate some possibilities how to utilize an
optimal transportation image.

The dual formulation of the Kantorovich distance is
as follows: 6. Examples

de (P, Q) We let P denote the well-known image of Lenna of
size 256x 256 (see Fig. 1) and we 1€ be an approx-
=su ali.i)-pdi. i X. V) - (X imation of the Lenna image (also of size 256256
%: (- D-pd. Dt ;ﬂ( YAy, obtained from a block-based fractal coder (see Fig. 2).
(We changed the grey values by one unit in approxi-
{a(i, ), X, y)} e ¥i. 4) mately 100 pixels, so that the two images would have
the same total grey value).
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Figure L The original Lenna image subsampled to 25856. Figure 3 The positive difference between the images in Figs. 1
and 2 (in that order).

Figure2 A 256x 256 approximation of the Lennaimage obtained
by using a fractal block coder based on triangle blocks. Figure 4 The positive difference between the images in Figs. 2
and 1 (in that order).

As underlying distance-function in our first example
we have used the!-metricdefined by 1< j <256 defined by

dd.J.x.y) =T =x+11 =yl RG, ) = min(PG. ). QG )

Since we have chosen a metric as underlying distance-
function, we can start our computation by first sub- from both P and Q, thereby obtaining two new images
tracting the common parR={R(i, j),1<i <256, P* and Q* defined by (6) and (7) (see Figs. 3 and 4).
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Figure 5 The arcs of positive length of an optimal transportation Figure 6 The arcs of positive length of an optimal transportation

image from an original Lenna image of size 26@56 to an approx- image from an original Lenna image of size 256256 to an ap-
imation, whend(i, j, x, y) = |i — x|+ |j — y| is used as distance- proximation, wherd(i, j, x,y) = (i —x)? + (j — y)? is used as
function. distance-function.

From the images of Figs. 3 and 4 we note that the distance-function
coded image did not succeed to approximate neither

the edges of the mirror nor the feather of the hat of the di, j, x,y) = (i —x)%+(j —y)2
Lenna image very well.
In our example the total grey value Bff and Q* is In this case we cannot start our computation by sub-

equal to 232161, the number of nonzero pixel values in tracting the common parR defined above. In our
P* and Q* are 29990 and 30679, respectively, which case the common total grey value Bf and Q is
gives a total of 60669 pixels. The computation time 6884218. Our computation leads to a solution
to compute the Kantorovich distance on a Sun4/690 consisting of 129108 arcs of which 69650 have pos-
machine, using an implementation of the algorithm by itive length. For this choice of images it turns out that
Tech. Lic Niclas Wadstrner, is about 1 h, and the the computation time is only slightly longer when we
computed value is equal to 1526233. In the Fig. 5 use the square of the Euclidean metric than when we
we show the positive arcs of an optimal transportation use thel.*-metric In Fig. 6 we show the positive arcs
image fromP to Q without cycles. (A cycle is defined  of the solution.
in Section 13 and cycles are dicussed in Section 17). If we compare the solutions obtained when we use
The number of arcs in this optimal transportationimage the L'-metricand the square of the Euclidean metric
is 57014. we find what one would expect, namely that in the

Just as is the case with the images depicted in Figs. 3second solution there are fewer longer arcs and more
and 4, also the image in Fig. 5 can be regarded as aarcs along the diagonals. These facts canin part be seen
kind of difference image, and it should be possible to from the graphs of Figs. 5 and 6.
detect some of the features from the Lenna image, for
example, the side of the mirror, and the sidesof Lenna’s 7. Using Transportation Images for Coding
hat.

In our next example we use the same imades In this Section we shall present an idea how to use a
and Q as above, but we now choose as underlying transportation image for improving an image coder.
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Suppose first that the underlying distance-function
is a metric. Let

i

|

T = {(in, jn, Xn, ¥n, Mn), 1 <n < N}

be anoptimal transportation image fronP to Q,
with no cycles(see Section 13), and such that the
arcs are ordered in such a way thanif> k then
d(in, jns Xn, Yn) - My < d(ix, jk. X Yk) - Mk. Define
N(p)forO< p<1by

M
N(p) = min{M, > " din. jn: Xn. Yo) - My

n=1

Now let us choose® = P* and Q = Q* where

P* and Q* are defined as in Section 6 and [€t ! . . )
Figure 7. The arcs of a truncation of an optimal transportation

deno_te the optlmal_ transportion _'mage pres_ented n image between the images of Figs. 1 and 2, “carrying” 50% of the
Section 6 and obtained when using th&metric as distance.

underlying distance-function. It then turns out that
N(0.5) = 4337 N(0.75 = 12598 N(0.9) = 33875

N(0.95) = 45081,N(0.99) = 54696 andN(1.0) = tion imageT (0.5) whenT is the solution obtained in
57014. SinceN(0.5) = 4337 andN(1.0) = 57014 it 0 yrevious section using the-metricas underlying
follows that for this example, half of the distance be- distance-function. This part of the original transporta-

tween the imageB andQ of Section 61s, soto speak, o image thus contains most of the longer arcs of the
“carried” by less than 8% of the arcs. Therefore, if we transportation image

truncate th(_a transformation image Qt thc_e nunidép) In Fig. 8 we have depicted the image®f (p) when
ar_1d use this tru_ncatgd trans_formatlon image together p = 0.5. This image (as well as the imag¥(0.5))
with the approximation obtained by the block-based
fractal coded image of Lenna (see Fig. 2) we can con-
struct a new approximating imag@”(p) say, whose
Kantorovich distance to the original Lenna image is
(1 — p) timesdk (P, Q) as follows.
First, for 0< p < 1 define

In Fig. 7 we have depicted the arcs of the transporta-

T(p) = {(if‘h jna Xn» Yn» mn), 1 Snf N(p)}v

let P(p) and Q(p) be, respectively, the transmitting
image and the receiving imagetp), and then define

Q"(p) = Q—Q(p) + P(p).

Itis easy to see that the distance betwPeand Q" (p)
is, in fact,(1 — p) timesdk (P, Q).

Similarly, using the imag® as “starting image” we
can define an approximating imagé(p) say, by

P"(p) =P —P(p)+ Q(p

and this time.it is easy to see that the distance betweengigyre 8 The image is obtained by “adding” a “50% truncated”
P andP”(p) is p timesdk (P, Q). optimal transportation image to the image in Fig. 2.
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has the same Kantorovich distance to both the orig- 9. Using the Transportation Images for
inal Lenna image and the fractal coded approxima- Identifying Discrepancies Between Images
tion.

Although the image of Fig. 8 looks more similar to  In this section we shall introduce another functional of
the original Lenna image then the image of Fig. 2, the the transportation image which we call ttistortion
improvement is not as good as one would have wished. matrix. The idea behind the distortion matrix is that
The reason for this is that most of the longer arcs of it will be useful when looking for those areas in the
the transportation image are allocated to the edges oftwo images where the discrepancy between the two
the mirror and to the edges of the hat in the mirror, imagesissoto speakthe largest. We obtain, in fact, two
and not so many are located to the face of Lenna or to matrices, one for the pixels in the transmitting image
the feather of the hat of Lenna, where much of the dis- and one for the pixels in the receiving image.
crepancies between the original Lenna image and the LetT = {(in, jn, Xn, ¥n, Mn), 1 <n < N} beatrans-
fractal coded Lenna image is, as observed by a humanportation image with transmitting imageand receiv-

eye. ing image Q. The distortion matrixA = {a(i, j)}
say, of the transmitting image is simply defined as
follows:

8. Using Transportation Images
for Interpolation o o

A= ia(la J) = Zd(lﬂa Ins Xn, Yn) - My

There are several ways in which one can use transporta- A

tion images for interpolation. One way is simply to use

the imagesQ”(p) and P”(p) defined in the previous

Section.

where the sum is taken over all vectors in the trans-
portation image which hag, j) as transmitting pixel,

Another way is as follows. Let & r < 1, let and_d(-, ne)as aswtablle.d|s.tance-f.unct|_on. The dis-
tortion matrix of the receiving imag® is defined anal-
o ogously.
T =A{(in, jn, Xn, Yn. M), 1<n <N} In Fig. 9 we have depicted the distortion matrix cor-

responding to the receiving imadgg* of the optimal

be a transportation image between the “subtracted” im- transportation image between the images in Figs. 3 and
agesP* and Q* defined by (6) and (7), and define the
transportation image

T = {(if Jf X vho ). =0 =N}

byirﬁ = ina Jrr1 = jl"l! er1 = in + L(r - (Xn — in))a yrr1 =

in + L0 - (Yo — jn)), @andml, = [(r - my,), where the
operation| means taking the integer part of a number.
Let P" andQ' denote the transmitting and the receiving
image of the transportation imagé. Finally, define

Q*f by
Q*r: P—Pr+Qr

Clearly, ag goes from 0to 1, the imag@*" goes from
the imageP to the imageQ.

If insteadT is a transportation image between the
original imagesP and Q and we redefingd" slightly,

namgly by definingm, = M, then we can use the  Figurea A distortion matrix corresponding to the image in Fig. 4,
receiving image off" as an interpolating image. normalized so that the largest value is 255.
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4 presented in Section. In order to be able to presentthe Duality theorems similar to Theorem 10.1 can also
distortion matrix as an image we have normalized the be proved if we in the definition of\s(P;, P,) replace
matrix by first multiplying the distortion matrix by 255  the integrand(x, y) by a somewhat more general func-
and then dividing by the largest value of the distortion tion, for exampleg(x, y)?, with p > 0. Moreover, if
matrix. for p > 1 we define
When we compare this image with the imaQé of

Fig. 4, we notice that we discover some new discrepan- 1/p
cies. For example, we notice that the inner edge of the Cso (Py, Py) =inf{ [/ 8(x, y)PP(dx, dy)] ,
mirror is more clearly seen, we see more of the upper Uxu
part of the structure of the wall of the left-hand side Peco(P, Pz)}
of the picture, etc. On the other hand, the feather of
Lenna’s hat cannot be seen in the image.

then it can be shown th&;» (Py, P) is also a metric.
10. The Kantorovich Distance for Measures See [14] and references therein.

Inthis section we shall for sake of completeness present
the definition of the Kantorovich distance for positive 11. The Primal-Dual Algorithm
measures. We shall follow Rachev [14] closely. for the Transportation Problem:
Let (U, §) be a separable metric space, Btand A General Outline
P,, be two Borel probability measures @¢u, §) and
define® (P4, P,) as the set of all probability measures In this and subsequent sections we shall describe the

P on U x U with fixed marginalsP; (-) = P(- x U) algorithm which we have used to compute the Kan-
andP, (-)=P(U x -). Define torovich distance. We shall use the so-called primal-
dual algorithm and will essentially follow the presen-
As(P1 Po) tation in Murty [13], chapter 12.
—inf {/ 8(x, Y)P(dx, dy), P € ©(Py, Pz)}. In order to simplify notations we shall reformulate
UxU our problem in such a way that our problem will be
By using the fact thai(x, y) satisfies the triangle in- ~ formulated as a general transportation problem.
equality itis simple to show tha; (P, P2) is a metric. LetS, 1 <n < N denotesourcesRy, 1< m=M
Next, let denotesinks (destinations)a, denote the amount of

goods at the sourc&,,1 < n < N, by denote the
Lip(U) = {f:U > R: [f(X) — f(y)] < (X, )} demand of goods at the sink;,,1 < m < M,
cin,m), 1<n<N, 1<m<M denote the cost to
and define transport one unit of goods from the souiggto the
sink Ry, and finally, x(n, m) denote the amount of
/ f (x) PL(dX) goods sent from the sour& to the sinkRy,.
U

Bs(P1, P2) :sup{
The primal version of the balanced transportation

_/ FOPyAx)]. f e Lip(U)}. problem is as follows:
’ N M
That B;(Py, P,) also is a metric is also easy to prove. Minimizez Z c(n, m) - x(n, m) (8)
(It is this metric that many people working with frac- n=1 m—1
tals and iterated function systems, nowadays call the
Hutchinson metric.) whenx(n,m)>0,1<n<N, 1<m<M,
The following duality theorem goes back to Kan-

torovich. M
. . Y x(nj)=am, 1=n<N, (9

Theorem 10.1 (Kantorovich [11]). If U is compact =1

then N
Zx(i, m=bm), 1l<m<M, (10)

As(Pr, P2) = Bs(Py, Py). i=1
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and

N M
Z a(n) = Z b(m).
n=1 m=1

Usually, one also assumes that for<ln < N and
1<m=<M,
an) >0, b(m) >0, ch,m >D0.

If we apply this general formulation to the prob-
lem of computing the Kantorovich distance (see (3))
then the source$,,1 < n < N, correspond to
the pixels(i, j) € Kji, the sincsRy,1 < m <
M, correspond to the pixel&, y) € Kj, the num-
bersa,,1 < n < N, correspond to the pixel val-
uesp(i, j), (, j) € Ky, the numberd,, 1<m=< M,
correspond to the pixel values(x, y), (X, y) € Kz,
the cost matrix{c(n,m),1<n<N,1<m< M} cor-
responds to the distance-functial(i, j, x, y) and
the variablesx(n, m) correspond to the variables
m@, j, X, y).

To each sourcé&, and each sinkR, we introduce
dual variablesx(n) andg(m). If

cn,m —a(m—pmM=0, 1=<n=N,1=m=M

(11)

then we call the set of dual variablesasible We call
a pair (n, m) of indices for whichn is an index of a
sourceS, andm is an index of a sinkRy, anarc. An

arc(n, m) such that

c(n,m) —a(n) —B(m) =0

is called anadmissible arc Otherwise, the arc is
callednonadmissible By aflow we mean any matrix
{X(n,m),1 < n < N,1 < m < M} of nonnegative
elements suchthat™_ x(n,m) <a(),1<n <N,
andzr’lex(n, m) < b(m), 1 <m < M. We say that
x(n, m) is the flow of the ar¢n, m). A flow for which
(9) and (10) hold is called apptimal flow

The dual version of the transportation problem is as
follows:

N

M
maximize(Z a(n)-an) + Z B(m) - b(m)) (12)
m=1

n=1

when the set of dual variablesis feasible (satisfies (11)).
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That the solution to the primal version is larger than
or equal to the solution of the dual version is easily
proved by replacingz(n, m) by (c(n,m) — a(n) —
B(mM)) + a(n) + g(m) in (8) and then using (9) and
(10). In order to prove equality it suffices to have an
algorithm which generates both an optimal flow and a
feasible set of dual variables such that the flow is zero
on any nonadmissible arc. Such an algorithm is the
primal-dual algorithm.

Before we can describe the basic steps in the
primal-dual algorithm we need a few more con-
cepts. Given a feasible dual solution we call a flow
anadmissibldlow if the flow is zero on any nonadmis-
sible arc. Furthermore, W denotes a set of arcs, we
say that the flowives onW, if for any arc not belong-
ing to ¥, the flow is zero along that arc. We call a flow
{x(n,m),1<n<N,1<m< M} which lives on a set
¥ amaximal flowif any other flow{y(n,m),1<n <
N, 1 < m < M} which lives on¥ is such that

N

M M
YD oynm <y
m=1

m=1n=1
The primal-dual algorithm consists essentially of the
following steps:

N
x(n, m).
1

(0) Find an initial set of dual variables, determine the
corresponding initial set of admissible arcs, and
find an initial admissible flow.

(1) Checkwhether the present admissible flow is max-
imal on the present set of admissible arcs. If itis
go to (3). Ifitis not go to (2).

(2) Update the admissible flow. Then go to (1).

(3) Check whether the present maximal flow is opti-
mal. If it is go to (6). If it is not go to (4).

(4) Update the set of dual variables.

(5) Determine the new set of admissible arcs. Then go
to (2).

(6) Ready.

12. The Details of the Primal-Dual Algorithm;
The Initialization

We are now ready to go through the algorithm in detail.
To obtain an initial set of feasible dual variables we

do exactly as is described in [13], chapter 12. Thus,

forl<n<Nand1l<m=< M, define

a(n) = min{c(n, j), 1< j < M},
B(m) = min{c(i,m) —a(i),1<i < N}L
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From the definition ofg(m) it is clear thata(n) +
B(M) < a(n) + c(n, m) — a(n) = c(n, m) and hence
(11) is satisfied.

We assume that we have just obtained a new set of
admissible arcs. Let A denote the set of all deficient
sources, leB denote the set of all deficient sinks, and

We shall at present not discuss the problem of how C denote albdmissiblearcs(i, j) such that the source
to determine the set of admissible arcs, but postpone § € A and the sinkR; € B.

that until later (Sections 19 and 20).

The simplest choice when defining an initial admis-
sible flow is to definexp(n, m) = 0,vn, m. This is
what is done in [13] and this is what we also do.

13. Preperations for the Labeling Routine
and the Flow-Change Routine

In this section we shall introduce some further useful
concepts.

A path starting at the sourc&§ is a sequence
{(n,,m), 1 <1 < L} of admissible arcs, such that
(1) np=i, (2) if L>1 thenmy_;=my andny
nyi1, 1 <1 < L/2 (3)noarc occurs twice, and (4)

The trivial flow-increasing step consists simply of
increasing the flow, as much as possible, along arcs in
C as long as there are any arcs leftGn Each time
we pick an arc inC and increase the flow along that
arc, that arc is excluded from the €&tsince either the
source or the sink, or both become full. But also other
arcs may be excluded after we have increased the flow
along an argi, j) since either the sourc® or the sink
R; can be endpoints for other arcs belongingto

There are many ways one can choose the order for
selecting arcs i€. We shall, however, not discuss this
issue.

Let us also observe that if we assume that the admis-
sible flow we started with was maximal on the previous

each source and each sink occurs in at most two arcs.Set of admissible arcs and also a forest, then the updated

A path starting at a sinR; is defined analogously. The
lengthof the path is equal to the number of arcs in the
path.

We say that a patf(n;, m), 1<I <L} goes from
the sources to the sinkR; if it starts at§, the number
of arcsis odd anch, = j, and we say that a path goes
from the sources to the source; if it starts atS, the
number of arcs is even amd = j.

We say that a sourae is deficient(with respect to
the given flow) ifzmzl x(n, m) < a(n). Similarly, we
call a sinkRy, deficientif >N, x(n,m) < b(m). A
source or a sink which is not deficient we dalll.

An augmenting patlbetween a deficient sourc®
and a deficient sinlR; is a path{(n;, m;), 1<l <L}
from § to R; such thatifL > 1 then

X(Ng,my) >0, 1<Il<L/2 (13)

We end this section introducing two more well-
known notions. Let agaifx(n,m),1 <n < N,1<
m < M} be an admissible flow, and lgtn;, m)), 1 <
| < L} be a path from a sourc§ which returns to
S. (Thusn; = i,n. = i andL is even.) If also
x(n, m) >0, 1 <I| < L then we say that the path is
acycle A flow without cycles will be called #orest

14. A Trivial Flow-Increasing Step

At point (2) of the general discription of the algorithm

described at the end of Section 11, whatone hastodois
to increase the admissible flow. In this section we shall

describe an almost trivial way to increase the flow.

flow will also be a forest. The reason for this is that if
the new flow value on an arg, j) would give rise to

a cycle, then the flow we started from could not have
been maximal.

At this point we also want to mention that we use
the method described above the first time we update
the zero flow which we used as our initial flow. It is
obvious that if we update the zero flow in this way the
updated flow will be a forest.

15. The Flow-Change Routine

In the previous section we increased the flow on aug-
menting paths of length 1. In this section we shall show
how to increase the flow on augmenting paths of length
at least 3.

Thus suppose that we have found an augmenting
path{(n;,m), 1 <1 < L} from the source§ to the
sink R; of lengthL > 3. Defined, by

61 = min{x(nz, my), 1 <I < L/2},

a quantity which must be positive because we have an
augmenting path (see conditon (13)). We next define
6 by

M

> (i, m),

m=1

0= min{a(i) —

N
b(j) — Y x(n. ), 61,

n=1

(14)
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a quantity which also must be positive sirtzds, and path fromAg to By along neighbors, and where we by

since we have assumed that both the so&@nd the “all” mean that there does not exist any further element

sink R; are deficient. in Bo which can be reached by a path from an element
We can now obtain a new flow with larger total value, in Ag.

if we redefine the flow values on the arcs of the pathas  The general labeling procedure is as follows. Start

follows: by labeling all elements iA, with a+ sign, for exam-
ple. Then choose any element say, inAg and label
Xnew(N2 1, Mo 1) = Xoid(N21_1, Ma_1) + 6, all its neighbors inB with the labeli;. Then choose

another elemernt, say, inAg and label all its neigh-

1=I=L+D/2 bors in B which are not yet labeledith the labelis.

Xnew(N21, Mg1) = Xoid(N21, Mg) — 0, Continue in this way until all elements i, have been
1<l <L/2 considered. If no elementin B is labeled the procedure
N is completed.

Let B; denote those elements Biwhich have been
labeled so far. Each elementi has thus, so to speak,
aparentin the setAy. Next, choose an elemef, say,
in By, consider its neighbors iAand if there are one or
more neighbors which have not yet been labeled, thus
do not belong toA, label them byj;. Then choose
another elemeny,, say, inB;, consider its neighbors
in Aand if there are one or more neighbors which have
not yet been labeled, label them py Continue in this
way until all elements iB; have been considered.

Let A; denote those elements fawhich have been
beled so far but do not belong . If A; is empty

the procedure is completed. Otherwise, choose an ele-
menti,, say, inA; and label all its neighbors iB which

are not yet labeled with the labigl Then choose an-
other element,, say, inA; and label all its neighbors

in B which are not yet labeled with the lakigl Con-
tinue in this way until all elements if\; have been
considered.

Let B, denote those elements Bwwhich have been
labeled so far, and which are notB3. If B, is empty
16. The Labeling Routine the procedure is completed. Otherwise, continue in ex-

actly the same way as when we had the Bgtand
The purpose of the labeling routine is to find augment- let A, denote those elements i which have an el-
ing paths from deficient sources to deficient sinks. We ement in B, as parent. IfA; is empty the proce-
shall show how this can be done by first describing a dure is completed. Otherwise, continue the labeling
labeling routine for a more general setup. We call this process.

It is obvious that we still have a flow and that its total
value has increased Ity

The above procedure to update a flow is catleel
flow-change routine

Finding augmenting paths and then applying the
flow-change routine is thus a way to increase a flow
on a given set of admissible arcs. Butitis also the only
way. For we have:

Proposition 15.1. Suppose we have a flow on a set
of admissible arcs. Suppose also that there is no aug-

. e - : la
menting path from a deficient source to a deficient sink.
Then the present flow is maximal on the present set of
admissible arcs.

The truth of this proposition is intuitively clear. For a
formal proof of this result see the pages 177-185 of [1].
Compare also with Kantorovich’s proof of the duality
theorem [10].

thegeneral labeling procedure Sooner or later the labeling procedure will end.
Thus, letA and B be two finite sets. We denote a Whenthat happens we have fowaitelementsn By for

generic element in A by the lettérand a generic el-  which there is a path to an elementAg, and for each

ement inB by the letterj. We assume that for each such element we can identify a string of parents which

i € Athereis a well-defined s&; of neighborsn B, leads back to an element #y. If an element inBy

and for eachj € B there is a well-defined s&; of becomes labeled we say that we haweakthrough

neighbors inA, both of which may be empty. Lekg otherwise we say that we havenanbreakthrough

andBy be subsets oA andB, respectively. The general Note that usually the general labeling procedure does

labeling procedure is a simple procedure to find “all” not find all pathdrom Ag to By. Note also that the set
connections between elements/Af and elements of  of paths obtained depends on thelection orderby
Bo where we by connection mean that there exists a which one chooses the elementig Bs, Az, B, etc.
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We shall now apply the general labeling procedure
to the more special situation we are considering. As
before letA denote the set of sources aBdthe set
of sinks. LetAq in the general labeling procedure be
the set of deficient sources and B denote the set of
deficient sinks. For an elemeft in A we define its
setG; of neighbors as the set of elememgin B for
which (i, j) is an admissible arc, and for an element
R; in B we define its seG; of neighbors as the set of
elementss in A for which (i, j) is an admissible arc,
and for whichalso the flow Xi, j) is strictly positive

Now by applying the general labeling procedure to
the situation just specified we obtain a Bétsay, con-
sisting of all deficient sinks for which there exists an
augmenting path from some deficient source. If the
setB* is empty, then by Proposition 15.1 the present
flow is maximal and we go to the dual solution change
routine. Otherwise, for each sirR; € B* we follow

17. How to Avoid Cycles

One drawback with the labeling procedure as it is de-
scribed in [13] is that, after one have updated the flow
using the flow-change routine, one very easily obtains
cycles, and our experiments have shown that one often
obtains optimal solutions for which the optimal flow
may have as much as 15 to 20% more nonzero arcs
than necessary.

In order to obtain an optimal flow without cycles,
one has several options. One can, for example, con-
struct an algorithm which finds all cycles in a flow,
and then redefine the flow along these cycles so that
the discovered cycles disappear. Such an “uncycling”
procedure one can either use once at the end, when
one has found an optimal solution, or one can use it
several times during the execution of the primal-dual
algorithm, for example, just before one updates the new

the labeling backwards, thereby finding an augmenting dual variables.

path, after which we go to the flow-change routine and

Another way to avoid obtaining cycles is to apply the

update the flow. Since the augmenting paths obtained general labeling procedure in a slightly different— and
may have common arcs, it may happen that when we go somewhat more complicated—way, namely in such a

to the flow-change routine then the vakieefined by

way that one first, as neighboring sets in the general

(14) may be equal to 0. Ifthis happens we just leave the labeling procedure, only allows such sinks as neighbors

flow-change routine and go to the next elemenBin
After we have updated the flow for each sink found in

for which there is gositiveflow from a source to the
sink. By beginning with only “positive” neighbors so to

B*, we start the labeling procedure anew. We continue speak, and then slowly but systematicly increasing the
to go back and forth between the labeling procedure sets of neighbors such that, at the end, the neighboring

and the flow-change routine until either the labeling
procedure results in a nonbreakthrough which implies
that the present flow is maximal, or all sources are full
in which case we have found an optimal flow.

Our labeling procedure differs slightly from the pro-
cedure described in [13], pp. 369, 370. In [13], chapter

sets of the elements in A contaétl sinks that can be
reached by the admissible arcs, one can make sure that
one never obtains any cycles.

18. The Dual Solution Change Routine

12, the labeling process is stopped as soon as the first

augmenting path is found.

There are now only two more parts of the primal-dual

There are many modifications possible regarding the algorithm we have to describe, namely step (4) how
labeling procedure. For example, instead of consider- to compute the new dual variables, and step (5) how
ing all deficient sources in parallel, so to speak, one to determine the new set of admissible arcs. In this

could take one element at atime and develop a “branch-

ing tree” for each deficient source. Another possibility
is to start from the set of deficiestnkseverysecond

section we consider the problem of how to redefine the
dual variables. We assume that we have just applied

the labeling procedure to a flow which turned out to be

time one applies the general labeling procedure, and maximal.
whenever one uses the the general labeling anew, one Let L; denote the set of indices of labeled sources,

onlyallows sinks and sources which weabeleddur-
ing theprevioususe of the general labeling procedure.
This completes our description of steps (1), (2)

U, denote the set of indices of unlabeled sourdes,
denote the set of indices of labeled sinks andUgt
denote the set of indices of unlabeled sinks. Since the

and (3) of the primal-dual algorithm as presented in flow is maximal but not optimal neither; norU, can

Section 11.

be empty.
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The dual solution change routine starts by determin- we shall discuss the case when the underlying distance-
ing the following number: function is theL ;-metrig that is,
8§ = min{c(n,m) — a(n) — B(mM), n € L1, me Uy}. dd, j,x,y) =i —=x|+1j =yl

That § must be a positive number follows from the We first state the following proposition.
definition of L; andUs.

We now change the dual variables as follows: Proposition 19.1. Let the underlying distance-
functiondi, j, x, y) beametric. Letthe dual variables
C'lnew(n) = (X0|d(n) + 8’ n € Ll’ {C((i, J)? (Ia J) S Kl} and {ﬂ(xv y)’ (X7 y) S KZ} be
Anew(N) = agg(n), n e Uy, such that for each pixél, j) € Ky, there exists a pixel
K h that
Brew(m) = Boa(M) —8, me Ly, (X.y) € Kz, such tha
ﬂneW(m) = ﬁ0|d(m)7 me UZ. d(lv js X, y) - a(is J) - ﬂ(xv y) = Os (15)

It is easy to check that this updated set of variables
constitutes a feasible dual solution, that is, we still have
cnm—am—pm > 0,1<n<N,l<m<M
for the updated set of variables. Itis also easy to verify
that the old flow, which we knew was a maximal ad-
missible flow on the old set of admissible arcs, is also
an admissible flow, but not a maximal flow, on the new i .
set of admissible arcs. (See, e.g., [13], chapter 12 for and similarly, if (., y1) € Kz and also(xz, y2) € Kz,
details.) then

The most time-consuming part, in practice, when
determining the new dual variables for a general trans- 18Xt Y1) — B(X2, ¥2)l < d(X1, Y1, %2, y2).  (17)
portion problem, is to determine the numbein case
one has an integer-valued cost matrix, one can, soProof: Letus prove (17). Assume tha(xy, y1) —
to speak, “cheat”, simply bglways choosing = 1. B(x2, y2) = 0. Let(iz, j2) be such that(iz, j2, X2,
When computing the Kantorovich distance forimages, ¥2) — ®(i2, J2) = (X2, y2) = 0. Then
this simple choice of works quite well for a long
time during the execution of the primal-dual algorithm. (X1, Y1) — B(X2, Y2)

and similarly that for each pixe{x, y) € Ky, there
exists a pixeli, j) € K1, such that(15) holds. Then
if (i1, j1) € Kyand(iz, j2) € Ky,

loe(ia, j1) — alio, jo)| < d(iy, j1,i2, j2), (16)

It i_s not until one is quite close to the optimal So- = B(X1, Y1) — d(i2, jo, X2, Y2) + iz, jo)

lution that the true value of occasionally is larger - L -

than 1. = d(IZ’ ]2, X1, yl) - Ot(lz, JZ) - d(|27 ]2, X2, y2)
+a(iz, j2)

19. Finding admissible Arcs when the = d(X1, y1, X2, ¥2)

Distance-Function is theL.*-Metric _ o _
where the last inequality sign follows from the trian-

The only remaining step to describe in the primal-dual 9l inequality. The rest of the proof can be done in an

algorithm is how we determine new admissible arcs. @nalogous way. O
In order to describe how this is done, we have to return
to our original notations. Thus, we have an imdge Before we state and prove the next lemma let us in-

with supportK;, an imageQ with supportk, and dual ~ troduce some convenientterminology. etj) € Ky,

variablesx (i, j) andB(x, y) associated to the pixelsin  leta(i, j) be adual variable correspondingioj), let

K1 andKj, respectively. (X,y) € Ky and letg(x, y) be a dual variable corre-
As we pointed out when we defined the Kantorovich sponding tax, y). If the dual variableg(x, y) is such

distance for images, the Kantorovich distance is com- that

puted with respect to an underlying distance-function

between the pixels of the two images. In this section B, y) <d(@, j,x,y) —af, j)
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then we say thatx, y) is low with respect tai, j). In
case there is little risk for misunderstanding we only
say that(x, y) islow. In case(xy, y1) and(xy, y,) are
such that

dd, j, X2, ¥2) —a(i, j) — B(X2, Y2) > d(i, j, X1, Y1)
—O((i, J) _IB(Xl’ yl) >0

then we say thatxy, y») is strictly lowerthan(xs, y1).

Letus also introduce the following notations and ter-

minology regarding the positions of two pixebs, y1)
and(xo, y2). If X1 < Xoandy; < y, we say thatx,, y»)
is northeast{NE) of (X1, y1). If X; > x; andy; < v,
then we say thaix,, y») is northwes{NW) of (X1, y1).
If X1 < X2 andy; > y, then we say thafxy, y») is
southeasiSE) of (x1, y1). Finally, if x; > x, and
V1 > Y» then we say thatxo, y») is southwes{SW) of
(X1, Y1)-

The usefulness of the next lemma is that it helps to
limit the number of tests needed for finding all new
admissible arcs in case we use themetricas under-
lying distance-function.

Lemma19.1. Suppose that the distance-function we
are using is the L-metric. Let(, j) be a pixel in
Ki, let«(i, j) be a dual variable afi, j), such that
dd, j, Xo, Yo) — a(i, j) — B(Xo, Yo) = O for some
(X0, Yo) € Ky. Furthermore assume that for each
(X, y) € Ky, there exists some pixél, j') € K; such
that,

d(i/v jlvxv Y) —O[(i/, J/) —ﬂ(X, Y) =0.

Now suppose thaix;, y1) € K; is low with respect to
(@i, j). Then

(a) if (xg, y1) isNE of(i, j)and(x, y) is NE of(x1, y1)
then(x, y) is low,

(b) if (X1, y1) is NW of(, j) and (X, y) is NW of
(X1, Y1) then(x, y) is low,

(c) if (x1, y1) is SE of(i, j) and(x, y) is SE of(x1, y1)
then(x, y) is low,

(d) if (X1, y1) isSWof(, j)and(x, y) is SW ol Xz, y1)
then(x, y) is low.

Proof: We shall only prove case (a). We prove case
(a) by contradiction. Thus suppose there exists a
pixel (x, y) € K, located NE of(x, y;1) and such that

at that pixel the dual variablg(x, y) is such that
_d(i’ jv X, Y) +Ol(i, J) + B(X, Y) =0.

But since(xy, y1) is low with respect to(i, j), it
follows thata (i, j) must satisfy

Ol(i, J) = d(l’ jvxlv yl) - 1_:3()(1’ yl)

which together with the proceeding equality implies
that

da, j, x, y) =B, y) <d(, j, X1, y1) —1— B(X1, y1)

and henced(x, y) — B(x1, Y1) > d(, j. X, y) =d(, j,
XL, Y)+1l=X—-i +y—j—( —i+y1 —j)+1
=X—X1+ y— y1+1=d(X, Yy, X1, y1) + 1 which is
impossible because of the previous proposition.O

A geometric way to look at this lemma is the follow-
ing. We know from Proposition 19.1 thg(x, y) —
B(u, v)| <d(x, Y, u, v). This means that the graph of
the dual variable$s(x, y), (X, y) € K;} looks, so to
speak, as alandscape where all slopes are bounded by 1.
For fixed (i, j), the distance-functiod(, j, X, y) =
li — x| +1]j — y| considered as a function afandy
can be looked upon as an upside-down pyramid. In or-
der to find the admissible arcs havifig j) as source,
what we have to do, so to speak, is to put the top of
the pyramid af(i, j, «(i, j)) and then find all tangent
points to the “surface{B(x, y), (X,y) € Ky}. But
since the slopes of this “surface” are bounded by 1, as
soon as the “surface” is strictly below the pyramid, it
will remain to be so, as long as we move away from
the center pointi, j).

The lemma above implies that when looking for arcs
connected to a labeled pixél j) in K1, we only have
to check pixels(x, y) along a liney = j; until we
have found a pixe{x, y) which is low with respect to
@i, .

20. Finding Admissible Arcs for Other
Distance-Functions

In case the underlying distance-function is defined by

(the L*°-metrig) a similar stopping rule as given in the
previous section can be defined. Also when we let the
distance-function be defined as a linear combination of
the L1-metricand thel **-metric(which is a good way

to find approximations of the Euclidean metric) it is
possible to prove lemmas similar to Lemma 19.1.
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However, if the underlying distance-function is Now suppose thdk, y1) and(Xo, y1) are in K, and
the square of the Euclidean distance, that is, if we are close to each othethat both are low with respect
have to (i, j) and that(xy, yy) is strictly lower than(xs, y1).

Then

dii, j, x, Y =31 —x)?+(j—y? (18)

(@) if (X2, y1) is E of (X1, y1) and (Xq, y1) is E of

then it does not seem so easy to prove a lemma analo- (i, j) then all pixels(x, y1) € K, which are E
gous to Lemma 19.1. of (Xo, y1) will also be low and

To define the distance-function by (18) could turn (b) if (xp, y1) is W of (x1, y1) and (x, y1) is W of
out to be a very useful choice of distance-function, (i, j) then all pixels(x, y1) € K, which are W of
for several reasons. First of all this distance-function (X2, y1) Will also be low.
is rotationally invariant. Secondly, it turns out that
the number of admissible arcs will be substantially
smaller than what one obtains when usinglthenetric We have not been able to show that Assertion 20.1
or an approximate Euclidean metric as underlying always is true, when the distance-function is defined
distance-function. For the images considered in Sec- by (18), but so far all our computer experiments have
tion 6, the optimal set of dual solutions gave rise to supportedit. In case the distance-function is defined by
approximately 3,000,000 admissible arcs in case we theL '-metricor theL *-metricthe truth of the assertion
used the_1-metricbut not more than 257,000 when we is trivially true, but also for distance-functions defined
used the distance-function defined by (18). Thirdly, if as positive integer-valued linear combinations of the
we take the square root, after we have computed the L-metric and theL>-metric computer experiments
Kantorovich distance, then it turns out that we obtain have supported the truth of the assertion.
ametrig, (see Section 10). Now, just as Lemma 19.1 makes it possible to con-

Since the choice of (18) for defining the underlying Structan algorithm by which we can speed up the search
distance-function is quite attractive, itwould, of course, for new admissible arcs when one uses lthemetric,
be desirable if a lemma similar to Lemma 19.1 could by assuming that Assertion 20.1 is true, one can in-
also be proved in this case. Unfortunately, we have not troduce a stopping criteria for each line when one is

been able to prove such a lemma.
However, we have find a condition, which, if it holds,
implies that the time for the search of new admissible

looking for new admissible arcs also when the under-
lying distance-function is defined by (18).
Hereby, we have completed presentation of our al-

arcs is decreased substantially also when the underly-gorithm for computing the Kantorovich-distance for

ing distance-function is defined by (18). Before we
introduce this condition we shall introduce some fur-
ther terminology concerning the locations of pixels.
Thus, suppose that we have two pixélg j;) and
(i2, j2) belonging to the suppoK of the same image

and such that they are located on the same horizontal

line (thatis,j; = j»). Ifthereisnoother pixelis, j3) €
K on the same line a1, j;) and (i, j2) which is
locatedbetweerthe pixels(iy, j1) and(i,, j2), then we
say that(i, j1) and (i, j2) arecloseto each other.
Furthermore, ifx, > x; then we say thatx,, y1) is
east(E) of (xq, y1) and if insteadk, < x; then we say
that(x, y1) is west(W) of (xg, y1).
Let us now introduce the following assertion.

Assertion 20.1 Let(, j) be a pixel in K, and let
a(i, j) be an admissible dual variable associated to the
pixel (i, j) with a value obtained after we have used
the“dual solution changeroutine.

images.

21. Computing the Initial Set of Dual Variables
and Admissible Arcs

In Section 12 we described formally how to deter-
mine the initial set of dual variablgg(n),1 < n <

N, B(m), 1 < m < M}. In practice, when we want to
compute the initial dual variables, this is not a straight-
forward task because of the size of the matxit, m).
However, to determine the sgt(n), 1 < n < N} of
dual variables, when we have thé-metric, the L>°-
metric, or the square of the Euclidean metric, one can
prove that the number of operations is of ortieand

not NM. Once the dual variables(n),1 < n < N,

are determined, one can use Lemma 19.1 or Assertion
20.1 to determine the dual variablggém) as well as
the initial set of admissible arcs.
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Kaijser

Figure 10 A set of optimal dual variables associated to the pixels
of the image of Fig. 1 obtained when computing the Kantorovich
distance for the images in Figs. 1 and 2 and whén j, X, y) =

(i —x2+(j—-y2

22. AnlImage of a Set of Optimal Dual Variables

LetA={a(i, j): (i, j) e Ki}andB = {B(X, y): (X, y)
€ K3} be the two sets of optimal dual variables obtained

for the example considered in Section 6 in case we use

the distance-function defined by (18). The purpose of
this Section is just to show an image of one of these
sets (the dual variables &). (See Fig. 10).

Itis interesting to note that also this image has some
slight resemblance of the original Lenna image.

23. A Complex Problem

We shall conclude this paper by describing the follow-
ing problem.

Let P be a 256x 256 image and letQ be a
coded version of with equal total grey value. Let
da, j,x,y) = (i —x)2+ (j — y)?, and letA andB
denote the two matrices containing the optimal dual
variables, obtained when computing the Kantorovich
distance betweerP and Q based on the distance-
functiondydi, j, X, y). The values ofA are associated
to the pixels ofP and the values dB are associated to
the pixels ofQ.

Next, letG(Q) denote the set of all imagd®, say,
with equal total grey value a8 and Q, such that

dk(RQQ=R®A+Q®B

if we used(,j,x,y) = (i — X)?2+(j — y)% as
distance-function, and whe denotes element-wise
multiplication of two matrices. (The s&B(Q) is
nonempty sincé® € G(Q)).
Let P* be the mean of allimages belongind3oQ).
Compute the Kantorovich distance betweéh
and P*.
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