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Abstract. Computing theKantorovichdistance for images is equivalent to solving a very large transportation
problem. The cost-function of this transportation problem depends on which distance-function one uses to measure
distances between pixels.

In this paper we present an algorithm, with a computational complexity of roughly orderO(N2), whereN is
equal to the number of pixels in the two images, in case the underlying distance-function is theL1-metric, an
approximation of theL2-metricor the square of theL2-metric; a standard algorithm would have a computational
complexity of orderO(N3). The algorithm is based on the classical primal-dual algorithm.

The algorithm also gives rise to atransportation planfrom one image to the other and we also show how this
transportation plan can be used for interpolation and possibly also for compression and discrimination.
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1. Introduction

Roughly speaking the Kantorovich distance for images
is defined as the cheapest way to transport one im-
age into the other where the cost is determined by the
distance-function chosen to measure distances between
pixels.

It was Kantorovich [10, 11] who in the beginning
of the 1940s introduced this kind of “transportation-
metric” for probability measures, and who proved that
the metric also can be defined as a supremum of a set
of integrals. This result is a special case of what in
optimization theory is called the duality theorem.

The first to use the Kantorovich distance as
a distance-measure between two-dimensional grey-
valued images were probably Werman et al. [17] (see
also [18]). The conclusion in their paper was that the
Kantorovich distance is applicable in many domains
such as co-occurance matrices, shape matching, and
picture half-toning. They claim that the match distance,
as they call their distance-measure, has many theo-
retical advantages but also remark that,unfortunately,

computing the match distance (Kantorovich distance),
is computationally expensive, and that, in some ap-
plications the added computation does not result in
any substantial improvement. But they also say that
when other comparison methods fail, the match dis-
tance seems worth considering. In [18] Werman com-
putes the Kantorovich distance in some very simple
two-dimensional cases, but otherwise the only compu-
tations made are for either one-dimensional images or
for images with curves as support.

A few years earlier, in 1981, Hutchinson [7] used the
Kantorovich distance for measuring distances between
what can be called self-similar probability measures
obtained as limiting distributions for a fairly simple
type of Markov chains induced by affine, contractive
mappings. These limit measures often have supports
with fractal-lookingappearence. Hutchinson used the
Kantorovich distance to prove an existence and unique-
ness theorem of such limit measures. (This theorem of
Hutchinson [7], Section 4.4, Theorem 1, was proved
already in the 1930s by Doeblin and Fortet in a sub-
stantially more general setting, see [6], Theorem 3.1.)
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In the latter part of the 1980s Barnsley and co-
workers coined the terminology “iterated function
systems” (IFS), and “iterated function systems with
probabilities” (IFS with probabilities) for the systems
studied by Hutchinson (see e.g., [3, 4]). To prove limit
theorems for the case one has an IFS with probabili-
ties, Barnsley and co-workers also use the Kantorovich
distance, which they call the Hutchinson metric, but
in none of the papers or books of Barnsley and/or co-
workers is the Kantorovich distance actually computed.

In 1989 Jacquin published his thesis [8] (see also
[9]) in which he describes a new technique to compress
images, nowadays often called fractal coding or block-
based fractal coding. In his thesis Jacquin also refers to
the Kantorovich distance (the Hutchinson metric), but
writes that “the main problem with this metric is that it
is extremely difficult to compute, theoretically as well
as numerically” (see [8], Part I, p. 12).

In probability theory the Kantorovich distance has
often been called the Vaserstein metric after the pa-
per [16] by Vaserstein. In [16] Vaserstein defines a
transportation planbetween two probability measures
which “puts” as much mass as possible on the diag-
onal of the product space of the state spaces of the
two given probability spaces. A transportation plan
between probability measures (stochastic variables,
stochastic processes) is nowadays often called a cou-
pling (see, e.g., Lindwall [12]). Important literature
on the Kantorovich distance in probability theory are
[14] and [15] by Rachev, where also many references
to other literature can be found.

As already observed by Werman et al. [17], the main
drawback with using the Kantorovich distance is its
large computation time. In [17], the authors point out
that the use of standard algorithms for transportation
problems would imply a computational complexity of
orderO(N3) whereN denotes the number of pixels in
the two images.

The main purpose of this paper is to present an algo-
rithm for computing the Kantorovich distance function
which issubstantially fasterthan standard algorithms
in case the underlying distance-function between pixels
is the L1-metric, the L∞-metric, linear combinations
of the L1-metricand theL∞-metric, or thesquareof
theL2-metric.

At present our computer programme is such that if
we subsample an image, thereby obtaining an image
whose side length is 1/2 of the original image, then the
computation time decreases by a factor, 1/λ say, and in
none of the examples we have tried,λ has been larger
than 20≈ 42.2.

The factorλ depends on the underlying distance-
function as well as on the similarity of the two images
and, of course, also on the implementation of the algo-
rithm. Our computer experiments have givenλ-values
varying from 8 to 20. In case we use the square of
the L2-metricas underlying distance-function and the
two images are similar then we have found thatλ is ap-
proximately 16(=42). Moreover, in case we have two
very dense but non overlapping binary images, with
equal total grey value, (the assignment problem), then
the factorλ has been as small as 8(=41.5).

In a recent paper [2], Atkinson and Vaidya have
proved that there exists an algorithm which has a com-
putational complexity of orderO(N2 log(N)3) in case
one uses theL1-metric as distance-function and of
orderO(N2.5 log(N)) in case one uses theL2-metricas
distance-function. In their paper Atkinson and Vaidya
do not give any explicit computation times for their al-
gorithm applied to large transportation problems, and
therefore it is not so easy to compare the efficiency of
their algorithm with the efficiency of ours. Nor did they
apply their algorithm to images.

The underlying method we use to compute the Kan-
torovich distance is a well-known algorithm called the
primal-dual algorithm. We have essentially followed
the presentation of this algorithm as it is given in the
book [13] chapter 12, by Murty. The primal-dual al-
gorithm is also described in the books [5] and [1].

The main reason we have managed to decrease the
computational complexity of the primal-dual algorithm
is that we are able to compute the so-called admissible
arcs in an efficient way.

The plan of this paper is as follows. In the next
section we introduce some concepts, in particular, the
notion of atransportation image, and in Section 3 we
give the definition of the Kantorovich distance between
images in terms of transportation images. We first give
the definition for images with equal total grey value,
and then a general definition.

In Section 4 we formulate the Kantorovich distance
as a linear programming problem, and in Section 5 we
present the dual formulation of this linear programming
problem.

In Section 6 we present some computational data
when computing the Kantorovich distance between
the well-known Lenna image (subsampled to an im-
age of size 256× 256) and a fractal coded Lenna im-
age, when the underlying distance-function is either the
L1-metric or the square of theL2-metric. The com-
putation times on a SUN4/690 machine (SuperStark)
are approximately1 h for these examples. We also
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show two graphs representingoptimal transportation
images.

In Section 7 we discuss the possibility of using trans-
portation images forcoding, and in Section 8 we show
how a transportation image between two images can
be used forinterpolation.

In Section 9 we introduce another concept associ-
ated with a transportation image, namely thedistortion
image. The distortion image is introduced in order to
detect imagediscrepancies.

In Section 10 we make a short digress and define
the Kantorovich distance for probability measures, and
present the duality theorem in this situation.

In Sections 11 to 21 we describe the algorithm which
we have used to compute the Kantorovich distance. In
Section 11 we give a general outline of the primal-
dual algorithm for the general balanced transportation
problem, and then in Sections 12 to 21 we present the
details. It is in Sections 19 and 20 we present the
crucial ideaswhich have made it possible to compute
the Kantorovich distance for images of size 256× 256
in, so to speak, finite time.

In Section 22 we present an image of a set of opti-
mal dual variables, and in Section 23 we conclude the
scientific part of our paper by formulating a complex
but challenging problem related to the work described
in the paper. We end our paper with acknowledgments.

2. The Transportation Image

We shall start the definition of the Kantorovich distance
with a notion we have chosen to call a transportation
image.

A transportation imageis a set

T = {(i n, jn, xn, yn,mn), 1≤ n ≤ N}

of finitely many five-dimensional vectors. If nothing
else is said, we assume that the last element in each five-
vector of a transportation image isstrictly positive, and
we also assume that there arenevertwo vectors in a
transportation image for which the first four elements
are equal. We call a generic vector in a transportation
image, atransportation vector, we call the first pair of
elements thetransmitting pixel, we call the second pair
of elements thereceiving pixel, we call the fifth element
themasselement, and we call a pair((i, j ), (x, y)) of
a transmitting pixel(i, j ) and a receiving pixel(x, y)
anarc.

Before we proceed we need to specify what we mean
by an image. LetK be a finite set of integer-valued

pairs(i, j ). By an imageP with supportK we mean
aninteger-valuednonnegative functionp(i, j ) defined
on K .

Now given a transportation image, we can define two
images—atransmitting image, P1 say, and areceiving
image, P2 say, as follows: First, letK1 denote the union
of all transmitting pixels in the transportation image
and similarly letK2 denote the union of all receiving
pixels. Next, for(i, j ) ∈ K1, let A(i, j ) denote the set
of indices in the set{(i n, jn, xn, yn,mn), 1 ≤ n ≤ N}
for which the transmitting pixel is equal to(i, j ) that
is (i n, jn) = (i, j ). Similarly, for (x, y) ∈ K2, define
B(x, y) as the set of indices in the set of transportation
vectors for which the receiving pixel is equal to(x, y).
We now define thetransmitting imageby

P1 =
{

P1(i, j ) =
∑

n∈A(i, j )

mn, (i, j ) ∈ K1

}

and similarly we define thereceiving imageby

P2 =
{

P2(x, y) =
∑

n∈B(x,y)

mn, (x, y) ∈ K2

}
.

From the wayP1 and P2 are defined it is clear that
the total grey value of the transmitting image and the
receiving image are the same namely equal to the sum∑N

n=1 mn. If a transformation imageT hasP as trans-
mitting image andQ as receiving image then we say
thatT is from P to Q.

3. The Definition

Let P={p(i, j ), (i, j )∈ K1} andQ={q(x, y), (x, y)
∈ K2} be two given images defined on two setsK1 and
K2, respectively.K1 andK2 may be the same, overlap
or be disjoint.

In order to define the Kantorovich distance we need
to specify adistance-function d(i, j, x, y) from an ar-
bitrary pixel(i, j ) in the supportK1 of the imageP to
an arbitrary pixel(x, y) in the supportK2 of the image
Q. This distance-function need not be a metric, but
such a choice has an advantage in a sense which we
will make precise later.

We shall first give the definition of the Kantorovich
distance in case the two imagesP and Q haveequal
total grey value. Let 2(P, Q) denote the set of all
transportation images fromP to Q. Since we have
specified a distance-function we can now define thecost
c(T) for any transportation imageT = {(in, jn, xn,
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yn,mn), 1≤ n ≤ N} from P to Q, simply as

c(T) =
N∑

n=1

d(i n, jn, xn, yn) ·mn.

Finally, we define the Kantorovich distancedK (P, Q)
between P and Q—with respect to the distance-
functiond(i, j, x, y)—by

dK (P, Q) = inf{c(T), T ∈ 2(P, Q)}.

An optimal transportation image Tfrom P to Q satis-
fiesc(T) = dK (P, Q).

Now suppose that we have two imagesP andQ for
which thetotal grey values are different. Let L(P) =∑

K1
p(i, j ) denote the total grey value ofP, and let

L(Q) = ∑
K2

q(x, y) denote the total grey value of
Q. Let G(P, Q) denote the largest common divisor
of L(P) and L(Q), define L̄(P) = L(P)/G(P, Q)
and L̄(Q) = L(Q)/G(P, Q). By using the numbers
L̄(P) andL̄(Q) we can now define two new imagesP̄
andQ̄, with equal total grey value, by multiplying each
pixel value of the imageP by L̄(Q), and multiplying
each pixel value ofQ by L̄(P). We then simply define
dK (P, Q) by

dK (P, Q) = dK (P̄, Q̄)/(L̄(P)L̄(Q)).

In the rest of the paper we shall always assume that
we have two images with equal total grey value.

4. A Linear Programming Formulation

Another way, and perhaps a more straightforward
way to define the Kantorovich distance is as fol-
lows. Let againP = {p(i, j ), (i, j ) ∈ K1} and Q=
{q(x, y),(x, y) ∈ K2} be two given images defined on
two setsK1 andK2, respectively, and assume that the
images haveequal total grey value.

Let 0(P, Q) denote the set of all nonnegative map-
pingsm(i, j, x, y) from K1× K2→ R+ such that∑

(x,y)∈K2

m(i, j, x, y) ≤ p(i, j ), ∀(i, j ) ∈ K1 (1)

and∑
(i, j )∈K1

m(i, j, x, y) ≤ q(x, y), ∀(x, y) ∈ K2. (2)

We call any function in0(P, Q) a transportation plan
from P to Q. A transportation plan for which we have
equality in both (1) and (2) will be called acomplete
transportation planand we denote the set of all com-
plete transportation plans by3(P, Q).

It is important to notice that to every transporta-
tion plan m(i, j, x, y) ∈ 0(P, Q) there corresponds
a unique transportation image

T = {(i n, jn, xn, yn,mn), 1≤ n ≤ N}

defined simply by

T = {(i, j, x, y,m(i, j, x, y)), m(i, j, x, y) > 0}.

Note, however, thatT has transmitting imageP and
receiving imageQ only if the given transportation plan
is complete.

Conversely, if we are given a transportation image

T = {(in, jn, xn, yn,mn), 1≤ n ≤ N}

between two imagesP andQ, then we can find a unique
functionm(i, j, x, y) ∈ 0(P, Q) simply by defining

m(in, jn, xn, yn) = mn, 1≤ n ≤ N

and defining

m(i, j, x, y) = 0

elsewhere. Recall that in our definition of a transporta-
tion image we assumed that there do not exist two or
more transportation vectors with the same values on the
first four elements and therefore the function defined
above is well-defined.

Now let as aboved(i, j, x, y) denote a distance-
function between pixels in the setK1 and the setK2.
The Kantorovich distancedK (P, Q) can then also be
defined by

dK (P, Q) = inf

{ ∑
i, j,x,y

m(i, j, x, y) · d(i, j, x, y),

m(·, ·, ·, ·) ∈ 3(P, Q)

}
. (3)

Since, we require that the functionm(i, j, x, y) is
nonnegative and the constraints defining the functions
in the set3(P, Q) are linear relations we see that the
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definition of the Kantorovich distance is equivalent
to the formulation of alinear programming problem
called thebalanced transportation problem. We call
(3) the primal formulation of the Kantorovich distance.

The reason that one cannot apply standard algo-
rithms directly for computing the Kantorovich distance
is that the size of the transportation problem we obtain
is quite large. If, for example, we consider two images
each of size 256× 256, then the number of sources
and the number of sinks in our transportation prob-
lem are 65536, the number of unknowns (variables)
is 232 = 4299801236 and the number of constraints
is 2× 65536= 131072. The standard estimate for
how long time a standard algorithm will take to solve
an integer-valued transportation problem with essen-
tially equal numbers of sources and sinks is that the
time is proportional toN3 whereN is the number of
sources. This implies that in case we have images of
size 256× 256 then the number of operations would
be roughly of order 2× 1014.

5. The Dual Formulation

Since the computation of the Kantorovich distance is
equivalent to solving a transportation problem, and
the method we shall use is based on the so-called
primal-dual algorithm, we shall now present thedual
formulation—the dual version—of the linear program-
ming problem defined by (3).

Thus, let{α(i, j ), (i, j ) ∈ K1} and{β(x, y), (x, y)
∈ K2} denote variables associated to the pixels in the
setsK1 and K2, respectively. We call these variables
thedual variables. As before, letd(i, j, x, y) denote
a distance-function from pixels inK1 to pixels inK2,
and let9 denote all sets of dual variables satisfying

d(i, j, x, y)− α(i, j )− β(x, y) ≥ 0,

(i, j ) ∈ K1, (x, y) ∈ K2.

The dual formulation of the Kantorovich distance is
as follows:

dK (P, Q)

= sup

{∑
K1

α(i, j ) · p(i, j )+
∑
K2

β(x, y) · q(x, y),

{α(i, j ), β(x, y)} ∈ 9
}
. (4)

That the primal and dual formulations of the Kan-
torovich distance are equivalent is well known from
optimization theory. (For a fairly short proof of this re-
sult see, e.g., [1], Appendix C.6, where a proof based
on the simplex method is given. Another proof based
on graph theory is also given in [1], Section 9.4. See
also the paper [10] by Kantorovich.)

Before concluding this section let us also mention
that in caseK1 = K2 = K and the underlying distance-
function is a metric, then the dual formulation can also
be formulated as follows. First, let90 denote all sets
{α(i, j ), (i, j ) ∈ K } such thatα(i, j ) − α(x, y) ≤
d(i, j, x, y), ∀(i, j ), (x, y) ∈ K . Then

dK (P, Q)

= sup

{ ∑
(i, j )∈K

α(i, j ) · (p(i, j )− q(i, j )),

{α(i, j )} ∈ 90

}
. (5)

That the definitions (4) and (5) are equivalent, in
case the distance-function is a metric, follows from the
duality theorem (see Theorem 10.1) and the fact that
in cased(i, j, x, y) is a metric then, because of the
triangle inequality, the Kantorovich distance between
P andQ is equal to the Kantorovich distance between
P∗ = {p∗(i, j )} andQ∗ = {q∗(i, j )} defined by

p∗(i, j ) = max(p(i, j )− q(i, j ), 0) (6)

and

q∗(i, j ) = max(q(i, j )− p(i, j ), 0). (7)

We shall not begin to describe the algorithm we
have used to compute the Kantorovich distance until
Section 11. Before that we shall present two exam-
ples and indicate some possibilities how to utilize an
optimal transportation image.

6. Examples

We let P denote the well-known image of Lenna of
size 256×256 (see Fig. 1) and we letQ be an approx-
imation of the Lenna image (also of size 256× 256)
obtained from a block-based fractal coder (see Fig. 2).
(We changed the grey values by one unit in approxi-
mately 100 pixels, so that the two images would have
the same total grey value).
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Figure 1. The original Lenna image subsampled to 256× 256.

Figure 2. A 256×256 approximation of the Lenna image obtained
by using a fractal block coder based on triangle blocks.

As underlying distance-function in our first example
we have used theL1-metricdefined by

d(i, j, x, y) = |i − x| + | j − y|.
Since we have chosen a metric as underlying distance-
function, we can start our computation by first sub-
tracting the common partR={R(i, j ), 1≤ i ≤ 256,

Figure 3. The positive difference between the images in Figs. 1
and 2 (in that order).

Figure 4. The positive difference between the images in Figs. 2
and 1 (in that order).

1≤ j ≤ 256} defined by

R(i, j ) = min(P(i, j ), Q(i, j ))

from both P and Q, thereby obtaining two new images
P∗ andQ∗ defined by (6) and (7) (see Figs. 3 and 4).
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Figure 5. The arcs of positive length of an optimal transportation
image from an original Lenna image of size 256×256 to an approx-
imation, whend(i, j, x, y) = |i − x| + | j − y| is used as distance-
function.

From the images of Figs. 3 and 4 we note that the
coded image did not succeed to approximate neither
the edges of the mirror nor the feather of the hat of the
Lenna image very well.

In our example the total grey value ofP∗ andQ∗ is
equal to 232161, the number of nonzero pixel values in
P∗ and Q∗ are 29990 and 30679, respectively, which
gives a total of 60669 pixels. The computation time
to compute the Kantorovich distance on a Sun4/690
machine, using an implementation of the algorithm by
Tech. Lic Niclas Wadstr¨omer, is about 1 h, and the
computed value is equal to 1526233. In the Fig. 5
we show the positive arcs of an optimal transportation
image fromP to Q without cycles. (A cycle is defined
in Section 13 and cycles are dicussed in Section 17).
The number of arcs in this optimal transportation image
is 57014.

Just as is the case with the images depicted in Figs. 3
and 4, also the image in Fig. 5 can be regarded as a
kind of difference image, and it should be possible to
detect some of the features from the Lenna image, for
example, the side of the mirror, and the sides of Lenna’s
hat.

In our next example we use the same imagesP
and Q as above, but we now choose as underlying

Figure 6. The arcs of positive length of an optimal transportation
image from an original Lenna image of size 256× 256 to an ap-
proximation, whend(i, j, x, y) = (i − x)2 + ( j − y)2 is used as
distance-function.

distance-function

d(i, j, x, y) = (i − x)2+ ( j − y)2.

In this case we cannot start our computation by sub-
tracting the common partR defined above. In our
case the common total grey value ofP and Q is
6884218. Our computation leads to a solution
consisting of 129108 arcs of which 69650 have pos-
itive length. For this choice of images it turns out that
the computation time is only slightly longer when we
use the square of the Euclidean metric than when we
use theL1-metric. In Fig. 6 we show the positive arcs
of the solution.

If we compare the solutions obtained when we use
the L1-metric and the square of the Euclidean metric
we find what one would expect, namely that in the
second solution there are fewer longer arcs and more
arcs along the diagonals. These facts can in part be seen
from the graphs of Figs. 5 and 6.

7. Using Transportation Images for Coding

In this Section we shall present an idea how to use a
transportation image for improving an image coder.
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Suppose first that the underlying distance-function
is a metric. Let

T = {(i n, jn, xn, yn,mn), 1≤ n ≤ N}

be an optimal transportation image fromP to Q,
with no cycles (see Section 13), and such that the
arcs are ordered in such a way that ifn > k then
d(i n, jn, xn, yn) · mn ≤ d(i k, jk, xk, yk) · mk. Define
N(p) for 0≤ p ≤ 1 by

N(p) = min

{
M,

M∑
n=1

d(i n, jn, xn, yn) ·mn

≥ p · dK (P, Q)

}
.

Now let us chooseP = P∗ and Q = Q∗ where
P∗ and Q∗ are defined as in Section 6 and letT
denote the optimal transportion image presented in
Section 6 and obtained when using theL1-metric as
underlying distance-function. It then turns out that
N(0.5) = 4337, N(0.75) = 12598, N(0.9) = 33875,
N(0.95) = 45081,N(0.99) = 54696 andN(1.0) =
57014. SinceN(0.5) = 4337 andN(1.0) = 57014 it
follows that for this example, half of the distance be-
tween the imagesP andQ of Section 6 is, so to speak,
“carried” by less than 8% of the arcs. Therefore, if we
truncate the transformation image at the numberN(p)
and use this truncated transformation image together
with the approximation obtained by the block-based
fractal coded image of Lenna (see Fig. 2) we can con-
struct a new approximating imageQ′′(p) say, whose
Kantorovich distance to the original Lenna image is
(1− p) timesdK (P, Q) as follows.

First, for 0≤ p ≤ 1 define

T(p) = {(in, jn, xn, yn,mn), 1≤n≤N(p)},
let P(p) and Q(p) be, respectively, the transmitting
image and the receiving image ofT(p), and then define

Q′′(p) = Q− Q(p)+ P(p).

It is easy to see that the distance betweenP andQ′′(p)
is, in fact,(1− p) timesdK (P, Q).

Similarly, using the imageP as “starting image” we
can define an approximating imageP′′(p) say, by

P′′(p) = P − P(p)+ Q(p)

and this time it is easy to see that the distance between
P andP′′(p) is p timesdK (P, Q).

Figure 7. The arcs of a truncation of an optimal transportation
image between the images of Figs. 1 and 2, “carrying” 50% of the
distance.

In Fig. 7 we have depicted the arcs of the transporta-
tion imageT(0.5) whenT is the solution obtained in
the previous section using theL1-metricas underlying
distance-function. This part of the original transporta-
tion image thus contains most of the longer arcs of the
transportation image.

In Fig. 8 we have depicted the image ofQ′′(p)when
p = 0.5. This image (as well as the imageP′′(0.5))

Figure 8. The image is obtained by “adding” a “50% truncated”
optimal transportation image to the image in Fig. 2.
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has the same Kantorovich distance to both the orig-
inal Lenna image and the fractal coded approxima-
tion.

Although the image of Fig. 8 looks more similar to
the original Lenna image then the image of Fig. 2, the
improvement is not as good as one would have wished.
The reason for this is that most of the longer arcs of
the transportation image are allocated to the edges of
the mirror and to the edges of the hat in the mirror,
and not so many are located to the face of Lenna or to
the feather of the hat of Lenna, where much of the dis-
crepancies between the original Lenna image and the
fractal coded Lenna image is, as observed by a human
eye.

8. Using Transportation Images
for Interpolation

There are several ways in which one can use transporta-
tion images for interpolation. One way is simply to use
the imagesQ′′(p) and P′′(p) defined in the previous
Section.

Another way is as follows. Let 0< r < 1, let

T = {(in, jn, xn, yn,mn), 1≤ n≤ N}

be a transportation image between the “subtracted” im-
agesP∗ andQ∗ defined by (6) and (7), and define the
transportation image

Tr = {(i r
n, j r

n, xr
n, yr

n,m
r
n

)
, 1≤ n≤ N

}
by i r

n = i n, j r
n = jn, xr

n = i n + b(r · (xn − i n)), yr
n =

jn + b(r · (yn − jn)), andmr
n = b(r ·mn), where the

operationb means taking the integer part of a number.
Let Pr andQr denote the transmitting and the receiving
image of the transportation imageTr . Finally, define
Q∗r by

Q∗r = P − Pr + Qr .

Clearly, asr goes from 0 to 1, the imageQ∗r goes from
the imageP to the imageQ.

If insteadT is a transportation image between the
original imagesP andQ and we redefineTr slightly,
namely by definingmr

n = mn, then we can use the
receiving image ofTr as an interpolating image.

9. Using the Transportation Images for
Identifying Discrepancies Between Images

In this section we shall introduce another functional of
the transportation image which we call thedistortion
matrix. The idea behind the distortion matrix is that
it will be useful when looking for those areas in the
two images where the discrepancy between the two
images is so to speak the largest. We obtain, in fact, two
matrices, one for the pixels in the transmitting image
and one for the pixels in the receiving image.

LetT = {(in, jn, xn, yn,mn), 1≤ n≤ N}be a trans-
portation image with transmitting imageP and receiv-
ing imageQ. The distortion matrixA = {a(i, j )}
say, of the transmitting imageP is simply defined as
follows:

A =
{

a(i, j ) =
∑

n

d(i n, jn, xn, yn) ·mn

}

where the sum is taken over all vectors in the trans-
portation image which has(i, j ) as transmitting pixel,
andd(·, ·, ·, ·) as a suitable distance-function. The dis-
tortion matrix of the receiving imageQ is defined anal-
ogously.

In Fig. 9 we have depicted the distortion matrix cor-
responding to the receiving imageQ∗ of the optimal
transportation image between the images in Figs. 3 and

Figure 9. A distortion matrix corresponding to the image in Fig. 4,
normalized so that the largest value is 255.
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4 presented in Section. In order to be able to present the
distortion matrix as an image we have normalized the
matrix by first multiplying the distortion matrix by 255
and then dividing by the largest value of the distortion
matrix.

When we compare this image with the imageQ∗ of
Fig. 4, we notice that we discover some new discrepan-
cies. For example, we notice that the inner edge of the
mirror is more clearly seen, we see more of the upper
part of the structure of the wall of the left-hand side
of the picture, etc. On the other hand, the feather of
Lenna’s hat cannot be seen in the image.

10. The Kantorovich Distance for Measures

In this section we shall for sake of completeness present
the definition of the Kantorovich distance for positive
measures. We shall follow Rachev [14] closely.

Let (U, δ) be a separable metric space, letP1 and
P2, be two Borel probability measures on(U, δ) and
define2(P1, P2) as the set of all probability measures
P on U ×U with fixed marginalsP1 (·)= P(· ×U )
andP2 (·)= P(U × ·). Define

Aδ(P1, P2)

= inf

{∫
U×U

δ(x, y)P(dx, dy), P ∈ 2(P1, P2)

}
.

By using the fact thatδ(x, y) satisfies the triangle in-
equality it is simple to show thatAδ(P1, P2) is a metric.

Next, let

Lip(U ) = { f : U → R : | f (x)− f (y)| ≤ δ(x, y)}

and define

Bδ(P1, P2)= sup

{∣∣∣∣ ∫
U

f (x)P1(dx)

−
∫

U
f (x)P2(dx)

∣∣∣∣, f ∈ Lip(U )

}
.

That Bδ(P1, P2) also is a metric is also easy to prove.
(It is this metric that many people working with frac-
tals and iterated function systems, nowadays call the
Hutchinson metric.)

The following duality theorem goes back to Kan-
torovich.

Theorem 10.1 (Kantorovich [11]). If U is compact
then

Aδ(P1, P2) = Bδ(P1, P2).

Duality theorems similar to Theorem 10.1 can also
be proved if we in the definition ofAδ(P1, P2) replace
the integrandδ(x, y)by a somewhat more general func-
tion, for example,δ(x, y)p, with p > 0. Moreover, if
for p > 1 we define

Cδ p(P1, P2)= inf

{[∫
U×U

δ(x, y)p P(dx, dy)

]1/p

,

P ∈ 2(P1, P2)

}
then it can be shown thatCδ p(P1, P2) is also a metric.
See [14] and references therein.

11. The Primal-Dual Algorithm
for the Transportation Problem:
A General Outline

In this and subsequent sections we shall describe the
algorithm which we have used to compute the Kan-
torovich distance. We shall use the so-called primal-
dual algorithm and will essentially follow the presen-
tation in Murty [13], chapter 12.

In order to simplify notations we shall reformulate
our problem in such a way that our problem will be
formulated as a general transportation problem.

Let Sn, 1≤ n ≤ N denotesources, Rm, 1≤ m≤M
denotesinks(destinations),an denote the amount of
goods at the sourceSn, 1 ≤ n ≤ N, bm denote the
demand of goods at the sinksRm, 1 ≤ m ≤ M ,
c(n,m), 1≤ n≤ N, 1≤m≤M denote the cost to
transport one unit of goods from the sourceSn to the
sink Rm, and finally, x(n,m) denote the amount of
goods sent from the sourceSn to the sinkRm.

The primal version of the balanced transportation
problem is as follows:

Minimize
N∑

n=1

M∑
m=1

c(n,m) · x(n,m) (8)

whenx(n,m)≥ 0, 1≤ n≤ N, 1≤m≤M,

M∑
j=1

x(n, j ) = a(n), 1≤ n ≤ N, (9)

N∑
i=1

x(i,m) = b(m), 1≤ m≤ M, (10)



P1: GRN

Journal of Mathematical Imaging and Vision KL619-02-Kaijser September 5, 1998 17:31

Computing the Kantorovich Distance for Images 183

and

N∑
n=1

a(n) =
M∑

m=1

b(m).

Usually, one also assumes that for 1≤ n ≤ N and
1≤ m≤ M ,

a(n) > 0, b(m) > 0, c(n,m) ≥ 0.

If we apply this general formulation to the prob-
lem of computing the Kantorovich distance (see (3))
then the sourcesSn, 1 ≤ n ≤ N, correspond to
the pixels (i, j ) ∈ K1, the sincsRm, 1 ≤ m ≤
M , correspond to the pixels(x, y) ∈ K2, the num-
bers an, 1 ≤ n ≤ N, correspond to the pixel val-
uesp(i, j ), (i, j ) ∈ K1, the numbersbm, 1≤m≤M ,
correspond to the pixel valuesq(x, y), (x, y)∈ K2,
the cost matrix{c(n,m), 1≤ n≤ N, 1≤m≤M} cor-
responds to the distance-functiond(i, j, x, y) and
the variablesx(n,m) correspond to the variables
m(i, j, x, y).

To each sourceSn and each sinkRm we introduce
dual variablesα(n) andβ(m). If

c(n,m)−α(n)−β(m)≥ 0, 1≤ n≤ N, 1≤m≤M

(11)

then we call the set of dual variablesfeasible. We call
a pair (n,m) of indices for whichn is an index of a
sourceSn andm is an index of a sinkRm anarc. An
arc(n,m) such that

c(n,m)− α(n)− β(m) = 0

is called anadmissible arc. Otherwise, the arc is
callednonadmissible. By a flow we mean any matrix
{x(n,m), 1 ≤ n ≤ N, 1 ≤ m ≤ M} of nonnegative
elements such that

∑M
m=1 x(n,m) ≤ a(n), 1≤ n ≤ N,

and
∑N

n=1 x(n,m) ≤ b(m), 1 ≤ m ≤ M . We say that
x(n,m) is the flow of the arc(n,m). A flow for which
(9) and (10) hold is called anoptimal flow.

The dual version of the transportation problem is as
follows:

maximize

(
N∑

n=1

α(n) ·a(n)+
M∑

m=1

β(m) · b(m)
)

(12)

when the set of dual variables is feasible (satisfies (11)).

That the solution to the primal version is larger than
or equal to the solution of the dual version is easily
proved by replacingc(n,m) by (c(n,m) − α(n) −
β(m)) + α(n) + β(m) in (8) and then using (9) and
(10). In order to prove equality it suffices to have an
algorithm which generates both an optimal flow and a
feasible set of dual variables such that the flow is zero
on any nonadmissible arc. Such an algorithm is the
primal-dual algorithm.

Before we can describe the basic steps in the
primal-dual algorithm we need a few more con-
cepts. Given a feasible dual solution we call a flow
anadmissibleflow if the flow is zero on any nonadmis-
sible arc. Furthermore, if9 denotes a set of arcs, we
say that the flowlives on9, if for any arc not belong-
ing to9, the flow is zero along that arc. We call a flow
{x(n,m), 1≤ n≤ N, 1≤m≤M} which lives on a set
9 amaximal flowif any other flow{y(n,m), 1≤ n ≤
N, 1≤ m≤ M} which lives on9 is such that

M∑
m=1

N∑
n=1

y(n,m) ≤
M∑

m=1

N∑
n=1

x(n,m).

The primal-dual algorithm consists essentially of the
following steps:

(0) Find an initial set of dual variables, determine the
corresponding initial set of admissible arcs, and
find an initial admissible flow.

(1) Check whether the present admissible flow is max-
imal on the present set of admissible arcs. If it is
go to (3). If it is not go to (2).

(2) Update the admissible flow. Then go to (1).
(3) Check whether the present maximal flow is opti-

mal. If it is go to (6). If it is not go to (4).
(4) Update the set of dual variables.
(5) Determine the new set of admissible arcs. Then go

to (1).
(6) Ready.

12. The Details of the Primal-Dual Algorithm:
The Initialization

We are now ready to go through the algorithm in detail.
To obtain an initial set of feasible dual variables we

do exactly as is described in [13], chapter 12. Thus,
for 1≤ n ≤ N and 1≤ m≤ M , define

α(n) = min{c(n, j ), 1≤ j ≤ M},
β(m) = min{c(i,m)− α(i ), 1≤ i ≤ N}.
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From the definition ofβ(m) it is clear thatα(n) +
β(m) ≤ α(n) + c(n,m)− α(n) = c(n,m) and hence
(11) is satisfied.

We shall at present not discuss the problem of how
to determine the set of admissible arcs, but postpone
that until later (Sections 19 and 20).

The simplest choice when defining an initial admis-
sible flow is to definex0(n,m) = 0, ∀n,m. This is
what is done in [13] and this is what we also do.

13. Preperations for the Labeling Routine
and the Flow-Change Routine

In this section we shall introduce some further useful
concepts.

A path starting at the sourceSi is a sequence
{(nl ,ml ), 1 ≤ l ≤ L} of admissible arcs, such that
(1) n1= i , (2) if L > 1 thenm2l−1=m2l and n2l =
n2l+1, 1 ≤ l ≤ L/2, (3) no arc occurs twice, and (4)
each source and each sink occurs in at most two arcs.
A path starting at a sinkRj is defined analogously. The
lengthof the path is equal to the number of arcs in the
path.

We say that a path{(nl ,ml ), 1≤ l ≤ L} goes from
the sourceSi to the sinkRj if it starts atSi , the number
of arcs is odd andmL = j , and we say that a path goes
from the sourceSi to the sourceSj if it starts atSi , the
number of arcs is even andnL = j .

We say that a sourcen is deficient(with respect to
the given flow) if

∑M
m=1 x(n,m) < a(n). Similarly, we

call a sinkRm deficientif
∑N

n=1 x(n,m) < b(m). A
source or a sink which is not deficient we callfull.

An augmenting pathbetween a deficient sourceSi

and a deficient sinkRj is a path{(nl ,ml ), 1≤ l ≤ L}
from Si to Rj such that ifL > 1 then

x(n2l ,m2l ) > 0, 1≤ l < L/2. (13)

We end this section introducing two more well-
known notions. Let again{x(n,m), 1 ≤ n ≤ N, 1 ≤
m ≤ M} be an admissible flow, and let{(nl ,ml ), 1 ≤
l ≤ L} be a path from a sourceSi which returns to
Si . (Thus n1 = i, nL = i and L is even.) If also
x(nl ,ml ) > 0, 1 ≤ l ≤ L then we say that the path is
acycle. A flow without cycles will be called aforest.

14. A Trivial Flow-Increasing Step

At point (2) of the general discription of the algorithm
described at the end of Section 11, what one has to do is
to increase the admissible flow. In this section we shall
describe an almost trivial way to increase the flow.

We assume that we have just obtained a new set of
admissible arcs. Let A denote the set of all deficient
sources, letB denote the set of all deficient sinks, and
C denote alladmissiblearcs(i, j ) such that the source
Si ∈ A and the sinkRj ∈ B.

The trivial flow-increasing step consists simply of
increasing the flow, as much as possible, along arcs in
C as long as there are any arcs left inC. Each time
we pick an arc inC and increase the flow along that
arc, that arc is excluded from the setC, since either the
source or the sink, or both become full. But also other
arcs may be excluded after we have increased the flow
along an arc(i, j ) since either the sourceSi or the sink
Rj can be endpoints for other arcs belonging toC.

There are many ways one can choose the order for
selecting arcs inC. We shall, however, not discuss this
issue.

Let us also observe that if we assume that the admis-
sible flow we started with was maximal on the previous
set of admissible arcs and also a forest, then the updated
flow will also be a forest. The reason for this is that if
the new flow value on an arc(i, j ) would give rise to
a cycle, then the flow we started from could not have
been maximal.

At this point we also want to mention that we use
the method described above the first time we update
the zero flow which we used as our initial flow. It is
obvious that if we update the zero flow in this way the
updated flow will be a forest.

15. The Flow-Change Routine

In the previous section we increased the flow on aug-
menting paths of length 1. In this section we shall show
how to increase the flow on augmenting paths of length
at least 3.

Thus suppose that we have found an augmenting
path{(nl ,ml ), 1 ≤ l ≤ L} from the sourceSi to the
sink Rj of lengthL ≥ 3. Defineθ1 by

θ1 = min{x(n2l ,m2l ), 1≤ l < L/2},

a quantity which must be positive because we have an
augmenting path (see conditon (13)). We next define
θ by

θ = min

{
a(i ) −

M∑
m=1

x(i,m),

b( j ) −
N∑

n=1

x(n, j ), θ1

}
, (14)
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a quantity which also must be positive sinceθ1 is, and
since we have assumed that both the sourceSi and the
sink Rj are deficient.

We can now obtain a new flow with larger total value,
if we redefine the flow values on the arcs of the path as
follows:

xnew(n2l−1,m2l−1)= xold(n2l−1,m2l−1)+ θ,
1≤ l ≤ (L + 1)/2

xnew(n2l ,m2l )= xold(n2l ,m2l )− θ,
1≤ l < L/2.

It is obvious that we still have a flow and that its total
value has increased byθ .

The above procedure to update a flow is calledthe
flow-change routine.

Finding augmenting paths and then applying the
flow-change routine is thus a way to increase a flow
on a given set of admissible arcs. But it is also the only
way. For we have:

Proposition 15.1. Suppose we have a flow on a set
of admissible arcs. Suppose also that there is no aug-
menting path from a deficient source to a deficient sink.
Then the present flow is maximal on the present set of
admissible arcs.

The truth of this proposition is intuitively clear. For a
formal proof of this result see the pages 177–185 of [1].
Compare also with Kantorovich’s proof of the duality
theorem [10].

16. The Labeling Routine

The purpose of the labeling routine is to find augment-
ing paths from deficient sources to deficient sinks. We
shall show how this can be done by first describing a
labeling routine for a more general setup. We call this
thegeneral labeling procedure.

Thus, letA and B be two finite sets. We denote a
generic element in A by the letteri , and a generic el-
ement inB by the letter j . We assume that for each
i ∈ A there is a well-defined setGi of neighborsin B,
and for eachj ∈ B there is a well-defined setG j of
neighbors inA, both of which may be empty. LetA0

andB0 be subsets ofA andB, respectively. The general
labeling procedure is a simple procedure to find “all”
connections between elements ofA0 and elements of
B0 where we by connection mean that there exists a

path fromA0 to B0 along neighbors, and where we by
“all” mean that there does not exist any further element
in B0 which can be reached by a path from an element
in A0.

The general labeling procedure is as follows. Start
by labeling all elements inA0 with a+ sign, for exam-
ple. Then choose any elementi1, say, inA0 and label
all its neighbors inB with the labeli1. Then choose
another elementi2, say, inA0 and label all its neigh-
bors in B which are not yet labeledwith the labeli2.
Continue in this way until all elements inA0 have been
considered. If no element in B is labeled the procedure
is completed.

Let B1 denote those elements inB which have been
labeled so far. Each element inB1 has thus, so to speak,
aparentin the setA0. Next, choose an elementj1, say,
in B1, consider its neighbors inA and if there are one or
more neighbors which have not yet been labeled, thus
do not belong toA0, label them byj1. Then choose
another elementj2, say, inB1, consider its neighbors
in A and if there are one or more neighbors which have
not yet been labeled, label them byj2. Continue in this
way until all elements inB1 have been considered.

Let A1 denote those elements inA which have been
labeled so far but do not belong toA0. If A1 is empty
the procedure is completed. Otherwise, choose an ele-
menti1, say, inA1 and label all its neighbors inB which
are not yet labeled with the labeli1. Then choose an-
other elementi2, say, inA1 and label all its neighbors
in B which are not yet labeled with the labeli2. Con-
tinue in this way until all elements inA1 have been
considered.

Let B2 denote those elements inB which have been
labeled so far, and which are not inB1. If B2 is empty
the procedure is completed. Otherwise, continue in ex-
actly the same way as when we had the setB1, and
let A2 denote those elements inA which have an el-
ement in B2 as parent. IfA2 is empty the proce-
dure is completed. Otherwise, continue the labeling
process.

Sooner or later the labeling procedure will end.
When that happens we have foundall elementsin B0 for
which there is a path to an element inA0, and for each
such element we can identify a string of parents which
leads back to an element inA0. If an element inB0

becomes labeled we say that we have abreakthrough,
otherwise we say that we have anonbreakthrough.

Note that usually the general labeling procedure does
not find all pathsfrom A0 to B0. Note also that the set
of paths obtained depends on theselection orderby
which one chooses the elements inA0, B1, A1, B2, etc.
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We shall now apply the general labeling procedure
to the more special situation we are considering. As
before letA denote the set of sources andB the set
of sinks. LetA0 in the general labeling procedure be
the set of deficient sources and letB0 denote the set of
deficient sinks. For an elementSi in A we define its
setGi of neighbors as the set of elementsRj in B for
which (i, j ) is an admissible arc, and for an element
Rj in B we define its setG j of neighbors as the set of
elementsSi in A for which (i, j ) is an admissible arc,
and for whichalso the flow x(i, j ) is strictly positive.

Now by applying the general labeling procedure to
the situation just specified we obtain a setB∗ say, con-
sisting of all deficient sinks for which there exists an
augmenting path from some deficient source. If the
set B∗ is empty, then by Proposition 15.1 the present
flow is maximal and we go to the dual solution change
routine. Otherwise, for each sinkRj ∈ B∗ we follow
the labeling backwards, thereby finding an augmenting
path, after which we go to the flow-change routine and
update the flow. Since the augmenting paths obtained
may have common arcs, it may happen that when we go
to the flow-change routine then the valueθ defined by
(14) may be equal to 0. If this happens we just leave the
flow-change routine and go to the next element inB∗.

After we have updated the flow for each sink found in
B∗, we start the labeling procedure anew. We continue
to go back and forth between the labeling procedure
and the flow-change routine until either the labeling
procedure results in a nonbreakthrough which implies
that the present flow is maximal, or all sources are full
in which case we have found an optimal flow.

Our labeling procedure differs slightly from the pro-
cedure described in [13], pp. 369, 370. In [13], chapter
12, the labeling process is stopped as soon as the first
augmenting path is found.

There are many modifications possible regarding the
labeling procedure. For example, instead of consider-
ing all deficient sources in parallel, so to speak, one
could take one element at a time and develop a “branch-
ing tree” for each deficient source. Another possibility
is to start from the set of deficientsinkseverysecond
time one applies the general labeling procedure, and
whenever one uses the the general labeling anew, one
onlyallows sinks and sources which werelabeleddur-
ing theprevioususe of the general labeling procedure.

This completes our description of steps (1), (2)
and (3) of the primal-dual algorithm as presented in
Section 11.

17. How to Avoid Cycles

One drawback with the labeling procedure as it is de-
scribed in [13] is that, after one have updated the flow
using the flow-change routine, one very easily obtains
cycles, and our experiments have shown that one often
obtains optimal solutions for which the optimal flow
may have as much as 15 to 20% more nonzero arcs
than necessary.

In order to obtain an optimal flow without cycles,
one has several options. One can, for example, con-
struct an algorithm which finds all cycles in a flow,
and then redefine the flow along these cycles so that
the discovered cycles disappear. Such an “uncycling”
procedure one can either use once at the end, when
one has found an optimal solution, or one can use it
several times during the execution of the primal-dual
algorithm, for example, just before one updates the new
dual variables.

Another way to avoid obtaining cycles is to apply the
general labeling procedure in a slightly different— and
somewhat more complicated—way, namely in such a
way that one first, as neighboring sets in the general
labeling procedure, only allows such sinks as neighbors
for which there is apositiveflow from a source to the
sink. By beginning with only “positive” neighbors so to
speak, and then slowly but systematicly increasing the
sets of neighbors such that, at the end, the neighboring
sets of the elements in A containall sinks that can be
reached by the admissible arcs, one can make sure that
one never obtains any cycles.

18. The Dual Solution Change Routine

There are now only two more parts of the primal-dual
algorithm we have to describe, namely step (4) how
to compute the new dual variables, and step (5) how
to determine the new set of admissible arcs. In this
section we consider the problem of how to redefine the
dual variables. We assume that we have just applied
the labeling procedure to a flow which turned out to be
maximal.

Let L1 denote the set of indices of labeled sources,
U1 denote the set of indices of unlabeled sources,L2

denote the set of indices of labeled sinks and letU2

denote the set of indices of unlabeled sinks. Since the
flow is maximal but not optimal neitherL1 norU2 can
be empty.
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The dual solution change routine starts by determin-
ing the following number:

δ = min{c(n,m)− α(n)− β(m), n ∈ L1, m ∈ U2}.

That δ must be a positive number follows from the
definition ofL1 andU2.

We now change the dual variables as follows:

αnew(n) = αold(n)+ δ, n ∈ L1,

αnew(n) = αold(n), n ∈ U1,

βnew(m) = βold(m)− δ, m ∈ L2,

βnew(m) = βold(m), m ∈ U2.

It is easy to check that this updated set of variables
constitutes a feasible dual solution, that is, we still have
c(n,m)−α(n)−β(m) ≥ 0, 1≤ n≤ N, 1≤m≤M
for the updated set of variables. It is also easy to verify
that the old flow, which we knew was a maximal ad-
missible flow on the old set of admissible arcs, is also
an admissible flow, but not a maximal flow, on the new
set of admissible arcs. (See, e.g., [13], chapter 12 for
details.)

The most time-consuming part, in practice, when
determining the new dual variables for a general trans-
portion problem, is to determine the numberδ. In case
one has an integer-valued cost matrix, one can, so
to speak, “cheat”, simply byalways choosingδ= 1.
When computing the Kantorovich distance for images,
this simple choice ofδ works quite well for a long
time during the execution of the primal-dual algorithm.
It is not until one is quite close to the optimal so-
lution that the true value ofδ occasionally is larger
than 1.

19. Finding admissible Arcs when the
Distance-Function is theL1-Metric

The only remaining step to describe in the primal-dual
algorithm is how we determine new admissible arcs.
In order to describe how this is done, we have to return
to our original notations. Thus, we have an imageP
with supportK1, an imageQ with supportK2 and dual
variablesα(i, j ) andβ(x, y) associated to the pixels in
K1 andK2, respectively.

As we pointed out when we defined the Kantorovich
distance for images, the Kantorovich distance is com-
puted with respect to an underlying distance-function
between the pixels of the two images. In this section

we shall discuss the case when the underlying distance-
function is theL1-metric, that is,

d(i, j, x, y) = |i − x| + | j − y|.

We first state the following proposition.

Proposition 19.1. Let the underlying distance-
function d(i, j, x, y)be a metric. Let the dual variables
{α(i, j ), (i, j ) ∈ K1} and {β(x, y), (x, y) ∈ K2} be
such that for each pixel(i, j ) ∈ K1, there exists a pixel
(x, y) ∈ K2, such that

d(i, j, x, y)− α(i, j )− β(x, y) = 0, (15)

and similarly that for each pixel(x, y) ∈ K2, there
exists a pixel(i, j ) ∈ K1, such that(15) holds. Then,
if (i1, j1) ∈ K1 and(i2, j2) ∈ K1,

|α(i1, j1)− α(i2, j2)| ≤ d(i1, j1, i2, j2), (16)

and similarly, if (x1, y1) ∈ K2 and also(x2, y2) ∈ K2,

then

|β(x1, y1)− β(x2, y2)| ≤ d(x1, y1, x2, y2). (17)

Proof: Let us prove (17). Assume thatβ(x1, y1) −
β(x2, y2) ≥ 0. Let (i2, j2) be such thatd(i2, j2, x2,

y2)− α(i2, j2)− β(x2, y2) = 0. Then

β(x1, y1)− β(x2, y2)

= β(x1, y1)− d(i2, j2, x2, y2)+ α(i2, j2)

≤ d(i2, j2, x1, y1)− α(i2, j2)− d(i2, j2, x2, y2)

+α(i2, j2)

≤ d(x1, y1, x2, y2)

where the last inequality sign follows from the trian-
gle inequality. The rest of the proof can be done in an
analogous way. 2

Before we state and prove the next lemma let us in-
troduce some convenient terminology. Let(i, j ) ∈ K1,
letα(i, j ) be a dual variable corresponding to(i, j ), let
(x, y) ∈ K2 and letβ(x, y) be a dual variable corre-
sponding to(x, y). If the dual variableβ(x, y) is such
that

β(x, y) < d(i, j, x, y)− α(i, j )
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then we say that(x, y) is low with respect to(i, j ). In
case there is little risk for misunderstanding we only
say that(x, y) is low. In case(x1, y1) and(x2, y2) are
such that

d(i, j, x2, y2)− α(i, j )− β(x2, y2) > d(i, j, x1, y1)

−α(i, j )− β(x1, y1) > 0

then we say that(x2, y2) is strictly lowerthan(x1, y1).
Let us also introduce the following notations and ter-

minology regarding the positions of two pixels(x1, y1)

and(x2, y2). If x1 ≤ x2 andy1 ≤ y2 we say that(x2, y2)

is northeast(NE) of (x1, y1). If x1 ≥ x2 andy1 ≤ y2

then we say that(x2, y2) is northwest(NW) of (x1, y1).
If x1 ≤ x2 and y1 ≥ y2 then we say that(x2, y2) is
southeast(SE) of (x1, y1). Finally, if x1 ≥ x2 and
y1 ≥ y2 then we say that(x2, y2) is southwest(SW) of
(x1, y1).

The usefulness of the next lemma is that it helps to
limit the number of tests needed for finding all new
admissible arcs in case we use theL1-metricas under-
lying distance-function.

Lemma 19.1. Suppose that the distance-function we
are using is the L1-metric. Let(i, j ) be a pixel in
K1, let α(i, j ) be a dual variable at(i, j ), such that
d(i, j, x0, y0) − α(i, j ) − β(x0, y0) = 0 for some
(x0, y0) ∈ K2. Furthermore, assume that for each
(x, y) ∈ K2, there exists some pixel(i ′, j ′) ∈ K1 such
that,

d(i ′, j ′, x, y)− α(i ′, j ′)− β(x, y) = 0.

Now suppose that(x1, y1) ∈ K2 is low with respect to
(i, j ). Then

(a) if (x1, y1) is NE of(i, j ) and(x, y) is NE of(x1, y1)

then(x, y) is low,
(b) if (x1, y1) is NW of (i, j ) and (x, y) is NW of

(x1, y1) then(x, y) is low,
(c) if (x1, y1) is SE of(i, j ) and(x, y) is SE of(x1, y1)

then(x, y) is low,
(d) if (x1, y1) is SW of(i, j )and(x, y) is SW of(x1, y1)

then(x, y) is low.

Proof: We shall only prove case (a). We prove case
(a) by contradiction. Thus suppose there exists a
pixel (x, y)∈ K2 located NE of(x1, y1) and such that
at that pixel the dual variableβ(x, y) is such that
−d(i, j, x, y)+ α(i, j )+ β(x, y) = 0.

But since(x1, y1) is low with respect to(i, j ), it
follows thatα(i, j ) must satisfy

α(i, j ) ≤ d(i, j, x1, y1)− 1− β(x1, y1)

which together with the proceeding equality implies
that

d(i, j, x, y)−β(x, y)≤ d(i, j, x1, y1)− 1−β(x1, y1)

and henceβ(x, y)−β(x1, y1)≥ d(i, j, x, y) −d(i, j,
x1, y1)+1 = x − i + y− j − (x1 − i + y1 − j )+ 1
= x− x1+ y− y1+ 1= d(x, y, x1, y1)+ 1 which is
impossible because of the previous proposition.2

A geometric way to look at this lemma is the follow-
ing. We know from Proposition 19.1 that|β(x, y) −
β(u, v)| ≤d(x, y, u, v). This means that the graph of
the dual variables{β(x, y), (x, y) ∈ K2} looks, so to
speak, as a landscape where all slopes are bounded by 1.
For fixed (i, j ), the distance-functiond(i, j, x, y) =
|i − x| + | j − y| considered as a function ofx andy
can be looked upon as an upside-down pyramid. In or-
der to find the admissible arcs having(i, j ) as source,
what we have to do, so to speak, is to put the top of
the pyramid at(i, j, α(i, j )) and then find all tangent
points to the “surface”{β(x, y), (x, y) ∈ K2}. But
since the slopes of this “surface” are bounded by 1, as
soon as the “surface” is strictly below the pyramid, it
will remain to be so, as long as we move away from
the center point(i, j ).

The lemma above implies that when looking for arcs
connected to a labeled pixel(i, j ) in K1, we only have
to check pixels(x, y) along a liney = j1 until we
have found a pixel(x, y) which is low with respect to
(i, j ).

20. Finding Admissible Arcs for Other
Distance-Functions

In case the underlying distance-function is defined by

d(i, j, x, y) = max{|i − x|, | j − y|}

(theL∞-metric) a similar stopping rule as given in the
previous section can be defined. Also when we let the
distance-function be defined as a linear combination of
theL1-metricand theL∞-metric(which is a good way
to find approximations of the Euclidean metric) it is
possible to prove lemmas similar to Lemma 19.1.
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However, if the underlying distance-function is
the square of the Euclidean distance, that is, if we
have

d(i, j, x, y) = (i − x)2+ ( j − y)2 (18)

then it does not seem so easy to prove a lemma analo-
gous to Lemma 19.1.

To define the distance-function by (18) could turn
out to be a very useful choice of distance-function,
for several reasons. First of all this distance-function
is rotationally invariant. Secondly, it turns out that
the number of admissible arcs will be substantially
smaller than what one obtains when using theL1-metric
or an approximate Euclidean metric as underlying
distance-function. For the images considered in Sec-
tion 6, the optimal set of dual solutions gave rise to
approximately 3,000,000 admissible arcs in case we
used theL1-metricbut not more than 257,000 when we
used the distance-function defined by (18). Thirdly, if
we take the square root, after we have computed the
Kantorovich distance, then it turns out that we obtain
ametric, (see Section 10).

Since the choice of (18) for defining the underlying
distance-function is quite attractive, it would, of course,
be desirable if a lemma similar to Lemma 19.1 could
also be proved in this case. Unfortunately, we have not
been able to prove such a lemma.

However, we have find a condition, which, if it holds,
implies that the time for the search of new admissible
arcs is decreased substantially also when the underly-
ing distance-function is defined by (18). Before we
introduce this condition we shall introduce some fur-
ther terminology concerning the locations of pixels.

Thus, suppose that we have two pixels(i1, j1) and
(i2, j2) belonging to the supportK of the same image
and such that they are located on the same horizontal
line (that is,j1 = j2). If there isnoother pixel(i3, j3) ∈
K on the same line as(i1, j1) and (i2, j2) which is
locatedbetweenthe pixels(i1, j1) and(i2, j2), then we
say that(i1, j1) and (i2, j2) are close to each other.
Furthermore, ifx2 > x1 then we say that(x2, y1) is
east(E ) of (x1, y1) and if insteadx2 < x1 then we say
that(x2, y1) is west(W) of (x1, y1).

Let us now introduce the following assertion.

Assertion 20.1 Let (i, j ) be a pixel in K1, and let
α(i, j ) be an admissible dual variable associated to the
pixel (i, j ) with a value obtained after we have used
the“dual solution change” routine.

Now suppose that(x1, y1) and(x2, y1) are in K2 and
are close to each other, that both are low with respect
to (i, j ) and that(x2, y1) is strictly lower than(x1, y1).
Then

(a) if (x2, y1) is E of (x1, y1) and (x1, y1) is E of
(i, j ) then all pixels(x, y1) ∈ K2 which are E
of (x2, y1) will also be low, and

(b) if (x2, y1) is W of (x1, y1) and (x1, y1) is W of
(i, j ) then all pixels(x, y1) ∈ K2 which are W of
(x2, y1) will also be low.

We have not been able to show that Assertion 20.1
always is true, when the distance-function is defined
by (18), but so far all our computer experiments have
supported it. In case the distance-function is defined by
theL1-metricor theL∞-metricthe truth of the assertion
is trivially true, but also for distance-functions defined
as positive integer-valued linear combinations of the
L1-metric and theL∞-metric computer experiments
have supported the truth of the assertion.

Now, just as Lemma 19.1 makes it possible to con-
struct an algorithm by which we can speed up the search
for new admissible arcs when one uses theL1-metric,
by assuming that Assertion 20.1 is true, one can in-
troduce a stopping criteria for each line when one is
looking for new admissible arcs also when the under-
lying distance-function is defined by (18).

Hereby, we have completed presentation of our al-
gorithm for computing the Kantorovich-distance for
images.

21. Computing the Initial Set of Dual Variables
and Admissible Arcs

In Section 12 we described formally how to deter-
mine the initial set of dual variables{α(n), 1 ≤ n ≤
N, β(m), 1 ≤ m ≤ M}. In practice, when we want to
compute the initial dual variables, this is not a straight-
forward task because of the size of the matrixc(n,m).
However, to determine the set{α(n), 1 ≤ n ≤ N} of
dual variables, when we have theL1-metric, the L∞-
metric, or the square of the Euclidean metric, one can
prove that the number of operations is of orderN and
not NM. Once the dual variablesα(n), 1 ≤ n ≤ N,
are determined, one can use Lemma 19.1 or Assertion
20.1 to determine the dual variablesβ(m) as well as
the initial set of admissible arcs.
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Figure 10. A set of optimal dual variables associated to the pixels
of the image of Fig. 1 obtained when computing the Kantorovich
distance for the images in Figs. 1 and 2 and whend(i, j, x, y) =
(i − x)2 + ( j − y)2.

22. An Image of a Set of Optimal Dual Variables

Let A={α(i, j ) : (i, j )∈ K1}andB={β(x, y) : (x, y)
∈ K2}be the two sets of optimal dual variables obtained
for the example considered in Section 6 in case we use
the distance-function defined by (18). The purpose of
this Section is just to show an image of one of these
sets (the dual variables ofA). (See Fig. 10).

It is interesting to note that also this image has some
slight resemblance of the original Lenna image.

23. A Complex Problem

We shall conclude this paper by describing the follow-
ing problem.

Let P be a 256× 256 image and letQ be a
coded version ofP with equal total grey value. Let
d(i, j, x, y) = (i − x)2 + ( j − y)2, and letA and B
denote the two matrices containing the optimal dual
variables, obtained when computing the Kantorovich
distance betweenP and Q based on the distance-
functiond(i, j, x, y). The values ofA are associated
to the pixels ofP and the values ofB are associated to
the pixels ofQ.

Next, letG(Q) denote the set of all imagesR, say,
with equal total grey value asP andQ, such that

dK (R, Q) = R⊗ A+ Q⊗ B

if we use d(i, j, x, y) = (i − x)2+ ( j − y)2, as
distance-function, and where⊗ denotes element-wise
multiplication of two matrices. (The setG(Q) is
nonempty sinceP ∈ G(Q)).

Let P∗ be the mean of all images belonging toG(Q).
Compute the Kantorovich distance betweenP

andP∗.
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