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Abstract. In this paper, we extend the notion of affine shape, introduced by Sparr, from finite point sets to more
general sets. It turns out to be possible to generalize most of the theory. The extension makes it possible to reconstruct,
for example, 3D-curves up to projective transformations, from a number of their 2D-projections. An algorithm is
presented, which is independent of choice of coordinates, is robust, does not rely on any preselected parameters and
works for an arbitrary number of images. In particular this means that a solution is given to the aperture problem of
finding point correspondences between curves.
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1. Introduction

Affine shape of finite point configurations, has been in-
troduced and studied in a series of papers by Sparr, see
for example [9, 10]. It has proved to be an important tool
when analyzing the geometry of cameras and scene.
Instead of working with camera matrices it all comes
down to finding relations between linear subspaces,
and the composition of two perspective transforma-
tions corresponds to an algebraically simple operation
of multiplication of the depths. So far this analysis has
been confined to finite point sets.

A reconstruction algorithm, by using affine shape,
has been proposed in [10]. It works for arbitrary but fi-
nite numbers of points and camera views and it is based
on aligning subspaces by using orthogonal projections
and maximizing some of the largest eigenvalues of the
sum of these projections.

In this paper, we extend the analysis of finite point
configurations to more general sets, by introducing a
new definition of affine shape. These configurations
are here called shapeable and they include for exam-
ple curves and surfaces inR3, and also finite point sets

as a special case. As an application of the extension of
shape, we propose an algorithm that is based on Sparr’s
but enables reconstructions of almost general curves
once the curves have been extracted from the images.
Furthermore, no point correspondences between the
different images are needed beforehand, but are com-
puted by the algorithm. It is independent of the choice
of coordinates and works for an arbitrary number of
images.

Another approach can be found in [5, 6], where a
theory for computing the structure and motion of three-
dimensional curves is developed. It is shown there that
images of three-dimensional curves obey several con-
straints at each point. These constraints involve high
order spatio-temporal derivatives of the image curve
motion and camera motion and are thus difficult to han-
dle in practice due to numerical problems.

Yet another type of reconstruction can be found in
[1, 3, 7], where image-motion constraints that hold for
certain points on the curve are developed. These con-
straints are more robust and can be applied to the sil-
houette of curved surfaces, but they do not exploit the
full structure of the curve reconstruction problem.
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Another application of shape is recognition of planar
objects, by looking at their boundary contours. The
algorithm for this is actually just a side effect of the
reconstruction algorithm. The camera is modeled as an
affine camera and all that has to be done is to compare
the affine shapes of the curves.

Another way of doing this recognition task can be
found in [2], where certain affine invariants of curves
are compared.

2. Affine Shape of Finite Point Configurations

In this section, we will recapitulate what is meant by
affine shape of an ordered finite point configuration.
This will, in the next section, be generalized to more
general configurations.

Let Cn
m be the set of orderedm-point configurations

X = (p1, p2, . . . , pm) ∈ Rmn

in Rn, wherepi ∈ Rn is the coordinate vector of point
numberi in X .

By an affine transformation,a :Rn → Rn, is meant
a map of the form,

a(x) = Mx + t, (1)

whereM is ann× n matrix andt andx aren× 1 ma-
trices. The matrixa is called nonsingular if detM 6= 0.
In a natural way,a can be extended to a transforma-
tion Cn

m → Cn
m, by letting it act on all points of the

configuration, i.e.

a ◦ X = a ◦ (p1, p2, . . . , pm)

= (a(p1),a(p2), . . . ,a(pm)).

Now let A be the group of nonsingular affine trans-
formationsCn

m→ Cn
m. By theA-orbit ofX is meant the

set

{Y |Y = a(X ), a ∈ A}.
We writeX ∼ Y, whenX andY are in the same orbit.
The set of equivalence classes is denotedCn

m/A. Let

s : Cn
m→ Cn

m

/
A

be the natural projection.
It can be shown, [8], thats(X ) can be represented

by the linear subspaceξ
∣∣∣∣∣∣∣
∑

i

ξi pi = 0,
∑

i

ξi = 0,

X = (p1, p2, . . . , pm)

 , (2)

i.e. a linear subspace ofRm. In particular, this means
that s(X ) = s(Y) if and only if there existsa ∈ A
such thatY = a(X ). The linear subspaces(X ) in (2)
is called the affine shape ofs(X ) ∈ Cn

m. We will now
extend affine shape to more general sets, as for example
curves and surfaces inR3.

3. Extension of Shape

LetX = (p1, . . . , pm) ⊂ Rn be anm-point configura-
tion inRn. Let I = {1, 2, . . . ,m} and

φX : I → X ,
be defined byφX (i ) = pi , i ∈ I . The definition (2) can
then be rewritten as,

s(X ) =

 f : I → R

∣∣∣∣∣∣∣∣∣
∑
x∈I

f (x)φX (x) = 0,

∑
x∈I

f (x) = 0

 .
An extension to more general sets is done by replacing
the sums with integrals. First we need some basic facts
and notions on integrable functions.

Let µ be a positive Radon measure onRd, with
supp µ= I . The measureµ is said to be finite if
µ(Rd)<∞. We say that a real valued functionf ∈ L p

µ

if f isµ-measurable and

‖ f ‖p =
(∫
| f |p dµ

)1/p

<∞, 1≤ p <∞,
(3)

‖ f ‖∞ = inf{t |µ(| f (t)| > t) = 0} <∞.

If 1/p+ 1/q = 1, f ∈ L p
µ andg ∈ Lq

µ, the integral

〈 f | g〉µ =
∫

f (x)g(x) dµ,

is defined and finite. If 1≤ p < ∞, thenLq
µ can be

identified with the dual ofL p
µ. More precisely, for every

functionalT : L p
µ→ R which is linear and continuous

in the norm (3), there exists one and only oneu ∈ Lq
µ,

such thatT(·) = 〈· |u〉µ.
If f ∈ L p

µ andg = (g1, g2, . . . , gn), with gi ∈ Lq
µ,

i = 1, . . . ,n, we set

〈 f | g〉µ = (〈 f | g1〉µ, 〈 f | g2〉µ, . . . , 〈 f | gn〉µ).

Also for vector valued functions we writeg ∈ Lq
µ, if

each component ofg belongs toLq
µ.
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When dealing with finite point configurations, as in
Section 2,X denotes an ordered set of points. The
ordering can be considered as a parametrisation of the
set. To deal with more general point configurations, it is
convenient to letX denote point sets, without ordering
or parametrisation. This will be done below.

Definition 1. LetX ⊆ Rn. By a parametrisation ofX
is meant a surjective map

φX : I → X

whereI ⊆ Rd is the support of a positive, finite Radon-
measureµ, φX is defined in a neighborhood ofI , and
φX ∈ Lq

µ for someq, 1< q ≤ ∞. Then by the affine
shape ofφX is meant the linear subspace ofL p

µ, where
1/p+ 1/q = 1,

s(φX ) =
{

f

∣∣∣∣∣ 〈 f |φX 〉µ = 0, 〈 f | 1〉µ = 0,

f ∈ L p
µ

}
.

If this construction is possible,X is called shapeable.

Below, we will restrict ourselves to shapeable sets.
Often the subscriptX of φX will be dropped, when it
is clear from the context which configuration is meant.

Note that the requirements for a configuration to be
shapeable are most often satisfied. For example, any
finite union of smooth surfaces and curves is shapeable.

It is sometimes convenient to invoke the constant
function 1 in the parametrisation, writingφX =
(φ1, . . . , φn, φn+1), with φn+1 ≡ 1, instead ofφX =
(φ1, . . . , φn). This will be called extended coordinates.

Recall that ifW ⊆ V , whereV is a linear space, then
the linear hull, linhull(W), is the linear space of all finite
linear combinations of elements inW. Furthermore, if
V is a normed linear space, then the annihilatorW0 of
W is the set of all continuous and linear functionals on
V that vanish onW.

In Definition 1, observe that the constant function
1 ∈ Lq

µ, sinceµ is finite. The affine shape may thus
be expressed as an annihilator. With terminology bor-
rowed from the finite dimensional case, cf. [9], we de-
fine:

Definition 2. Let φX = (φ1, . . . , φn, φn+1), with
φn+1≡ 1, be a parametrisation ofX ⊆Rn in extended
coordinates. Then by the depth space ofφX is meant
the linear subspace ofLq

µ,

d(φX ) = linhull
({φi }n+1

1

)
.

Notice that for an image curvet → (ψ1(t), ψ2(t)),
the depth space is the three-dimensional space spanned
by the functions(ψ1, ψ2, 1), where 1 is the constant
function.

The name depth space will be justified below. As an
immediate consequence of the Definitions 1 and 2, we
obtain:

Proposition 1.

s(φX )
0 = d(φX )

codims(φX ) = dimd(φX ).

4. Examples

We now give some examples wheres(φX ) andd(φX )
can be computed explicitly.

Example 1. In Section 2 above, affine shape of finite
point configurationsX = {p1, . . . , pm} ⊂ Cn

m was
defined. In the setting of Definition 1 it is obtained by
using the measureµ =∑n

i=1 δi , whereδi is the Dirac
measure atI = {1, . . . ,m}. Let φX be a continuous
parametrisation ofX . Then the affine shape is

s(φX ) =
{

f

∣∣∣∣∣ 〈 f |φX 〉µ = 0, 〈 f | 1〉µ = 0,

f ∈ C(R)

}
,

and if φX = (φ1, . . . , φn, 1) in extended coordinates,
then

d(φX ) = linhull
({φi }n+1

1

)
.

Example 2. LetX be a non degenerate ellipse inR3.
By a nonsingular affine transformation,X can be trans-
formed to a unit circleX ′ in a coordinate plane, say
z = 0. Under this transformation shape unchanged by
Corollary 1. One parametrisationφX ′ of X ′ is x =
cos(t), y = sin(t), z= 0, with t ∈ [0, 2π ]. Since

1∪ {cos(kt)}∞1 ∪ {sin(kt)}∞1
is an orthogonal basis ofL2([0, 2π ]), we get

s(φX ) = linhull
({cos(kt)}∞2 ∪ {sin(kt)}∞2

)
and

d(φX ) = linhull(1, cos(t), sin(t)).
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Example 3. Let X be a bounded piece of a straight
line in R2. The setX can then be transformed to the
line segmentX ′ = I = [−1, 1], on a coordinate axis,
say thex-axis, by a nonsingular affine transformation,
leaving its shape unchanged. IfφX (x) = (x, 0, 0) for
x ∈ I , then

s(φX ) =

 f

∣∣∣∣∣∣∣
∫ 1

−1
f x dx= 0,

∫ 1

−1
f dx = 0,

f ∈ L2(I )

 .
If we parametriseL2(I ) by the orthogonal Legendre
polynomials, defined onI by

Pn(x) = 1

2nn!

dn

dxn
(x2− 1)n, n ≥ 0,

we thus have

s(φX ) = linhull
({Pi }∞2

)
and

d(φX ) = linhull(x, 1).

For an infinite straight line, to get a finite measure
one could use e.g. the measuredµ = e−x2

dx, and the
Hermite polynomials.

Example 4. Example 3 can be extended to the sit-
uation whenX is the union of a bounded piece of
a straight linel and anm-point configurationY =
(p1, . . . , pm) ⊂ R3. As in Example 3, we can assume
that the line is−1 ≤ x ≤ 1, y = 0, z = 0. Let
µ = µ1 + µ2, whereµ1 is the Lebesque measure on
I = [−1, 1] andµ2 =

∑
j∈J δ j , J = {2, . . . ,m+ 1},

whereδ j is the Dirac measure atj . Let

φX : I ∪ J → Rn

be a parametrisation that is continuous in a neighbor-
hood of J and fulfillsφX (x) = (x, 0, 0), whenx ∈ I
andφX ( j ) = pj−1, when j ∈ J. The shapes(φX ) is
then given by

s(φX ) =


( f, α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ 1

−1
f

 x
0
0

 dx+
m∑
1

αi pi = 0,

∫ 1

−1
f dx+

m∑
1

αi = 0,

f ∈ L2(I )


.

Let L2(I ) be parametrised by the Legendre polynomi-
als Pi . For f = P0 ≡ 1, the constraints imply that

∑
αi pi = 0 and 2+∑αi = 0. For f = P1 = x, they

imply that (2/3, 0, 0)t +∑αi pi = 0 and
∑
αi = 0.

For f = Pi , i = 2, . . . ,m, the constraints reduce to
that of shape of finite point configurations, that iss(Y).

To summarize, set

E0(Y) =
{
α

∣∣∣∣ ∑αi pi = 0, 2+
∑

αi = 0

}
,

E1(Y) =
α

∣∣∣∣∣∣
(2/3, 0, 0)t +

∑
αi pi = 0,∑

αi = 0

 ,
and

Ei (Y) = s(Y), i > 1.

Then

s(φX ) = linhull
({Pi × Ei (Y)}∞0

)
,

where Pi are the Legendre polynomials. IfφX =
(φ1, φ2, φ3, 1) in extended coordinates, then

d(φX ) = linhull{(x, φ1(J)),

(0, φ2(J)), (0, φ3(J)), (1, φ4(J))}.

Example 5. Let φX be a parametrisation of a point
configurationX , with I = {x | 0 ≤ xi ≤ 1} ⊂ Rd,
and letTk ⊂ L2(I ) be the set of step functions onI
that are constant on 2−k ji < xi < 2−k( ji + 1), ji =
0, 1, . . . , k − 1. Setsk(φX ) = Tk ∩ s(φX ), which is a
closed linear space. Iff ∈ sk(φX ), then f = ∑ ξlχl ,
whereχl denotes characteristic functions, and the sum
is finite. The defining property ofs(φX ) implies∑

l

ξl 〈χl |φX 〉 = 0,
∑

l

ξl 〈χl | 1〉 = 0.

Since〈χl | 1〉 = c 6= 0, we get∑
l

ξl
〈χl |φX 〉
〈χl | 1〉 = 0,

∑
l

ξl = 0.

Here 〈χl |φX 〉/〈χl | 1〉 is the mass center ofφX on
supp (χl ). Hencesk(φX ) can be identified with the
shape of the finite point configurations defined by the
mass centers〈χl |φX 〉/〈χl | 1〉. Thus, as

s(φX ) =
∞⋃
0

sk(φX ),

we can interpretsk(φX ) as the shape ofφX at scalesk,
k = 1, 2, . . . .
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5. Some Basic Theorems

We will now prove some basic theorems about affine
shape and depth. For the finite dimensional versions of
these, see [9].

Suppose thatX ⊆ Rn andX ′ ⊆ Rn′ , and thatφX :
I → X andφ′X ′ : I → X ′ are parametrisations as in
Definition 1, with the sameµ and p. If T :Rn → Rn′ ,
we writeT(φX )=φ′X ′ or T :φX→φ′X ′ if T(φX (x)) =
φ′X ′(x) almost everywhere, with respect to the measure
µ. Let60 be the subspace

60 =
{

f | 〈 f | 1〉µ = 0, f ∈ L p
µ

}
.

Theorem 1 (Affine Shape Theorem). LetφX : I →
X ⊆ Rn andφ′X ′ : I → X ⊆ Rn be parametrisations
as in Definition1, with the sameµ and p.

(i) If a :Rn→ Rn is an affine transformation, then

a :φX → φ′X ′ ⇐⇒ s(φX ) ⊆ s(φ′X ′)

⇐⇒
d(φX ) ⊇ d(φ′X ′).

(ii) Let S ⊆ 60 be a closed linear space, with
codim (S) ≤ n + 1, where codim(S) is taken
with respect to Lpµ. Then there existsX ⊆ Rn with
a parametrisationφX ∈ Lq

µ, such that s(φX ) = S.

Proof: In (i), the second equivalence is an immediate
consequence of Proposition 1. To verify⇒, in the first,
let f ∈ s(φX ). Then by (1)

〈 f |φ′X ′ 〉µ = 〈 f |MφX + t〉µ
= M〈 f |φX 〉µ + t〈 f | 1〉µ = 0.

To verify⇐, let d(φ′X ′) ⊆ d(φX ). Thenφ′X ′ is a linear
combination of the components ofφX = (φ1, . . . , φn)

and the constant function 1, which gives an affine trans-
formation. This proves statement (i).

Statement (ii) follows from the fact thatLq
µ is the

dual toL p
µ. In fact,Scan be written

S=
n+1⋂

1

Hi ,

where Hi are closed hyperplanes, not necessarily all
different, and Hn+1=60. Define linear functionals
Li : L p

µ → R, by Li (Hi ) = 0 andLi (ui ) = 1, when

ui ∈ L p
µ\Hi , whereA\B={x | x ∈ A, x /∈ B}. ThenLi

is continuous and there exists, by the duality,φi ∈ Lq
µ,

so thatLi (·)=〈· |φi 〉µ, i = 1, . . . , n+1. LetφX : I →
Rn be defined byφX (x) = (φ1(x), . . . , φn(x)). Then
φX (I ) = X is a point configuration fulfilling (ii). 2

Corollary 1. Under the assumptions of Theorem1,

a : φX → φ′X ′ ,

with a nonsingular affine transformation

⇐⇒
s(φX ) = s(φ′X ′).

Proof: Apply Theorem 1 (i) toa anda−1. 2

It follows thats(φX ) is a complete affine invariant.
Let5be an affine hyperplane inRn. The correspond-

ing projective hyperplane5∗ is obtained by adjoining
points at infinity, which can be identified with the di-
rection vectors in5.

Definition 3. Let5∗,5′∗ be projective hyperplanes in
Pn. If c /∈ 5′∗, thenP :5∗ → 5′∗ is called a perspective
transformation with centerc, if for x ∈ 5∗ there exists
y ∈ 5′∗ and α ∈ R, such that−→cx = α−→cy, where−→
ab is the vector froma to b in Rn. α is called the
depth ofx. We also allowc to be a point at infinity in
which caseP is a parallel projection along the direction
corresponding toc, and the depthα is set to 1.

Remark. For perspective transformations only two
cases can appear: eitherc ∈ 5∗, in which caseP is
called singular, orc 6∈ 5∗, in which caseP is bijective,
and is called nonsingular.

We will now use affine shape to characterize per-
spective transformations. Following Definition 3, we
assume that, whenY is the perspective image ofX ,
the parametrisationsψY : I → Y andφX : I → X are
related by

−−−−→
cφX (x) = α(x)−−−−→cψY(x), a.e., (4)

for someµ-measurable functionα : I → R. Thenα
is called the depth ofφX with respect toψY . We also
write P :φX → ψY . The depth ofφX gives how much
the vector from the camera center to the image point
ψY(x) should be enlonged to coincide with the vector
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from the camera center to the object pointφX (x)almost
everywhere.

We say thatα is non degenerate ifα and 1/α belong
to L∞µ . The following lemma will be useful.

Lemma 1. If α ∈ d(φX ) is non degenerate, then

(i) αL p
µ = L p

µ, αLq
µ = Lq

µ,

(ii) codim(s(φX ))= codim(αs(φX )) and αs(φX ) is
closed.

Proof: (i) follows from Hölder’s inequality.
The linear operator

T : L p
µ 3 f → α f ∈ L p

µ

is seen to be a homeomorphism and the restriction of
T to the closed spaces(φX ) gives (ii). 2

The following theorem motivates the name depth
space in Definition 2.

Theorem 2 (Depth Theorem). Let φX : I → X ⊆
Rn andψY : I → Y ⊆ Rn be parametrisations as in
Definition1, with the sameµ and p.

(i) If α is the depth of a perspective transformation
P :φX → ψY , thenα ∈ d(φX ) and

αs(φX ) ⊆ s(ψY).

(ii) LetφX (I ) ⊆ 5∗. If α ∈ d(φX ) is non degenerate
and c /∈ 5∗, then there existsψY , and a nonsin-
gular perspective transformation P:φX → ψY
with depthα and center c.

(iii) If α ∈ d(φX ) is non degenerate andλ ∈ 60\α60,
then there existsψY and a singular perspective
transformation P:φX → ψY with depthα, such
that

s(ψY) = linhull({αs(φX )}, λ).

The perspective center is given by

c =
〈
λ

α

∣∣∣∣φX 〉
µ

/〈
λ

α

∣∣∣∣ 1〉
µ

.

If α≡C, where C 6= 0 is a constant, and λ ∈
60\s(φX ), then there existsψY and a parallel

perspective transformation P:φX → ψY along
the direction〈λ |φX 〉, such that

s(ψY) = linhull({s(φX )}, λ).

Remark. Note that ifα is not constant modulo sets of
measure zero then60\α60 6= ∅.

Theorem 2 states that the only depths that can occur
when applying a perspective transformation onφX are
given byd(φX ).

Before giving the proof, recall that ifX ⊆ Rn, then
the affine hull, affhull(X ), is the affine space inRn of
smallest dimension that containsX .

Proof: (i) The assumption means that there existsc ∈
Rn, such thatα(x)

−→
cψ(x) = −→cφ(x), x ∈ I . Let f ∈

s(φ). Then

0= 〈 f | −→cφ 〉
µ
= 〈 f |α−→cψ 〉

µ
= 〈 f |αψ〉µ − c〈 f |α〉µ.

If 〈 f |α〉µ 6= 0, then

c = 〈 f |αψ〉µ〈 f |α〉µ =
〈 f α |ψ〉µ
〈 f α | 1〉µ = 〈g |ψ〉µ,

with

g = f α

〈 f α | 1〉µ .

Since〈g | 1〉µ = 1, it follows that

c = 〈g |ψ〉µ ∈ affhull(ψ(I )),

i.e.,c ∈ 5′∗, which is a contradiction. Hence〈 f |α〉µ =
0, i.e.,α ∈ s(φ)0 = d(φ), and〈 f α |ψ〉µ = 0. This
proves thatαs(φ) ⊆ s(ψ).

(ii) Defineψ by
−→
cψ = −→cφ/α. Then, by Lemma 1,

ψ ∈ Lq
µ and thus is a parametrisation for someY. Since

αs(φ) ⊆ s(ψ), by (i), this implies that codim(s(ψ)) ≤
codim(s(φ)), by Lemma 1. Thus,

dim affhullψ(I ) ≤ dim affhullφ(I )

and P :φ → ψ is a perspective transformation with
depthα. Since P :φ → ψ is bijective, we actually
have dim affhullψ(I ) = dim affhullφ(I ).

(iii) First assume thatα is not constant and defineψ
as in (ii). Then

〈
λ | −→cψ 〉

µ
=
〈
λ

α

∣∣∣∣−→cφ〉
µ

=
〈
λ

α

∣∣∣∣φ〉
µ

−
〈
λ

α

∣∣∣∣ c〉
µ

.



Extension of Affine Shape 125

Let

c =
〈
λ

α

∣∣∣∣φ〉
µ

/〈
λ

α

∣∣∣∣ 1〉
µ

.

Then〈λ |ψ〉µ= 0, so thatλ∈ s(ψ) and linhull(αs(φ),
λ) ⊆ s(ψ).

To verify the reverse inclusion, letf ∈ s(ψ). Then

〈 f |ψ〉µ =
〈

f

∣∣∣∣ φα − c

α
+ c

〉
µ

= 0.

Since〈 f | 1〉µ = 0 andc = 〈 λ
α
|φ〉µ/〈 λα | 1〉µ,〈

f

∣∣∣∣∣ φα − 〈λ |α−1φ〉µ
〈λ |α−1〉µ

1

α

〉
µ

= 0. (5)

If f /∈ αs(φ), (5) implies〈 f | 1
α
〉µ 6= 0 and sinceλ /∈

α60, 〈
f
〈λ |α−1〉µ
〈 f |α−1〉µ − λ

∣∣∣∣α−1φ

〉
µ

= 0.

Thus

f
〈λ |α−1〉µ
〈 f |α−1〉µ − λ ∈ αs(φ),

and f ∈ linhull(αs(φ), λ).
Now assumeα ≡ C, where 0 6= C ∈ R. Since

60\s(φ) 6= ∅, there exists 16≡ α′ ∈ d(φ) such that
〈λ |α′〉 6= 0. Let

ψ = φ − 〈λ |φ〉〈λ |α′〉α
′.

It is easily verified thats(ψ) = linhull{s(φ), λ} and
since linhull({αs(φ)}, λ) is closed, the theorem is
proved. 2

Before stating the next theorems we must exclude
a highly degenerate case for perspective transforma-
tions where all depth information is lost. This occurs
when a perspective transformation is the composition
of two perspective transformations where at least one
is a parallel transformation. We say that a perspective
transformationP :φX → ψY , with depthα is flat if
s(ψY) ⊆ α60. In the following we assume that all
perspective transformations are non flat.

Theorem 3 (Shape transform theorem). Let φX :
I → X ⊆ Rn andφ′X ′ : I →X ′ ⊆ Rn be parametrisa-
tions as in Definition1, with the sameµ and p. Then

αs(φX ) ⊆ s(ψY), α ∈ d(φX ) is non degenerate

⇐⇒
s(P(φX )) = s(ψY)

for some perspective transformation P,

with depthα.

Proof: To prove⇒, first assume that

αs(φ) ⊂ s(ψ),

with strict inclusion. Letλ ∈ s(ψ)\αs(φ), so that The-
orem 2(iii) is fulfilled. Then there exists a point config-
urationY, with a parametrisationϕ, and a perspective
transformationP :φ → ϕ, with depthα, such that
s(ϕ) = linhull({αs(φ)} , λ) = s(ψ), by a dimension-
ality argument. Thus,s(P(φ)) = s(ψ).

If insteadαs(φ) = s(ψ), thenαs(φ − c) = s(ψ),
wherec ∈ Rn and s((φ − c)/α) = s(ψ). Let c /∈
affhull(φ(I )) and defineϕ by −→cϕ = −→cφ/α. Thenc /∈
affhull(ϕ(I )) and

s(ϕ) = s

(
φ − c

α

)
= s(ψ).

Thus, P :φ → ϕ is a perspective transformation and
s(P(φ)) = s(ψ).

The left implication⇐, is an immediate conse-
quence of Theorem 2(i). 2

Theorem 4. Let P:φX → φY and Q:φY → φZ
be perspective transformations, with depthsα andβ
respectively. Then there exists a perspective transfor-
mation

R :φX → φZ ′ ,

with depthαβ ∈ d(φZ), such that s((Q ◦ P)(φX )) =
s(R(φX )).

Proof: From Theorem 3 follows thatαs(φX ) ⊆
s(φY), βs(φY) ⊆ s(φZ). Henceαβs(φX ) ⊆ s(φZ)
andαβ ∈ d(φZ). By applying Theorem 3 once more
the theorem is proved. 2

We call a composition of perspective transformations
a projective transformation. By Theorem 4, the depth
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of a projective transformation equals the product of the
depths of the corresponding perspective transformation
by which it is built up. This holds independently of the
factorization.

Since any affine transformation of an image can be
realized by a series of parallel perspective projections
(α ≡ 1), Theorem 3 expresses the fact thatψY is the
projective image ofφX if and only ifαs(φX ) ⊆ s(ψY).
As all the theorems concern affine shape and every-
thing is just known up to an affine transformation, in
the sequel there is no reason to distinguish between
projective and perspective transformations.

6. Applications

We will here present two applications of shape. The first
will deal with reconstruction of curves up to nonsin-
gular projective transformations, and the second with
recognition of boundary curves of planar objects.

In [10], a reconstruction algorithm for arbitrary num-
bers of points and images, was proposed, based on
affine shape. It works by aligning subspaces, using
orthogonal projections and maximising some of the
largest eigenvalues of the sum of these projections.
That algorithm is here extended and modified to handle
curves as well. As an additional issue, no point corre-
spondences between the different images are needed.
First, it is assumed that the curves are non-closed, i.e.
they have different start and end points and we assume
that these are known in the different images. By a sim-
ple modification, the method is then extended to closed
curves as well. The algorithms are independent of the
choice of coordinates and work for an arbitrary number
of images.

In a second application, recognition of boundary
curves of planar objects, we use a number of different
curves, stored in a data base. An image of an unknown
object is taken and then compared with these of the data
base. The algorithm for this is actually just a variant of
the algorithm for reconstruction.

7. Projective Reconstruction
of Three-Dimensional Curves

Our aim is to extend the algorithm of [10] for projective
reconstruction of finite point configurations to general
3D-curves.

In the following, we will assume the pinhole camera
model, which means that the image is formed by a

perspective transformation. LetX ⊂ R3 be a 3D-curve
of finite extent andY a projective 2D-image ofX .
Furthermore, let

L2(I ) 3 ψY : I → Y
and

L2(I ) 3 φX : I → X ,
be their respective parametrisations. Then, by Theo-
rem 3 there exists a projective transformationP :φX →
ψY with depthα if and only ifαs(φX ) ⊆ s(ψY). How-
ever, to use this theorem, a correspondence between
the parametrisations ofX andY must have been estab-
lished. This is a difficult problem, referred to as the cor-
respondence problem or aperture problem. The solv-
ing of this problem is one of the contributions of this
paper.

For the moment assume that the point correspon-
dences are known. LetX be a fixed but unknown ob-
ject and{Yi }m−1

i=0 a sequence of projective images ofX ,
taken by uncalibrated pinhole cameras. Uncalibrated
means that nothing is known about the orientations
of the cameras or their internal parameters. The only
thing known is that{Yi }m−1

0 are projective images of
a fixed object, thus nothing about the projective trans-
formations. Denote byφ : I → X andψi : I → Yi ,
parametrisations so that for somePi with non degen-
erate depthαi : I → R,

ψi (x) = Piφ(x), i = 0, 1, . . . ,m− 1

holds for allx ∈ I . Then, by Theorem 3

αi s(φ) ⊆ s(ψi ), i = 0, 1, . . . ,m− 1,

and thus

s(φ) ⊆ 1

αi
s(ψi ), i = 0, 1, . . . ,m− 1.

Together this implies

s(φ) ⊆
m−1⋂

0

1

αi
s(ψi ),

or equivalently, by multiplying both sides byα0,

α0s(φ) ⊆ s(ψ0)

m−1⋂
1

qi s(ψi ),

whereqi = α0/αi are called kinetic depths. Sinces(φ)
is usually unknown, we replaceα0s(φ) by s(φ). That
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α0s(φ) is a shape space follows fromα0 ∈ d(φ), The-
orem 1 (ii) and Lemma 1. We get the relation

s(φ) ⊆ s(ψ0)

m−1⋂
1

qi s(ψi ). (6)

Remark. By Theorem 3, this freedom in replacing
α0s(φ) by s(φ) corresponds to a projective ambiguity
of the reconstructed configurationX .

In the following, assume thatX ⊂ R3 is a bounded
3D-curve, such thatX does not belong to any affine
plane. Assume also that the focal points corresponding
to the different images do not belong to an affine plane.
We then say that the cameras and object are in general
position.

For parametrisations, we use the Hilbert space
L2(I ), with I = [0, 1]. Then, because of the general-
ity of the curve and camera positions, a dimensionality
(or rather codimensionality) argument implies that (6)
holds with equality,

s(φ) = s(ψ0)

m−1⋂
1

qi s(ψi ). (7)

By considering the annihilator, or in this case the or-
thogonal complement, we obtain

d(φ) = d(ψ0)+
m−1∑

1

q−1
i d(ψi ), (8)

whereq−1
i = 1/qi , and where the sum of two linear

subspaces is defined by

A+ B = {a+ b | a ∈ A, b ∈ B}.

In fact, sinceX is a general 3D-curve, codims(φ) = 4,
and in the same way codimqi s(ψi )= 3, i = 0, . . . ,
m− 1. Since the spacesqi s(ψi ), i = 0, . . . ,m− 1, do
not coincide, the left hand side of (6) has codimension
four.

Let Pφ , Pi , Qφ andQi be the orthogonal projections
from L2(I ) onto s(φ), qi s(ψi ), d(φ) and q−1

i d(ψi ),
respectively. These projection operators can be explic-
itly written using orthonormal bases. For example, us-
ing extended coordinates,φ = (φ1, φ2, φ3, φ4), where
φ4 ≡ 1, let{φ̃1, φ̃2, φ̃3, φ̃4} be an orthonormal basis for
linhull(φ1, φ2, φ3, φ4). Then

Qφ( f ) =
4∑

k=1

〈φ̃k | f 〉φ̃k,

and

Pφ( f ) = (I −Qφ)( f ) = f −
4∑

k=1

〈φ̃k | f 〉φ̃k.

The conditions (7) and (8) can be rewritten in either of
the following four ways:

1. the operatorPφQi is the zero operator for everyi ,
2. the restriction of1

m

∑m−1
i=0 Pi to s(φX ) equals the

identity operator,
3. the restriction of1m

∑m−1
i=0 Qi to d(φX ) equals the

identity operator,
4. the operator1

m

∑m−1
i=0 Qi has only four non-zero

eigenvalues.

For real images, these equalities will never hold ex-
actly, due to noise and other errors. It is of interest to
introduce an error criteria to minimize.

Any criterion that is based on the linear spaces or the
projection operators above is invariant to the choice
of affine coordinate system in the images. Any such
criterion also has the property that all images are treated
in a symmetrical fashion and works for an arbitrary
number of images. Such an invariant criterion, will be
called a proximity measure.

There are several possibilities. Using the fact that
PφQi = 0 for all i , one proximity measure is

µ1 =
m−1∑
i=0

‖PφQi ‖2HS.

HereHSstands for the Hilbert-Schmidt norm, see [4],
defined by

‖A‖2HS =
∑

k

‖Aek‖2,

where{ei }∞1 is an orthonormal basis forL2(I ). For fi-
nite dimensional spaces it is the same as the Frobenius
norm. TheHS-norm is independent of the choice of
orthonormal basis. By choosing it so that the first three
basis vectors{e1, e2, e3} spanq−1

i d(ψi ) (and conse-
quentlyPφQi ek = 0 for all k > 3), it is seen that

‖PφQi ‖2HS =
3∑

k=1

‖Pφek‖2.

Thus, if {ψ̃i,1, ψ̃i,2, ψ̃i,3} is an orthonormal basis of
q−1

i d(ψi ), i = 0, . . . ,m− 1, it follows that

µ1 =
m−1∑
i=0

3∑
k=1

‖Pφψ̃i,k‖2.
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Another proximity measure can be based on the fact
that the operator

1

m

m−1∑
i=0

Pi

equals the identity operator ons(φ). Let U be a finite
dimensional subspace ofL2(I ), and letu∈U

⋂
L2(I ).

Then (7) yields

1

m

m−1∑
i = 0

‖Pi u‖22 = ‖u‖22 ⇐⇒ u ∈ s(φ).

If we defineM to be the restriction toU of operator

1

m

m−1∑
i = 0

Pi ,

this can be rewritten as

〈u,Mu〉 = 〈u, u〉 ⇐⇒ u ∈ s(φ).

By properties of quadratic forms, a necessary and suf-
ficient condition for

dim(U ∩ s(φ)) ≥ k

is thatk eigenvalues ofM are equal to 1. We introduce
the proximity measure

µ2 =
dimU∑
i=5

(
1− λ2

i

)
,

whereλi are the eigenvalues ofM sorted in an increas-
ing sequence. Here the interpretation ofM by means
of projections implies that all terms are non-negative.
This is the proximity measure used in [10].

For small values ofµ2, the space spanned by the
eigenvectors corresponding to the dimU − r largest
eigenvalues, can be taken as an approximation ofU ∩
s(φ).

8. Algorithm for Non-Closed Curves

In the following, let I = [0, 1] and{Yi }m−1
0 be a se-

quence of projective images of an unknown 3D-curve
X . Furthermore, let all the parametrisationsφ : I → X
andψi : I → Yi , i = 0, . . . ,m− 1, be expressed in
extended coordinates.

We propose the following algorithm, which is based
on repeatedly findings(φ), adjusting the kinetic depths
qi , and the parametrisationsψi . It is assumed that the

curveX has two distinct end points, which can be
identified in each image curveYi , i = 0, . . . ,m− 1.
To obtain a reconstruction, the problem is to find the
parametrisationsψi , and the kinetic depthsqi in (8).

I Initialization: Choose one parametrisationψi in
each image curve, for example by using the im-
age based arc-length. Setqi (x) ≡ 1 andd(ψi ) =
linhull(ψi ), i = 0, . . . ,m− 1.

II Update d(φ): Keepingd(ψi ) fixed for all i , findPφ
that minimizesµ.

III Update qi : Keepingd(φ) andd(ψi ) fixed, findqi

such thatq−1
i d(ψi ) minimizesµ. Set d(ψi ) :=

q−1
i d(ψi ), i = 0, . . . ,m− 1.

IV Update parametrisation: Keepingd(φ) andd(ψi )

fixed, find a continuous bijectionγi : I → I , such
thatd(ψi ) ◦ γi minimizesµ. Setd(ψi ) := d(ψi ) ◦
γi , i = 0, . . . ,m− 1 and go to II.

It is difficult to minimizeµwith respect to all param-
eters simultaneously. It is, however, reasonably fast to
solve each of the three steps II to IV approximately, as
will be demonstrated. Since the procedure is iterated,
we do not have to be very precise in each step. Below,
we use the proximity measureµ1.

8.1. Step I—Initialization

Let each image curve

ψi (t) = (ψi 1(t), ψi 2(t), ψi 3(t))

be parametrised using scaled image arclengtht ∈ I , so
thatψi (0) andψi (1) are the endpoints, and such that
(ψ ′i 1)

2+(ψ ′i 2)2, i = 0, . . . ,m−1, is constant. Initially,
let the depths beqi (t) ≡ 1 for all points in all curves,
and letd(ψi ) = linhull(ψi,1, ψi,2, ψi,3).

8.2. Step II—Computation of d(φ) given d(ψi )

Let {ψi,1, ψi,2, ψi,3} be an orthonormal basis for the
three-dimensional linear spaced(ψi ). By (8), the four-
dimensional linear spaced(φ), corresponding to the
3D-curve to be reconstructed, is then the linear span of
all basis functionsψi,k, i = 0, . . . ,m−1, k = 1, 2, 3,
i.e.,

d(φ) = linhull{ψi,k, i = 0, . . . ,m− 1, k = 1, 2, 3}.
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An estimate ofd(φ) is obtained by solving

min
dimd(φ)=4

µ1 = min
dimd(φ)=4

m−1∑
i=0

3∑
k=1

‖Pφψi,k‖2. (9)

This optimization problem can be solved using singular
value decomposition. Form the symmetric matrix

M1 =



〈ψ0,1 |ψ0,1〉 . . . 〈ψ0,1 |ψm−1,3〉
〈ψ0,2 |ψ0,1〉 . . . 〈ψ0,2 |ψm−1,3〉
〈ψ0,3 |ψ0,1〉 . . . 〈ψ0,3 |ψm−1,3〉
〈ψ1,1 |ψ0,1〉 . . . 〈ψ1,1 |ψm−1,3〉

...
. . .

...

〈ψm−1,3 |ψ0,1〉 . . . 〈ψm−1,3 |ψm−1,3〉


.

Compute a singular valued decompositionM1 =
U SVT , whereU andV are orthogonal matrices andS
is a non-negative diagonal matrix. In the case of exact
data, the matrixM1 has rank 4. In the case of measured
data, the matrix which is closest in Frobenius norm to a
matrix of rank 4, isM̂ = U S4VT , whereS4 is obtained
by setting all but the four largest diagonal elements in
S to zero. An orthonormal basis ford(φ) is then

φk = 1√
Sk,k

(V1,kψ0,1+ V2,kψ0,2+ V3,kψ0,3

+V4,kψ1,1+ · · · + V3m,kψm−1,3),

k = 1, 2, 3, 4.

Thisd(φ) solves the optimization problem (9).

8.3. Step III—Computation of Kinetic Depths

Let {ψi 1, ψi 2, ψi 3} be an orthonormal basis ford(ψi )

and let{φ1, φ2, φ3, φ4} be an orthonormal basis for the
four-dimensional linear spaced(φ), corresponding to
the curve to be reconstructed. The projection operator
Pφ : L2(I )→ s(φ) is given by

Pφ f = f −
4∑

j=1

φ j 〈φ j | f 〉.

We want to findq−1
i , i = 0, . . . ,m− 1 so that

Pφψikq−1
i

are small in some sense, e.g. by minimizing

3∑
k=1

∥∥Pφψikq−1
i

∥∥2

over allq−1
i with ‖q−1

i ‖ = 1. For convenience, the in-
dexi is dropped below, since each image can be treated
separately. Parametriseq−1 using a finite basisf j ac-
cording to

I × Rn 3 (t, x)→ q−1(x) =
n∑

j=1

xj f j (t). (10)

In the case of exact data, the projectionPφψkq−1(x) =∑
(Pφ(ψk f j ))xj =

∑
j ϑk, j x j vanishes, where

ϑk j = Pφ(ψk f j ).

In the case of non-exact data, the least squares so-
lution can be found by singular value decomposition
USVT of the matrix

M2 =
3∑

k=1

〈ϑk,1 |ϑk,1〉 . . . 〈ϑk,1 |ϑk,n〉
...

. . .
...

〈ϑk,n |ϑk,1〉 . . . 〈ϑk,n |ϑk,n〉

 .
By takingx as the last column ofV we obtain the vector
x of unit length which inserted in (10) givesq−1

i , and
minimizes

min
‖xi ‖=1

3∑
k=1

∥∥Pφψikq−1
i (xi )

∥∥2
.

Setd(ψi ) = linhull{q−1
i ψi 1,q

−1
i ψi 2,q

−1
i ψi 3}.

8.4. Step IV—Reparametrisation of the Image
Curves

Let {ψi 1, ψi 2, ψi 3} be an orthonormal basis ford(ψi ),
and let {φ1, φ2, φ3, φ4} be an orthonormal basis for
the four-dimensional linear spaced(φ), correspond-
ing to the curve to be reconstructed. We want to find a
reparametrisationγi in each imagei = 0, . . . ,m− 1,
such that

3∑
k=1

‖Pφ(ψik ◦ γ )‖2

is minimized over some set of reparametrisations.
Again, we drop the indexi for convenience.

Parametriseγ by using a finite basisgj , according
to

I ×Rn 3 (t, x)→ γ (t, x) = t +
∑

j

x j gj (t), (11)

where the basis function fulfillgj (0) = 0 andgj (1) =
0. gj can for example be a translated and dilated



130 Berthilsson and̊Aström

Gaussian function multiplied by sin(2πx) in order to
fulfill gj (0)= gj (1)= 0. The functionγ (t, x) is mono-
tonic for smallx, that is

∂γ

∂t
= 1+

∑
j

x j g
′
j (t) > 0, t ∈ I ,

if |x| is sufficiently small. This is guaranteed by

|x|2 < min
t∈I

1∑
j |g′j (t)|2

. (12)

Now study the linearisation of2k(x) = Pφ(ψk ◦
γ (x)) aroundx = 0, i.e.,

2k(x) ≈ 2k(0)+∇x2k(0)x,

where∇x is the gradient operator in thex-variables.
The derivatives are given by

θk, j = ∂2k

∂xj

∣∣∣∣
x=0

= Pφ(ψ ′kgj ).

The Gauss-Newton iteration for the minimization prob-
lem

F(x) = min
x

3∑
k=1

‖2k(x)‖2,

is obtained from the normal equations

− Ax = b, (13)

where

A =
3∑

k=1

〈θk,1 | θk,1〉 . . . 〈θk,1 | θk,n〉
...

. . .
...

〈θk,n | θk,1〉 . . . 〈θk,n | θk,n〉


and

b =
3∑

k=1

 〈θk,1 |2k〉
...

〈θk,n |2k〉

 .
If the solution of (13) gives anx not fulfilling (12), or if
F(x) is larger thanF(0)due to the non-linearities of the
functionF , sinceA is positive definite and thereforex
is a descent direction, it is always possible to decrease
the error function by restricting the step length.

After having solved (13) forx, (11) defines a
reparametrisation of the basis ford(ψi ), and we set

d(ψi ) = linhull{ψi 1 ◦ γi (x), ψi 2 ◦ γi (x), ψi 3 ◦ γi (x)}.

Observe that in this step we differentiateψi j in order
to use the Gauss-Newton iteration. We therefore have
to assume that alsoψ ′i j ∈ L2(I ).

Remark. The functionsq−1
i andγi are computed by

expanding them as finite linear combinations of some
basis functions (cf. formulae (10) and (11) respec-
tively). This rises the question of how these bases
should be chosen or what bases are best to use in the
algorithm. A straight forward and natural way to repre-
sent the curvesψi is by sampling at some fixed number
of equidistant positions along the curve and approxi-
matingψi by step functions. When doing this it is also
natural to letq−1 be a step function. This is done by
letting

f0(t) =
{

1, 0< t ≤ τ,
0, otherwise,

for someτ > 0 and settingf j (t) = f0(t − j τ). If the
curvesψ j are smooth it might be worth while to use a
Fourier basis forψ j andq−1, as this will increase the
computational efficiency.

For the basisgj of γ , there is no really obvious
choice, aside from that it should fulfill the boundary
conditionsgj (0) = 0 andgj (1) = 0 and be rich enough
for solving Step IV. In the experiments below we have
chosen

gj = sin(π t)e−a(t−τ j )
2
,

for someτ j anda > 0. Thesegj obviously fulfill the
boundary conditions. Another choice is to use polyno-
mials fulfilling the boundary conditions.

8.5. Experimental Validation

We will here give a demonstration of how the algorithm
performs in an experimental setup. The experiment will
be on simulated data. A simulation was made resulting
in 6 images of a common 3D-curve as shown in Fig. 1.
The 3D-curveX is illustrated in Fig. 2.

Initially, each image curve was parametrised by ar-
clength, (ψi 1(s), ψi 2(s), 1), i = 0, . . .m − 1. Note
that the endpoints of these curves were assumed to
be known, but that points with the same curve param-
eter s in different images are not necessarily in cor-
respondence. Twenty iterations of the algorithm were
performed. After each step, the proximity measureµ1

was stored, and the reconstructed curve was compared
with the true curveX . Figure 2 shows the reconstructed
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Figure 1. Six images of a curve.

curve after the first and after the 20th iteration. No-
tice the relatively good alignment already after the first
iteration.

To show the necessity of the reparametrisation Step
IV, computations were made with this step omitted.
Figure 3 shows the proximity measure as a function of
the number of iterations, with and without reparametri-
sation. Figure 4 shows the RMS residual as functions of
the number of iterations with and without reparametri-
sation. The RMS is defined by(∫ 1

0
|φ − φrec|2 dx

)1/2

whereφ is the true curve andφrec is the reconstructed
curves which has been chosen so as to minimize RMS.
Recall that the reconstructionφrec is only given up to
nonsingular projective transformations.

9. Algorithm for Closed Curves

It is straight forward to extend the algorithm described
above to handle closed curves as well. It is then conve-
nient to use the torusR/Z as the domain of the func-
tions. Letτt : L2(R/Z)→ L2(R/Z) be a cyclic trans-
lation operator defined byτt ◦ f (x) = f (x− t). All we
have to do in order to extend the previous algorithm to
closed curves is to divide Step IV into two substeps IV/a
and IV/b according to:

Figure 2. The reconstructed curve (∗) and the true curve (-) after
the first and the 20th iteration.

Figure 3. The proximity measure as a function of the number of
iterations, with (lower) and without (upper) reparametrisation.
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Figure 4. The RMS residual between reconstructed curve and true
curve as a function of the number of iterations, with (lower) and
without (upper) reparametrisation.

IV/a Update translation: Keeping d(φ) and d(ψi )

fixed, find cyclic translationsti , such thatτti ◦
d(ψi ) minimizesµ. Set d(ψi ) = τti ◦ d(ψi ),

i = 0, . . . , m− 1.
IV/b Update parametrisation: Keeping d(φ) and

d(ψi ) fixed, find a continuous bijectionγi : I →
I , such thatd(ψi )◦γi minimizesµ. Setd(ψi ) : =
d(ψi ) ◦ γi , i = 0, . . . ,m− 1, and go to II.

9.1. Step IV/a

The only new thing compared to the previous case of
non-closed curves is Step IV/a, which will be studied
in more detail here. Let{ψi 1, ψi 2, ψi 3} be an orthonor-
mal basis ford(ψi )and{φ1, φ2, φ3, φ4}an orthonormal
basis ford(φ). The objective is to findti such that

fi (ti ) =
∑

j

∥∥Pφτtiψi, j

∥∥2

is minimized for eachi . SincePφ = I −Qφ andQφ is
a projection, we have

fi =
∑

j

∥∥τtiψi, j −Qφτtiψi, j

∥∥2

=
∑

j

(‖ψi, j ‖2−
∥∥Qφτtiψi, j

∥∥2)
= 3−

∑
j,k

〈
φk

∣∣ τtiψi, j
〉2
.

Let ψ̌(x) = ψ(−x), then 〈φk | τtiψi, j 〉 = φk ∗
ψ̌ i, j (ti ), where∗ denotes cyclic convolution. Ifψi j and
φk are sampled, with the number of samples being 2n

Figure 5. Image of the object.

for some integern, then fi can be computed very fast
by using the fast Fourier transform. There are several
ways of finding a minimum forfi , like for example the
Gauss-Newton method, when the minimum is known
approximately, or some more robust method when less
is known.

Step IV/a can also be used in Step I in order to get a
better initial parametrisation of the curves.

9.2. Experimental Validation

We will here give a demonstration of how this algorithm
performs in an experimental setup. The experiment will
be on real data.

Four images of a closed 3D-curve, see Fig. 5, were
taken in a laboratory environment.

The cameras were not calibrated and no two con-
secutive view points were close to each other. The
inner curve was extracted from the images by an edge-
detector and parametrised by arc-length in anti-clock-
wise direction. Note that this does not give any point
correspondences as the parametrisations might start
on different places on the curves. Furthermore, as
was noted previously, arc-length is not a projective
invariant parametrisation of a curve and so we would
not have point correspondences even if the parametri-
sations started at a corresponding point in all images.
Twenty iterations of the algorithm were performed. Af-
ter each step, the proximity measureµwas stored. Step
IV/a was also included as a routine in the initialization
process (Step I), to improve the initial correspondences
of the parametrisationsψ j , j = 0, . . . ,m− 1. For the
experimental results, Fig. 6 shows the proximity mea-
sure as a function of the iteration number. Recall that
the reconstruction̂φ is only given up to nonsingular
projective transformations, which makes it difficult vi-
sualize. A back projection of the reconstructionφ̂ to
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the images can always be computed though and Fig. 7
shows an image curve together with its back projected
reconstruction.

A third experiment was performed on the reclining
chair of one of the authors, see Fig. 8.

In this object there are no really well defined edges,
since these are rounded off for comfort reasons. Fur-

Figure 6. The proximity measure as a function of the number of
iterations.

Figure 7. Backprojected image of the reconstruction with close up image.

Figure 8. One of the authors reclining chair.

thermore, the boundary curve was extracted by hand,
which brings in a high degree of uncertainty. Otherwise,
the experiment was performed in the same manner as
the preceding, and with the same number of images.
Figure 9 shows the extracted curve (solid curve) of
Fig. 8 (middle) together with the back projected recon-
struction (dashed curve).

Figure 9. The extracted contour (solid line) together with the back
projected contour (dashed line).
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10. Convergence of Algorithm

In each step the algorithm performs a minimization of
the same goal function (the proximity measure) over
(i) the space curve (ii) the depths (iii) the parametrisa-
tions of the image curves. Thus the algorithms is really
a descent method. As for all types of descent meth-
ods, e.g. the steepest descent method [6] one can under
some condition prove global convergence to a station-
ary point, but not guarantee that the global optimum is
found. The algorithms has proved to give reasonable
estimates to the problem within the first iterations, but
then the convergence is slow. This is due to the fact
that each iteration involves three optimizations in turn.
For faster convergence one might consider switching
to another optimization method after a few iterations.

The problem of showing when the algorithm con-
verges to a global minimum is hard and not solved yet.
However, experiments indicate that, in practice, the al-
gorithm, converges to the right solution, and it does so
in only a few iterations.

11. Recognition of Closed Planar Boundary
Curves

In this section we will develop an algorithm for recog-
nition of closed planar boundary curves.

The experimental setup is a pinhole camera in a fixed
position over a flat surface, whose normal is parallel to
the optical axis. Images are taken of a number of planar
objects, and their boundary curves are extracted. The
affine shape of these curves are compared with shapes
of a number of model objects, whose shapes are stored
in a data base. The goal is to find the item that, in some
sense, is closest to the measured item. Because of the
experimental setup, the depths are constant functions.
We therefore can model the camera as an affine camera,
and we need only iterate Step IV/a and IV/b, with one
image, in the algorithm above for curves. This means
that for each item in the data base, we reparametrise
the image curveψ to minimize the proximity distance
to s(ψ). This is then repeated for all items in the data
base, in order to find the best fit.

To be more precise let

{s(φi )}m1
be a data base of shapes of some items, whereφi :
[0, 1] → Xi ⊂ R2 are parametrisations ofXi . As
the camera is affine and shape is a complete affine in-
variant,s(φi ) can be measured from the image curve

P(φi ), which we also callφi . We propose the follow-
ing algorithm, withd(φi ) = linhull{φ1i , φ2i , φ3i }, and
d(ψ) = linhull{ψ1, ψ2, ψ3} being the depth spaces for
the curves of the data base and a boundary curve of an
unknown item, respectively. As proximity measure for
φi andψ we chose

µi =
∥∥Pφi Q

∥∥2
HS. (14)

1. Initialize: Parametrise allφi andψ by arc length and
seti = 0.

2. Seti := i + 1 andd̃(ψ) = d(ψ).
3. Update translation: Keepingd(φi ) andd̃(ψ) fixed,

find a translationt , such thatτt ◦ d̃(ψ) minimizes
µi . Setd̃(ψ) := τt ◦ d̃(ψ).

4. Update parametrisation: Keepingd(φi ) and d̃(ψ)
fixed, find a continuous bijectionγ : I → I , such
thatd̃(ψ)◦γ minimizesµi . Setd̃(ψ) := d̃(ψ)◦γ .
If finished, storeµi and go to 2 else go to 3.

These steps are just Step IV/a and IV/b in the algorithm
of closed curves and need no further comments. A stop
criterion in step 4 could for example be that a predefined
number of iterations have been performed. When allµi

have been computed, choose thei that minimizesµi .

11.1. Experimental Validation

For the experiment, we had a set of black and white
drawings. Three of these were chosen to construct a
data base. One image of each was taken. The respective
boundary curves were extracted and the affine shapes
were computed and stored. Images were also taken of
all the drawings from varying camera positions, but
with the optical axis parallel with the normal of the
drawings. The boundary curves were extracted and the
affine shape was computed from each boundary curve.
In Table 1 the images of the drawings are listed in
the column to the left. At the top, the images of the
drawings in the data base are listed. The indices, 1 and
2, indicate that the drawings are different, while a and
b indicate that the camera has been moved between the
imaging instants.

Figure 10 shows the boundary curves of the draw-
ings in the data base and Figs. 11 and 12 some of
those that were not. The results can be seen in Ta-
ble 1, whereµ is the proximity measure (14). Notice
that if the drawing corresponding to the smallest prox-
imity measureµi is chosen, we will always get the
right decision. Moreover, if a suitable threshold is set,
the stranger drawings, such as bone and fish, will not
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misinterpreted to be an apple, a banana or a pear. Note
also that the proximity measure is robust against small
changes. The proximity measures within, for example,
the apple group are very similar, when comparing with
the proximity measures across groups. On the other

Table 1. Proximity measure after four iterations.

Image µ(Apple1a, ·) µ(Banana1a, ·) µ(Pear1a, ·)

Apple1a 0.0000 0.0440 0.0151

Apple1b 0.0001 0.0634 0.0180

Apple2a 0.0003 0.0393 0.0093

Apple2b 0.0002 0.0372 0.0079

Banana1a 0.0188 0.0000 0.0065

Banana1b 0.0203 0.0003 0.0452

Banana2a 0.0104 0.0005 0.0138

Banana2b 0.0199 0.0008 0.0353

Pear1a 0.0084 0.0285 0.0000

Pear1b 0.0083 0.0251 0.0001

Pear2a 0.0164 0.0197 0.0012

Pear2b 0.0101 0.0185 0.0005

Bonea 0.0174 0.0184 0.0119

Boneb 0.0319 0.0688 0.0217

Fisha 0.0111 0.0446 0.0118

Fishb 0.0117 0.0483 0.0261

Figure 10. Boundary curves of the drawings in the data base, i.e. apple1a, banana1a and pear1a.

Figure 11. Boundary curves of apple2a, banana2a and pear2a.

Figure 12. Boundary curves of bonea and fisha.

hand, it does not seem possible to distinguish between
items within a group, when noise is present.

12. Conclusions

In this paper, affine shape has been extended from finite
point sets to very general sets, so called shapeable sets.
The only requirement of a set to be shapeable, is that it
can be parametrised by a measurable map, according to
some positive Radon measure. All theorems that hold
for affine shape of finite point sets still hold in the new
setting. Shape of some curves has been computed an-
alytically, e.g. circles and lines. Furthermore, shape of
finite point sets can be obtained as a special case from
the extension of shape, by choosing the proper measure.

The extension makes it possible to, projectively, re-
construct three dimensional curves from a number of
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uncalibrated cameras. The algorithm does not rely on
any derivatives of the image curves, but rather on inte-
grals. This makes the algorithm very robust and insen-
sitive to noise, which is indicated by the experiments.
More experiments has to done here to be able to draw
more exact conclusions about the impact of noise. This
will be done in the future. A drawback, of the algo-
rithm, is that the entire curve has to be visible in all
images. Since occlusion is common in practice, it is
important to be able to reconstruct even in this situ-
ation. Furthermore, the algorithm does not make any
assumptions about the measurement errors and all im-
ages are treated on an equal footing. When nothing is
known it seems best to have such a least committed
algorithm, but when something can be said about the
errors it would be advantageous to incorporate such
knowledge into the treatment. All this will be the sub-
ject for further studies.

In the paper it is also shown that it is possible to
use affine shape of curves to recognize planar objects,
by extracting their boundary curve and comparing its
shape with a data base. Further, another application of
this technique is for recognition of hand written letters.
Further studies on this important topic will be done in
the future too.
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