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Abstract. In this paper, we extend the notion of affine shape, introduced by Sparr, from finite point sets to more
general sets. Itturns out to be possible to generalize most of the theory. The extension makes it possible to reconstruct,
for example, 3D-curves up to projective transformations, from a number of their 2D-projections. An algorithm is
presented, which is independent of choice of coordinates, is robust, does not rely on any preselected parameters and
works for an arbitrary number of images. In particular this means that a solution is given to the aperture problem of
finding point correspondences between curves.
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1. Introduction as a special case. As an application of the extension of
shape, we propose an algorithm that is based on Sparr’s
Affine shape of finite point configurations, has beenin- but enables reconstructions of almost general curves
troduced and studied in a series of papers by Sparr, seeonce the curves have been extracted from the images.
forexample[9, 10]. Ithas proved to be animportanttool Furthermore, no point correspondences between the
when analyzing the geometry of cameras and scene.different images are needed beforehand, but are com-
Instead of working with camera matrices it all comes puted by the algorithm. It is independent of the choice
down to finding relations between linear subspaces, of coordinates and works for an arbitrary number of
and the composition of two perspective transforma- images.
tions corresponds to an algebraically simple operation  Another approach can be found in [5, 6], where a
of multiplication of the depths. So far this analysis has theory for computing the structure and motion of three-
been confined to finite point sets. dimensional curves is developed. It is shown there that
A reconstruction algorithm, by using affine shape, images of three-dimensional curves obey several con-
has been proposed in [10]. It works for arbitrary but fi- straints at each point. These constraints involve high
nite numbers of points and camera views and itis based order spatio-temporal derivatives of the image curve
on aligning subspaces by using orthogonal projections motion and camera motion and are thus difficult to han-
and maximizing some of the largest eigenvalues of the dle in practice due to humerical problems.
sum of these projections. Yet another type of reconstruction can be found in
In this paper, we extend the analysis of finite point [1, 3, 7], where image-motion constraints that hold for
configurations to more general sets, by introducing a certain points on the curve are developed. These con-
new definition of affine shape. These configurations straints are more robust and can be applied to the sil-
are here called shapeable and they include for exam-houette of curved surfaces, but they do not exploit the
ple curves and surfacesit¥, and also finite point sets  full structure of the curve reconstruction problem.
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Another application of shape is recognition of planar
objects, by looking at their boundary contours. The
algorithm for this is actually just a side effect of the

i.e. a linear subspace @&™. In particular, this means
thats(X) = s())) if and only if there exista € A
such thafy = a(&Xx’). The linear subspacgX) in (2)

reconstruction algorithm. The camera is modeled as anis called the affine shape sfX) € Cf}. We will now
affine camera and all that has to be done is to compareextend affine shape to more general sets, as for example

the affine shapes of the curves.

Another way of doing this recognition task can be
found in [2], where certain affine invariants of curves
are compared.

2. Affine Shape of Finite Point Configurations

In this section, we will recapitulate what is meant by
affine shape of an ordered finite point configuration.
This will, in the next section, be generalized to more
general configurations.

LetCp, be the set of orderenh-point configurations

X =(p1, P2, ..., Pm) € R™

in R", wherep; € R" is the coordinate vector of point
number in X.

By an affine transformatiora: R" — R", is meant
a map of the form,

a(x) = Mx +t, (1)

whereM is ann x n matrix andt andx aren x 1 ma-
trices. The matrixais called nonsingular if de¥l # 0.

In a natural waya can be extended to a transforma-
tion Cf, — Cp, by letting it act on all points of the
configuration, i.e.

aoX =ao(p1, P2, ---, Pm)

= (a(p2), a(p2), - - ., alpm))-
Now let A be the group of nonsingular affine trans-

formationsCy, — CJ}.. By the A-orbit of X' is meant the
set

VIV =a), ac A}

We write X ~ ), whenX’ and) are in the same orbit.
The set of equivalence classes is dendigdA. Let

s:Ch— Ch/A

m

be the natural projection.
It can be shown, [8], that(X) can be represented
by the linear subspace

Y EP=0) &=0
& i i

X =(pw P2, ...

: )
) pm)

curves and surfaces i®.
3. Extension of Shape

LetX = (p1,..., Pm) C R" be anm-point configura-
tioninR". Letl ={1,2,..., m}and
¢){ = X,

be defined by (i) = pi,i € |. The definition (2) can
then be rewritten as,

D F0gx () =0,

xel

R
Zf(x):O

xel

s(X)=4 f:

| —

An extension to more general sets is done by replacing
the sums with integrals. First we need some basic facts
and notions on integrable functions.

Let u be a positive Radon measure @9, with
supp u= 1. The measures is said to be finite if
n(RY) < oco. We say that a real valued functidne L}
if fisu-measurable and

1/p
||f||p=</|f|pdu> <o, 1<p<os,

_ 3
[ flloo =inf{t|u( )] >1t) =0} < oo.

If1/p+1/q=1,f e L] andg € L}, the integral

(f19 =/ fOg() du,

is defined and finite. If = p < oo, then Lﬂ can be
identified with the dual oE /. More precisely, for every
functionalT : L} — R which is linear and continuous
in the norm (3), there exists one and only ane L},
such thafl (-) = (- |u),,.

If f elLhandg=(g1,0....
i=1,...,n, we set

, On), With g € L,

(F19. = (F 190, (F12)u, .o (Flgn)w).

Also for vector valued functions we writg € LY, if
each component af belongs tol .
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When dealing with finite point configurations, as in Notice that for an image curie— (¥1(t), (1)),
Section 2,X denotes an ordered set of points. The the depth space is the three-dimensional space spanned
ordering can be considered as a parametrisation of theby the functions(yr1, ¥2, 1), where 1 is the constant

set. To deal with more general point configurations, itis
convenient to left’ denote point sets, without ordering
or parametrisation. This will be done below.

Definition 1. LetX < R". By a parametrisation ot
is meant a surjective map

oyl - X

wherel C RYisthe support of a positive, finite Radon-
measureu, ¢y is defined in a neighborhood of and
¢ € L) for someq, 1 < g < oo. Then by the affine
shape ofp is meant the linear subspaceldt, where
1/p+1/9=1,

(flox), =0,(f[1), =0,
felh ’

S(px) = { f

If this construction is possibleY is called shapeable.

Below, we will restrict ourselves to shapeable sets.
Often the subscript’ of ¢y will be dropped, when it
is clear from the context which configuration is meant.
Note that the requirements for a configuration to be

shapeable are most often satisfied. For example, any
finite union of smooth surfaces and curves is shapeable.

It is sometimes convenient to invoke the constant
function 1 in the parametrisation, writingy
(@1, ... G, Pns1), With ¢ 1 = 1, instead ofpy =
(¢1, ..., ¢n). This will be called extended coordinates.

RecallthatifW C V,whereV is alinear space, then
the linear hull, linhuliW), is the linear space of all finite
linear combinations of elementsW. Furthermore, if
V is a normed linear space, then the annihilsof
W is the set of all continuous and linear functionals on
V that vanish orw.

In Definition 1, observe that the constant function
1 € L}, sinceu is finite. The affine shape may thus

be expressed as an annihilator. With terminology bor-

rowed from the finite dimensional case, cf. [9], we de-
fine:

Definition 2. Let ¢y =(P1,..., Pn, Pnr1), With
¢ni1 =1, be a parametrisation & C R" in extended
coordinates. Then by the depth spacepgfis meant
the linear subspace af!,

d(¢x) = linhull ({¢}7).

function.

The name depth space will be justified below. As an
immediate consequence of the Definitions 1 and 2, we
obtain:

Proposition 1.

S(¢x)° = d(¢x)
codims(¢y) = dimd(¢y).

4. Examples

We now give some examples whes@.) andd(¢y)
can be computed explicitly.

Example 1. In Section 2 above, affine shape of finite
point configurations¥ = {ps,..., pm} C Ch was
defined. In the setting of Definition 1 it is obtained by
using the measure = Zin=1 8, whereg; is the Dirac
measure at = {1,..., m}. Let ¢ be a continuous
parametrisation of’. Then the affine shape is

(flox), =0,(f11), =0,
=1f
S(¢x) { ’ f e CR) ,
and ifgx = (¢1, ..., ¢n, 1) in extended coordinates,
then

d(¢x) = linhull ({¢i }7) .

Example 2. Let X be a non degenerate ellipseRA.

By a nonsingular affine transformatioki,can be trans-
formed to a unit circleX’ in a coordinate plane, say

z = 0. Under this transformation shape unchanged by
Corollary 1. One parametrisatiap: of X7 is x
coqt), y = sin(t), z= 0, witht € [0, 2x]. Since

1U {cogkt)}3° U {sin(kt)}3°

is an orthogonal basis &f?([0, 2]), we get

S(¢x) = linhull({cogkt)}3° U {sin(kt)}5°)
and

d(¢x) = linhull(1, coqt), sin(t)).
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Example 3. Let X be a bounded piece of a straight
line in R?. The sett can then be transformed to the
line segmentt’ = | = [—1, 1], on a coordinate axis,

say thex-axis, by a nonsingular affine transformation,

leaving its shape unchanged.dgf (x) = (x, 0, 0) for
x € |, then
1 1
/ fxdx:O,/ fdx=0,
S(px) =1 |/-1 -1

f e L2(1)

If we parametrise_?(l) by the orthogonal Legendre
polynomials, defined oh by
n

2"n! dxn n=0

Pa(X) = (x2 =",

we thus have

S(¢x) = linhull ({R}5°)
and
d(¢y) = linhull(x, 1).

For an infinite straight line, to get a finite measure
one could use e.g. the measdie = e dx, and the
Hermite polynomials.

Example 4. Example 3 can be extended to the sit-
uation whenX' is the union of a bounded piece of
a straight linel and anm-point configurationy =
(p1, ..., pm) C R3. As in Example 3, we can assume
that the line is—1 < x < 1,y = 0,z = 0. Let

uw = p1 + p2, Wherep, is the Lebesque measure on
I'=[-11]anduz =56, =1{2..., m+ 1},
whered; is the Dirac measure gt Let

pr:lUJ— R

be a parametrisation that is continuous in a neighbor-
hood of J and fulfills g (x) = (X, 0, 0), whenx € |
and¢x(j) = pj—1, whenj € J. The shape(¢y) is

X

then given by
1
/ flo
-1

0
1 m
fdx+ aj =0,
[ raxe 3

f e L)

)dX-l—Xm:ai pi=0,
1

S(¢x) = {(f, )

Let L2(1) be parametrised by the Legendre polynomi-
als B. For f = Py = 1, the constraints imply that

Y aipp=0and 2+ ) o = 0. Forf = P, = X, they

imply that(2/3,0,0)' + > i pi = 0 and) «; = 0.

Forf = P,i = 2,..., m, the constraints reduce to

that of shape of finite point configurations, tha$(3’).
To summarize, set

Eo()) = {a Y aip =02+ o =o},
o) = {a (2/3.0,0'+ ) aip = o,}’
Y a=0
and
EQ)=sQ), i>L1l
Then

S(¢x) = linhull({R x E()}F).

where P, are the Legendre polynomials. #x
(¢1, P2, @3, 1) in extended coordinates, then

d(¢x) = linhull{(x, $1(J)),
(0, 92(9)), (0, $3(J)), (1, pa(I))}.

Example 5. Let ¢ be a parametrisation of a point
configuration’, with | = {x|0 < x < 1} c RY,
and letTy c L?(l) be the set of step functions dn
that are constant on®ji < x < 27 %(ji + 1), ji =
0,1,...,k— 1. Setx(¢px) = Tk Ns(¢x), which is a
closed linear space. If € s(¢x), thenf = > &x,
wherey, denotes characteristic functions, and the sum
is finite. The defining property af(¢y) implies

Zéﬁ (xil¢x) =0, Z& (xi11)=0.

Since(y | 1) = ¢ # 0, we get

Z&wm oo

| (x 1) =0 ,

Here (x| ¢x)/{x |1) is the mass center apy on
supp (x1). Hences(¢x) can be identified with the
shape of the finite point configurations defined by the
mass centergy | ox)/{(x | 1). Thus, as

s(¢x) = | s(@),
0

we can interpres(¢x) as the shape afy at scale,
k=12 ....
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5. Some Basic Theorems ui € LR\ Hi, whereA\B = {x | x € A, x ¢ B}. ThenL;

is continuous and there exists, by the dualitys L},

We will now prove some basic theorems about affine sothatli(:)=(-|¢i),,i =1,...,n+1. Letpy:| —

shape and depth. For the finite dimensional versions of R" be defined bypy (X) = ($1(X), ..., ¢n(X)). Then

these, see [9]. , ¢x (1) = X is a point configuration fulfilling (ii). O
Suppose that’ € R" andX’ € R", and thaipy :

| - X and¢’, : 1 — X’ are parametrisations as in  Corollary 1. Under the assumptions of Theordm
Definition 1, with the sam@ andp. If T :R" — R",

we writeT (¢px) = ¢4, Or T 1y — ¢ if T(Px (X)) = a:dx — i,

¢’ (X) almost everywhere, with respect to the measure

. Let g be the subspace with a nonsingular affine transformation
So={fI(f|l1),=0 felLl} =

s = S(¢y)-
Theorem 1 (Affine Shape Theorem). Let¢y: 1 — (@) @)

X C R"and¢), :1 — X C R" be parametrisations . : -1
as in Definitionl, with the samex and p. Proof:  Apply Theorem 1 (i) toa anda™". -
) . . ) It follows thats(¢y) is a complete affine invariant.
(i) Ifa:R" — R"is an affine transformatiarthen LetIT be an affine hyperplane &I". The correspond-
ing projective hyperplanél, is obtained by adjoining
aipxy — ¢y = S(px) S s(@y) points at infinity, which can be identified with the di-
= rection vectors ifl.

D ).
d@x) 2 d(@x) Definition 3. LetIl,, IT, be projective hyperplanesin

P". If c ¢ IT,, thenP : I, — II. is called a perspective
transformation with centa, if for x € I1,, there exists
y € I’ anda € R, such thattx = Ty, where
ab is the vector froma to b in R™. « is called the
depth ofx. We also allowc to be a point at infinity in
which caseP is a parallel projection along the direction
corresponding te, and the depth is set to 1.

(i) Let S € Xy be a closed linear spacewith
codim(S) < n + 1, where codim(S) is taken
with respect to [f. Then there exist&’ € R" with
a parametrisationpy € L}, such that $¢y) = S.

Proof: In (i), the second equivalence is an immediate
consequence of Proposition 1. To verdy, in the first,

let f € s(¢x). Then by (1) Remark. For perspective transformations only two

cases can appear: eithere I1,, in which caseP is

(Flox)n = (T 1My +1), called singular, oc ¢ I1.., in which caseP is bijective,

= M(f |¢x), +t(f|1), =0. and is called nonsingular.
To verify <=, letd(¢),) € d(¢x). Theng), is a linear We will now use affine shape to characterize per-
combination of the components ¢} = (41, . .., ¢n) spective transformations. Following Definition 3, we
and the constant function 1, which gives an affine trans- assume that, whep is the perspective image o¥,
formation. This proves statement (i). the parametrisationgy : 1 — Y andgy:1 — X are

Statement (ii) follows from the fact thalﬂ is the related by
dual toLf. In fact, S can be written

—_ s

il Cox(X) = a(X)Chy(X), a.e, 4)
S= Hi, .

O ' for somepu-measurable functiom: 1 — R. Thena

is called the depth apy with respect tayy. We also
where H; are closed hyperplanes, not necessarily all write P:¢x — ¥y. The depth ofp» gives how much
different, andH,,.; = Xo. Define linear functionals  the vector from the camera center to the image point
Li: L,‘j — R, by Lij(H;) = 0 andL;(uj) = 1, when ¥y (X) should be enlonged to coincide with the vector
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from the camera center to the object paipt(x) almost
everywhere.

We say thatr is non degeneratedf and I/« belong
to L7°. The following lemma will be useful.
Lemma l. If « € d(¢y) is non degeneratghen
(i) aLf =L, al] =LY,

(ii) codim(s(¢px)) =codimas(¢y)) and aS(py) is
closed.

Proof: (i) follows from Hdélder’s inequality.

perspective transformation Rp» — vy along
the direction{) | ¢x), such that

S(y¥ry) = linhull({s(¢x)}, A).

Remark. Note that ife is not constant modulo sets of
measure zero theBo\a X # 9.

Theorem 2 states that the only depths that can occur

when applying a perspective transformationggnare
given byd(¢y).

Before giving the proof, recall that i C R", then
the affine hull, affhull(X), is the affine space iR" of

The linear operator . . i
b smallest dimension that contaiAs

T: Lﬁ 5f—>afe L[j Proof: (i) The ass_u)mption m}eansthatthere exists
R", such thatx(X)cyr (X) = cop(x),x € |. Let f €
is seen to be a homeomorphism and the restriction of s(¢). Then

T to the closed spac&py) gives (ii). O . N
0=(f |c¢>)ﬂ = (f |aC¢)M = (flay), —c(f|a),.
The following theorem motivates the name depth

space in Definition 2. If (f|e), #0,then

Theorem 2 (Depth Theorem). Letgy:l — X C c= (fflmﬂ)u = <ffa Vi _ Q1Y)
R"andyy: 1 — Y < R" be parametrisations as in (T e (T [ 1),
Definition 1, with the samex and p. with
fa
() If « is the depth of a perspective transformation 9= -7
(fo|1),

P:¢x — ¥y, thena € d(¢x) and

Since(g| 1), =1, it follows that
as(¢x) S s(¥y).
c=(gl¥), € affhull(y (1)),

(i) Letgxy(l) C IL,. If « € d(¢y) is non degenerate
and c¢ TII,, then there existgy, and a nonsin-
gular perspective transformation Ry — vy
with deptha and center c.

(i) If ¢ € d(¢px) is non degenerate aride X\ Xo,
then there existgy and a singular perspective
transformation P. ¢y — vy with depthe, such
that

i.e.,c € IT,, whichis a contradiction. Hengé | o), =
0,i.e.,a € s(¢)° = d(¢), and(fa|v¥), = 0. This
proves thates(¢) g_s)(w)._)

(ii) Define ¢ by ¢y = c¢/a. Then, by Lemma 1,
¥ e L} andthus is a parametrisation for someSince
as(¢) C s(¥), by (i), this implies that codirgs(y)) <
codim(s(¢)), by Lemma 1. Thus,

s(Wry) = linhull {as(@)}, ). dimaffhully (1) < dimaffhullg (1)
andP:¢ — v is a perspective transformation with
deptha. SinceP:¢ — o is bijective, we actually
have dim affhully (1) = dim affhullg (1).

(iii) First assume thak is not constant and define
asin (ii). Then

e[ 3] -

The perspective center is given by

o 1,

If «=C, where C# 0is a constantand A €
¥o\S(¢x), then there existgry and a parallel




Let

HEWAY
C={(—|¢ —11) .
« I3 o I3
Then(x| ), =0, so that € s(y) and linhulkas(¢),

A) C s(¥).
To verify the reverse inclusion, ldt € s(i). Then

=0.

n

(i, =(1]2 - 4ol
o o

Since(f | 1), = 0andc = (; 1¢),/(5 | 1),

<f

If f ¢ as(¢), (5) implies(f|2),+0 and since. ¢

-1
¢ (Mla ¢>>u1> N -

o Ao, o .

a o,
(Alah), ’ 1
f— - =0.
(i e ﬂ
Thus
fm — 1 € as(¢)
(fla™t), ’

and f e linhull(as(¢), A).

Now assumex = C, where 0# C € R. Since
So\S(¢) # 0, there exists 12 o' € d(¢) such that
(A]a’) # 0. Let

(A1o)
o .
(Aa)

It is easily verified thas(y) = linhull{s(¢), A} and
since linhull{as(¢)}, 1) is closed, the theorem is
proved. O

v=¢-
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Theorem 3 (Shape transform theorem). Let ¢y :
| - X C R"and¢), : | - X’ C R" be parametrisa-
tions as in Definitior, with the sameg: and p. Then

aS(px) C s(¥y), a € d(¢x) is non degenerate
=

S(P(¢x)) = s(yy)
for some perspective transformation P
with deptho.

Proof: To prove=, first assume that

as(¢) C s(y),

with strict inclusion. Let. € s(y¥)\«aS(¢), so that The-
orem 2(iii) is fulfilled. Then there exists a point config-
uration)’, with a parametrisatiop, and a perspective
transformationP:¢ — ¢, with depthe, such that
S(¢) = linhull({as(¢)}, A) = s(¥), by a dimension-
ality argument. Thuss(P(¢)) = s(¥).

If insteadas(¢) = s(¥), thenas(¢p — ¢) = s(¥),
wherec € R" ands((¢ — ¢)/a) = s(y¥). Letc ¢
affhull(¢ (1)) and definep by @ = ¢ /a. Thenc ¢
affhull(¢(1)) and

—C
S(p) = S<¢ ) =s(¥).
o
Thus,P:¢ — ¢ is a perspective transformation and
S(P(¢)) = s(¥).
The left implication <, is an immediate conse-
guence of Theorem 2(i). m]

Theorem 4. Let P:¢xr — ¢y and Q: ¢y — ¢z
be perspective transformationwith depthsx and 8

respectively. Then there exists a perspective transfor-
mation

Ripx — ¢z,

with depthaB € d(¢z), such that $(Q o P)(¢y)) =

Before stating the next theorems we must exclude s(R(¢y)).

a highly degenerate case for perspective transforma-
tions where all depth information is lost. This occurs Proof:

From Theorem 3 follows thatvs(¢py) <

when a perspective transformation is the composition s(¢y), 8s(¢y) C S(¢z). HenceaBs(¢pr) S S(pz)
of two perspective transformations where at least one andaf € d(¢z). By applying Theorem 3 once more
is a parallel transformation. We say that a perspective the theorem is proved. m|

transformationP : ¢ — ¥y, with depthe is flat if
s(¥y) € aXo. In the following we assume that all
perspective transformations are non flat.

We call acomposition of perspective transformations
a projective transformation. By Theorem 4, the depth
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of a projective transformation equals the product of the perspective transformation. L&t ¢ R be a 3D-curve
depths of the corresponding perspective transformation of finite extent and) a projective 2D-image oft.
by which it is built up. This holds independently of the Furthermore, let
factorization.

Since any affine transformation of an image can be L2 s ¢yl > Y
realized by a series of parallel perspective projections
(e = 1), Theorem 3 expresses the fact tiigt is the
projective image oy if and only ifas(¢r) S s(¥ry). L2(1) 3 g il — X,
As all the theorems concern affine shape and every-
thing is just known up to an affine transformation, in
the sequel there is no reason to distinguish between
projective and perspective transformations.

and

be their respective parametrisations. Then, by Theo-
rem 3 there exists a projective transformationpy —

¥y with depthe if and only if as(¢x) < S(vy). How-

ever, to use this theorem, a correspondence between
the parametrisations &f and)’ must have been estab-

6. Applications lished. This is a difficult problem, referred to as the cor-
respondence problem or aperture problem. The solv-

We will here present two applications of shape. Thefirst Ing of this problem is one of the contributions of this
will deal with reconstruction of curves up to nonsin- Paper.

gular projective transformations, and the second with ~ For the moment assume that the point correspon-
recognition of boundary curves of planar objects. dences are known. Let be a fixed but unknown ob-

In [10], a reconstruction algorithm for arbitrary num- jectandi); 5" a sequence of projective imagesof
bers of points and images, was proposed, based ontaken by uncalibrated pinhole cameras. Uncalibrated
affine shape. It works by aligning subspaces, using means that nothing is known about the orientations
orthogonal projections and maximising some of the of the cameras or their internal parameters. The only
largest eigenvalues of the sum of these projections. thing known is thati }5~* are projective images of
That algorithm is here extended and modified to handle @ fixed object, thus nothing about the projective trans-
curves as well. As an additional issue, no point corre- formations. Denote by : 1 — X andv;:1 — ),
spondences between the different images are neededParametrisations so that for sorRewith non degen-
First, it is assumed that the curves are non-closed, i.e. erate deptl; : I — R,
they have different start and end points and we assume .
that these are known in the different images. By a sim- i) =heéx), 1=01...m-1
ple modification, the meth.od is then gxtended to closed holds for allx € I. Then, by Theorem 3
curves as well. The algorithms are independent of the
choice of coordinates and work for an arbitrary number ais(@) Cs@i), i=0,1,...,m—1,
of images.

In a second application, recognition of boundary and thus
curves of planar objects, we use a number of different 1
curves, stored in a data base. An image of an unknown s(¢) € —s(¥i), 1=01,....m-1
objectis taken and then compared with these of the data “
base. The algorithm for this is actually just a variant of Together this implies
the algorithm for reconstruction.

m—1 1
s@) < [ s,
1
7. Projective Reconstruction 0
of Three-Dimensional Curves or equivalently, by multiplying both sides lay,
L . . . m—1

Ouraim |st9 exten_d _the algonthm_of [10_] for projective @0S(¢) < S(o) ﬂ G s,
reconstruction of finite point configurations to general 1
3D-curves.

In the following, we will assume the pinhole camera whereq; = «g/«; are called kinetic depths. Sins&p)
model, which means that the image is formed by a is usually unknown, we replaces(¢) by s(¢). That



apS(¢) is a shape space follows from < d(¢), The-
orem 1 (ii) and Lemma 1. We get the relation

m-—1

S() S s(vo) () ais(¥).- 6)
1

Remark. By Theorem 3, this freedom in replacing
apS(¢) by s(¢) corresponds to a projective ambiguity
of the reconstructed configuratice.

In the following, assume that c R? is a bounded
3D-curve, such tha&’ does not belong to any affine
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and
4 ~ ~
Py(f) = (I = Qp)(F) = f = (x| f)d.
k=1
The conditions (7) and (8) can be rewritten in either of
the following four ways:

1. the operatoP,Q; is the zero operator for every

2. the restriction of% Zim:’ol P; to s(¢x) equals the
identity operator,

3. the restriction of:
identity operator,

m Qi to d(¢x) equals the

plane. Assume also that the focal points corresponding 4. the operator% Z{‘:Ol Qi has only four non-zero

to the differentimages do not belong to an affine plane.
We then say that the cameras and object are in general

position.

For parametrisations, we use the Hilbert space
L2(1), with I = [0, 1]. Then, because of the general-
ity of the curve and camera positions, a dimensionality
(or rather codimensionality) argument implies that (6)

holds with equality,

m—1
S(¢) = s(Wo) () dis(W). (7)
1

By considering the annihilator, or in this case the or-

thogonal complement, we obtain

m—1
d(@) = dWo) + Y g d(y). (8)
1

whereg* = 1/q;, and where the sum of two linear
subspaces is defined by
A+B={a+b]laecA, beB}

In fact, sinceX is a general 3D-curve, codisi¢) = 4,
and in the same way codims(vi)=3,i=0,...,
m — 1. Since the spaceps(y;),i =0,...,m—1, do

not coincide, the left hand side of (6) has codimension

four.
LetPy, Pi, Q, andQ; be the orthogonal projections
from L%(1) onto s(¢), gis(¥), d(¢) and g d(¥),

respectively. These projection operators can be explic-
itly written using orthonormal bases. For example, us-

ing extended coordinates,= (¢1, ¢z, ¢3, ¢4), Where
¢4 = 1, let{¢p1, 2, 3, ¢4} be an orthonormal basis for
linhull (g1, ¢2, @3, ¢4). Then

4

Qs(f) = (! )k,

k=1

eigenvalues.

For real images, these equalities will never hold ex-
actly, due to noise and other errors. It is of interest to
introduce an error criteria to minimize.

Any criterion that is based on the linear spaces or the
projection operators above is invariant to the choice
of affine coordinate system in the images. Any such
criterion also has the property that allimages are treated
in a symmetrical fashion and works for an arbitrary
number of images. Such an invariant criterion, will be
called a proximity measure.

There are several possibilities. Using the fact that
PsQ; = O for alli, one proximity measure is

m—1

1=y IPsQill%s.
i=0

HereHS stands for the Hilbert-Schmidt norm, see [4],
defined by

IAIRs = D A&,
k

where{g }{° is an orthonormal basis fdr2(1). For fi-

nite dimensional spaces it is the same as the Frobenius
norm. TheHSnorm is independent of the choice of
orthonormal basis. By choosing it so that the first three
basis vectordey, &, &3} spanq(ld(wi) (and conse-

quentlyP,Q;e = 0 for allk > 3), itis seen that

3
IPsQillEs =D IPyexll.
k=1

Thus, if {¥i.1, ¥i2, ¥i.3) is an orthonormal basis of
g td(i),i =0,...,m— 1, it follows that

m—1

3
1=y Y lIPsvikl®

i=0 k=1
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Another proximity measure can be based on the fact curve X has two distinct end points, which can be

that the operator

equals the identity operator atig). Let U be a finite
dimensional subspace bf(l),andletu e U (N L2(1).
Then (7) yields

1 m-—1
— Y _IPlE = Ul < ues@).
i=0

If we defineM to be the restriction t&) of operator

this can be rewritten as

(U, MU) = (U, u) <= U e s(¢).

identified in each image cun@,i =0,...,m— 1.
To obtain a reconstruction, the problem is to find the
parametrisationsg;, and the kinetic depthg in (8).

I Initialization: Choose one parametrisatiaf in
each image curve, for example by using the im-
age based arc-length. Sgtx) = 1 andd(y) =
linhull(v),i =0,...,m—1.

Il Update d¢): Keepingd () fixed for alli, find P4
that minimizesu.

Il Update q: Keepingd(¢) andd(v;) fixed, findg;
such thatg,d(y;) minimizes . Setd(yi) =
g td(i),i =0,...,m—1.

IV Update parametrisatiarKeepingd(¢) andd ()
fixed, find a continuous bijectiop : 1| — |, such
thatd () o 3 minimizesu. Setd(y;) := d(¥) o
1,1 =0,...,m—1landgotoll.

Itis difficult to minimizeu with respect to all param-

By properties of quadratic forms, a necessary and suf- eters simultaneously. It is, however, reasonably fast to

ficient condition for
dimU Ns(¢)) > k

is thatk eigenvalues oM are equal to 1. We introduce
the proximity measure

dimU

pa=y_ (1-29).

i=5

where),; are the eigenvalues ™ sorted in an increas-
ing sequence. Here the interpretationdfby means
of projections implies that all terms are non-negative
This is the proximity measure used in [10].

For small values ofu,, the space spanned by the
eigenvectors corresponding to the dim- r largest
eigenvalues, can be taken as an approximatids of

s(¢).
8. Algorithm for Non-Closed Curves

In the following, letl = [0, 1] and{)) }3”‘1 be a se-

solve each of the three steps Il to IV approximately, as
will be demonstrated. Since the procedure is iterated,
we do not have to be very precise in each step. Below,
we use the proximity measura .

8.1. Step I—Initialization

Let each image curve

Yi (1) = Wia(), ¥i2(V), ¥iz))

be parametrised using scaled image arclehgth , so
thatv; (0) and; (1) are the endpoints, and such that
(Wi)?+ (W31 =0,...,m—1,is constant. Initially,
let the depths be; (t) = 1 for all points in all curves,
and letd(yi) = linhull (i 1, ¥i 2, ¥i 3).

8.2. Step Il—Computation of(@) given dv;)

Let {1i 1, ¥i 2, ¥i 3} be an orthonormal basis for the

quence of projective images of an unknown 3D-curve three-dimensional linear spadey;). By (8), the four-

X. Furthermore, let all the parametrisatighsl — X
andyi:l — )i,i =0,...,m— 1, be expressed in
extended coordinates.

dimensional linear spacé(¢), corresponding to the
3D-curve to be reconstructed, is then the linear span of
all basis functions; ,i =0,...,m—=1, k=1, 2, 3,

We propose the following algorithm, which is based e,

on repeatedly finding(¢), adjusting the kinetic depths
gi, and the parametrisations. It is assumed that the

d(¢) = linhull{/i i =0,...,m—1,k = 1,2, 3}.
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An estimate ofi(¢) is obtained by solving over allg™* with ||g*|| = 1. For convenience, the in-
dexi is dropped below, since each image can be treated

m-1 3
min —  min P.vi ol (9 separately. Parametrige’ using a finite basid; ac-
aamin_ 21 dimd(¢)z4§ k; IPsvikl  (9) Soring 10
This optimization problem can be solved using singular N . n
value decomposition. Form the symmetric matrix I xR"5 (6,0 = q7'00 =) _xfjt). (10)
=1
Yo1l¥Yo1) (Yo1l¥m-13) In the case of exact data, the projectRyq1(x) =
(Vo.2| ¥o.1) (Vo2 | ¥m-13) Y- (Py (Y F)Xj = X°; 9k jx; vanishes, where
My — (Yo3lv¥o1) (Vo3| ¥m-13) B = Po(UicFy).
(Y111 v¥01) (Y11 ¥m-13)
. : In the case of non-exact data, the least squares so-
’ ' ) lution can be found by singular value decomposition
(Ym-131%01) ..o (¥m-13|V¥m-13) USV' of the matrix
Compute a singular valued decompositidfy = 3 [((Okaldka) .. (Fkaldkn)
USV', whereU andV are orthogonal matrices argi M, = Z
is a non-negative diagonal matrix. In the case of exact —~ : )
data, the matridM; has rank 4. In the case of measured GenlPca) - (DnlPin)

da.ta, the matrix WhJCh is closest in Frobenius normto a By takingx asthelast column of we obtain the vector
matrix of rank 4, isM = US,VT, whereS; is obtained  x of unit length which inserted in (10) give *, and
by setting all but the four largest diagonal elements in minimizes

Sto zero. An orthonormal basis fdi(¢) is then

3
. — 2
1 min Pyikg ) |
¢ = ﬁ(vl,kwo,l + Vax¥o.2 + Vakios ™ ”=1k2=; |Pswika 00 |
K
+ Va1 + -+ Vamk¥m-13). Setd(yi) = linhull{g; Vi1, o iz, G ia).
k=1234
8.4. Step IV—Reparametrisation of the Image
Thisd(¢) solves the optimization problem (9). Curves
8.3. Step lll—Computation of Kinetic Depths Let {¥i1, Vi2, ¥ia} be an orthonormal basis fo(yi),
and let{¢1, ¢, @3, ¢4} be an orthonormal basis for
Let {¥i1, iz, Vis)} be an orthonormal basis foi(y;) the four-dimensional linear spact¢), correspond-
and let{1, éo, ¢3, ¢4} be an orthonormal basis for the N9 to the curve to pe recon_structled. We want to find a
four-dimensional linear spaak(g), corresponding to ~ 'eparametrisatiop; in each image =0,....m -1,

the curve to be reconstructed. The projection operator SUch that
Ps:L2(1) — s(¢) is given by 3 ,
D IPs Wik o Yl
k=1

4

Pof=1—> ¢l f)

it is minimized over some set of reparametrisations.
_ L Again, we drop the indekfor convenience.
We want to findg, ™, i =0, ..., m— 1 so that Parametrise’ by using a finite basig;, according
. to
Py ¥ikq
n — .0
are small in some sense, e.g. by minimizing IxRY> X)) = yt.x) =t "’ZXJ 9 ®, (1)
i
3

> Pyvikg | where the basis function fulfi; (0) = 0 andg; (1) =

k=1 0. g; can for example be a translated and dilated
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Gaussian function multiplied by sigz x) in order to
fulfill g; (0) = g; (1) =0. The functiory (t, X) is mono-
tonic for smallx, that is

dy

ot =1+Xj:xjgg(t) >0, tel,

if |x| is sufficiently small. This is guaranteed by

IxI? (12)

. 1
<MN=————.
tel Y19 (D12
Now study the linearisation 0By (x) = Py (¥ o
y (X)) aroundx = 0, i.e.,

Ok(X) = Ok(0) + VxOk(0)X,

whereVy is the gradient operator in thevariables.
The derivatives are given by

00y

=G| = Peia).

x=0

K, j

The Gauss-Newton iteration for the minimization prob-
lem

3
Foo =miny 10k,
k=1

is obtained from the normal equations

— Ax=Dh, (13)
where
3 [ (k1lbka) (k.1 ] 6k.n)
A= : :
=\ (Bcn | 6hr) (Bln | Ocn)
and
s [ (B1l G
b=>" :
=1\ (O | O

If the solution of (13) gives ar not fulfilling (12), or if
F (x) islargerthart- (0) due to the non-linearities of the
functionF, sinceA is positive definite and therefore

Observe that in this step we differentiatg in order
to use the Gauss-Newton iteration. We therefore have
to assume that alsp); € L2(1).

Remark. The functionsqi‘l andy; are computed by
expanding them as finite linear combinations of some
basis functions (cf. formulae (10) and (11) respec-
tively). This rises the question of how these bases
should be chosen or what bases are best to use in the
algorithm. A straight forward and natural way to repre-
sent the curveg; is by sampling at some fixed number
of equidistant positions along the curve and approxi-
matingy; by step functions. When doing this it is also
natural to letqg~! be a step function. This is done by
letting

1, O<t<rm,

fo(t) =
o®) 0, otherwise

for somer > 0 and settingf; (t) = fo(t — j7). If the
curvesy are smooth it might be worth while to use a
Fourier basis foryj andg~?, as this will increase the
computational efficiency.

For the basigy; of y, there is no really obvious
choice, aside from that it should fulfill the boundary
conditiongy; (0) = O andg; (1) = Oandberichenough
for solving Step IV. In the experiments below we have
chosen

gj = sin(rt)e 207,

for somer; anda > 0. Theseg; obviously fulfill the
boundary conditions. Another choice is to use polyno-
mials fulfilling the boundary conditions.

8.5. Experimental Validation

We will here give a demonstration of how the algorithm
performs in an experimental setup. The experiment will
be on simulated data. A simulation was made resulting
in 6 images of a common 3D-curve as shown in Fig. 1.
The 3D-curveY is illustrated in Fig. 2.

Initially, each image curve was parametrised by ar-
clength, (¥i1(S), ¥i2(s),1),i = 0,...m — 1. Note
that the endpoints of these curves were assumed to

is a descent direction, it is always possible to decreasebe known, but that points with the same curve param-

the error function by restricting the step length.
After having solved (13) forx, (11) defines a
reparametrisation of the basis ffy; ), and we set

d(¢;) = linhull{i1 0 % (X), ¥i2 0 i (X), ¥iz o ¥ (X)}.

eters in different images are not necessarily in cor-
respondence. Twenty iterations of the algorithm were
performed. After each step, the proximity measuie
was stored, and the reconstructed curve was compared
with the true curveX'. Figure 2 shows the reconstructed
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Figure L  Six images of a curve.

014

curve after the first and after the 20th iteration. No- %Y
tice the relatively good alignment already after the first
iteration.

To show the necessity of the reparametrisation Step g |
IV, computations were made with this step omitted. 2
Figure 3 shows the proximity measure as a function of
the number of iterations, with and without reparametri-
sation. Figure 4 shows the RMS residual as functions of
the number of iterations with and without reparametri-

sation. The RMS is defined by Figure 2 The reconstructed curve)(and the true curve (-) after
1 1/2 the first and the 20th iteration.
2
|16~ e ax
0

whereg is the true curve ande. is the reconstructed 004
curves which has been chosen so as to minimize RMS.
Recall that the reconstructiahyec is only given up to

nonsingular projective transformations. ooat

04

0.0351

0.025+
9. Algorithm for Closed Curves ool
It is straight forward to extend the algorithm described oot
above to handle closed curves as well. It is then conve-
nient to use the toruR/Z as the domain of the func-
tions. Letr, : L2(R/Z) — L?(R/Z) be a cyclic trans- o005}
lation operator defined by o f (x) = f(x—t). Allwe . Te—
have to do in order to extend the previous algorithm to ez 4 6 B 02w s 0
closed curvesistodivide Step IV intotwo substeps IV/a Figure 3 The proximity measure as a function of the number of
and IV/b according to: iterations, with (lower) and without (upper) reparametrisation.

0.01F
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Figure 4 The RMS residual between reconstructed curve and true
curve as a function of the number of iterations, with (lower) and
without (upper) reparametrisation.

IV/a Update translation Keeping d(¢) and d(v)
fixed, find cyclic translations, such thatr, o
d(yi) minimizesp. Setd(yi) = w, o d(¥),
i=0,...,m-—1.

IV/Ib Update parametrisation Keeping d(¢) and
d(v) fixed, find a continuous bijectiop : | —
I, suchthat(y;)oy minimizesw. Setd(y;): =
dWi)oy,i=0,....,m—1,andgotoll.

9.1. SteplIVia

The only new thing compared to the previous case of
non-closed curves is Step IV/a, which will be studied
in more detail here. Letyi1, ¥i2, ¥i3} be an orthonor-
mal basis fod (v; ) and{¢1, ¢2, ¢3, p4} an orthonormal
basis ford(¢). The objective is to find, such that

i) = |Pom v
]

is minimized for each. SinceP; = 1 — Q4 andQ,, is
a projection, we have

fi=>"|mvi) — Quu i, &
]
= (112 = [ Qo v )
]
= 3—Z<¢klfti1//i,i)2-
Tk

CLet y(x) = ¥(=x), then (g |n¥ij) = ¢
Vi ; (), wherex denotes cyclic convolution. if;; and
¢« are sampled, with the number of samples beihg 2

Figure 5 Image of the object.

for some integen, then f; can be computed very fast
by using the fast Fourier transform. There are several
ways of finding a minimum foff;, like for example the
Gauss-Newton method, when the minimum is known
approximately, or some more robust method when less
is known.

Step IV/a can also be used in Step | in order to get a
better initial parametrisation of the curves.

9.2. Experimental Validation

We will here give ademonstration of how this algorithm
performs in an experimental setup. The experiment will
be on real data.

Four images of a closed 3D-curve, see Fig. 5, were
taken in a laboratory environment.

The cameras were not calibrated and no two con-
secutive view points were close to each other. The
inner curve was extracted from the images by an edge-
detector and parametrised by arc-length in anti-clock-
wise direction. Note that this does not give any point
correspondences as the parametrisations might start
on different places on the curves. Furthermore, as
was noted previously, arc-length is not a projective
invariant parametrisation of a curve and so we would
not have point correspondences even if the parametri-
sations started at a corresponding point in all images.
Twenty iterations of the algorithm were performed. Af-
ter each step, the proximity measurevas stored. Step
IV/a was also included as a routine in the initialization
process (Step 1), to improve the initial correspondences
of the parametrisationg;, j =0, ..., m — 1. For the
experimental results, Fig. 6 shows the proximity mea-
sure as a function of the iteration number. Recall that
the reconstructiom is only given up to nonsingular
projective transformations, which makes it difficult vi-
sualize. A back projection of the reconstructiprto
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the images can always be computed though and Fig. 7thermore, the boundary curve was extracted by hand,
shows an image curve together with its back projected which bringsin a high degree of uncertainty. Otherwise,

reconstruction. the experiment was performed in the same manner as
A third experiment was performed on the reclining the preceding, and with the same number of images.
chair of one of the authors, see Fig. 8. Figure 9 shows the extracted curve (solid curve) of

In this object there are no really well defined edges, Fig. 8 (middle) together with the back projected recon-
since these are rounded off for comfort reasons. Fur- struction (dashed curve).
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Figure 6 The proximity measure as a function of the number of  Figure 9  The extracted contour (solid line) together with the back
iterations. projected contour (dashed line).
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Figure 8 One of the authors reclining chair.
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10. Convergence of Algorithm P(¢i), which we also call;. We propose the follow-
ing algorithm, withd(¢;) = linhull{¢1;, ¢4, ¢3i }, and

In each step the algorithm performs a minimization of d(yr) = linhull {11, ¥, ¥3} being the depth spaces for
the same goal function (the proximity measure) over the curves of the data base and a boundary curve of an
(i) the space curve (ii) the depths (iii) the parametrisa- unknown item, respectively. As proximity measure for
tions of the image curves. Thus the algorithms is really ¢; andyr we chose
a descent method. As for all types of descent meth- 5
ods, e.g. the steepest descent method [6] one can under Hi = H Py, Q” HS®
some condition prove global convergence to a station- 1. Initialize: Parametrise afk andy by arc length and
ary point, but not guarantee that the global optimum is seti — 0.
found. The algorithms has proved to give reasonable Sefi =i+l anddfgvb) = d(y).
estimates to the problem within the first iterations, but 3. Update translation: Keepirt¢;) andd/(EZ) fixed
then the convergence is slow. This is due to the fact find a translatiort, such thatr, o d@) minimizeé
that each iteration involves three optimizations in turn. . Setdf(E) =1 ’O df(\z/7).
For faster convergence one might consider switching 4. Update parametrisation: Keepinigg) and d@)
to another optimization method after a few iterations. fixed, find a continuous bijectiop : | — 1, such

The problem of showing when the algorithm con- thatd”(Ib/) oy minimizesy; . Setd(y) = d/(\l/;') oy.
verges to a global minimum is hard and not solved yet. If finished, stores; and go to 2 else go to 3.
However, experiments indicate that, in practice, the al- ’
gorithm, converges to the right solution, and it does so
in only a few iterations.

(14)

These steps are just Step IV/aand IV/b in the algorithm
of closed curves and need no further comments. A stop
criterionin step 4 could for example be that a predefined
11.  Recognition of Closed Planar Boundary number of iterations have been performed. Whepall
Curves have been computed, choose ththat minimizesu;.

In this section we will develop an algorithm for recog- 11.1.
nition of closed planar boundary curves.

The experimental setup is a pinhole camerainafixed . {he experiment, we had a set of black and white
position over a flat surface, whose normal is parallel to drawings. Three of these were chosen to construct a
the optical axis. Images are taken of a number of planar g4, nase. One image of each was taken. The respective
objects, and their boundary curves are extracted. The boundary curves were extracted and the affine shapes
affine shape of these curves are compared with shape%ere computed and stored. Images were also taken of
of a number of model objects, whose shapes are storedy| he grawings from varying camera positions, but
in a data base. The goalis to find the item that, in SOme i, the gptical axis parallel with the normal of the
sense, is closest to the measured item. Because of they o\ ings. The boundary curves were extracted and the

experimental setup, the depths are constan_t functions.afﬁne shape was computed from each boundary curve.
We therefore can model the camera as an affine cameray, Taple 1 the images of the drawings are listed in

gnd We'need only iFerate Step IV/a and IV/b, ,With ON€ the column to the left. At the top, the images of the
image, in the algorithm above for curves. This means ..ings in the data base are listed. The indices, 1 and
that for each item in the data base, we reparametrise; i qicate that the drawings are different, while a and

the image curve) to minimize the proximity distance pinjicate that the camera has been moved between the
to s(y). This is then repeated for all items in the data imaging instants

Experimental Validation

base, in order to f"?d the best . Figure 10 shows the boundary curves of the draw-
To be more precise let ings in the data base and Figs. 11 and 12 some of
(s} those that were not. The results can be seen in Ta-

ble 1, whereu is the proximity measure (14). Notice
be a data base of shapes of some items, wipgere  that if the drawing corresponding to the smallest prox-
[0,1] — X C R? are parametrisations of;. As imity measureu; is chosen, we will always get the
the camera is affine and shape is a complete affine in-right decision. Moreover, if a suitable threshold is set,
variant,s(¢j) can be measured from the image curve the stranger drawings, such as bone and fish, will not
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misinterpreted to be an apple, a banana or a pear. Note’
also that the proximity measure is robust against small .|
changes. The proximity measures within, for example, =
the apple group are very similar, when comparing with

the proximity measures across groups. On the other

Table 1 Proximity measure after four iterations.

Image w(Applea, -) w(Bananaa, -) w(Peals, -)
Appleia 0.0000 0.0440 0.0151
Applelp 0.0001 0.0634 0.0180
Appleza 0.0003 0.0393 0.0093
Applez, 0.0002 0.0372 0.0079
Bananaa 0.0188 0.0000 0.0065
Bananay 0.0203 0.0003 0.0452
Banana, 0.0104 0.0005 0.0138
Bananay 0.0199 0.0008 0.0353
Peaj, 0.0084 0.0285 0.0000
Peaip, 0.0083 0.0251 0.0001
Peap, 0.0164 0.0197 0.0012
Peap, 0.0101 0.0185 0.0005
Bone, 0.0174 0.0184 0.0119
Bong, 0.0319 0.0688 0.0217
Fishy 0.0111 0.0446 0.0118
Fishy 0.0117 0.0483 0.0261

15}

10 ol

20 % 4 s % 70 » w 50 C3 00 20

Figure 12 Boundary curves of bogeand fish.

hand, it does not seem possible to distinguish between
items within a group, when noise is present.

12. Conclusions

Inthis paper, affine shape has been extended from finite
point sets to very general sets, so called shapeable sets.
The only requirement of a set to be shapeable, is that it
can be parametrised by a measurable map, according to
some positive Radon measure. All theorems that hold
for affine shape of finite point sets still hold in the new
setting. Shape of some curves has been computed an-
alytically, e.g. circles and lines. Furthermore, shape of
finite point sets can be obtained as a special case from
the extension of shape, by choosing the proper measure.
The extension makes it possible to, projectively, re-
construct three dimensional curves from a number of
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Figure 10 Boundary curves of the drawings in the data base, i.e. gpflanang, and peata.

160

160

140]

20 40

60 80

100

120

140

160 180

]

50

Figure 11 Boundary curves of applg, banana, and peat,.

150



136 Berthilsson andAstrom

uncalibrated cameras. The algorithm does not rely on 7.
any derivatives of the image curves, but rather on inte-
grals. This makes the algorithm very robust and insen-
sitive to noise, which is indicated by the experiments.
More experiments has to done here to be able to draw
more exact conclusions about the impact of noise. This 9.
will be done in the future. A drawback, of the algo-
rithm, is that the entire curve has to be visible in all
images. Since occlusion is common in practice, it is
important to be able to reconstruct even in this situ-
ation. Furthermore, the algorithm does not make any

8.

T. Papadopoulo and O. Faugeras, “Computing structure and mo-
tion of general 3D curves from monocular sequences of perspec-
tive images,” inProc. 4th European Conf. on Computer Visjon
Cambridge, England, 1996, pp. 696-708.

J. Porrill and S.B. Pollard, “Curve matching and stereo calibra-
tion,” Image and Vision Computinyol. 9, pp. 45-50, 1991.

G. Sparr, “A common framework for kinetic depth, reconstruc-
tion and motion for deformable objects,” Rroc. 4th European
Conf. on Computer VisioGambridge, England, 1994, pp. 471—
482.

G. Sparr, “Structure and motion from kinetic depth,Piroc. of

the Sophus Lie International Workshop on Computer Vision and
Applied GeometryNordfjordeid, Norway, 1995, to appear.

G. Sparr, “Simultaneous reconstruction of scene structure and
camera locations from uncalibrated image sequence®fdn.

13th International Conference on Pattern Recognitidienna,
Austria, 1996, pp. 328-333.

assumptions about the measurement errors and all im-11.
ages are treated on an equal footing. When nothing is
known it seems best to have such a least committed
algorithm, but when something can be said about the
errors it would be advantageous to incorporate such g
knowledge into the treatment. All this will be the sub-
ject for further studies.

In the paper it is also shown that it is possible to
use affine shape of curves to recognize planar objects,
by extracting their boundary curve and comparing its
shape with a data base. Further, another application of
this technique is for recognition of hand written letters.
Further studies on this important topic will be done in
the future too.
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