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Abstract. Recently the idea of designing a computer system which automatically connects a number of indepen-
dent vision modules together to solve a given computer vision problem has attracted significant interest. However
the main assumption of this endeavour, namely that the modules used as the building blocks of the vision system
are essentially fixed, is questionable in the light of previous experience. Therefore it is important to be able to
modify even the detailed operation of the basic modules used, something which is not practical using conventional
techniques.

This paper constructs a general method by which the computer code of a vision module can be altered automatically
to make it mimic a desired behaviour. The system which does this, tekmeadodifies a basic module template
using interaction with a®racle as a guide. The Oracle is an entity which, when given an input value, produces
the corresponding output of the function which is to be mimicked. The system developed is based upon a new
model of computation which endows it with the important properties that extracting the template (i.e. structure) of
any module’s computer code, as well as determining the best questions to pose to the Oracle are both performed
automatically. Thus the, described has significant advantages over many other models which might be used (e.g.
Neural Networks).

Dealing directly with this new model is not always convenient. Therefore a new computer larigadgea
is defined which provides a high-level interface to it. As Madura is syntactically similar to JAVA, it is simple to
express the code of many basic vision modules in its terms and the resulis(itfe Madura code of a module
which mimics the Oracle) are similarly simple to understand and use.

This paper shows a number of results which demonstrate hol tlieveloped can learn many state-of-the-art
initial vision algorithms in a matter of minutes. The current and future impact of this work is also examined.

Keywords: machine learning, theoretical computing, automatic program refinement, computer vision

1. Introduction Unfortunately, the task of deciding which modules
to use and how to connect them is still unclear. Thus
Despite the rapid improvements of computer hardware the idea of designing a system to do this automatically
over the last few years, competent computer vision sys- is attractive. This approach introduces the concept of
tems have not been forthcoming except in controlled or asupervisorycomputer system whose task it is to con-
restricted applications [5, 10, 11, 12, 15, 17, 18, 19, 21, nectbasic vision modules together to solve any particu-
26, 30, 32]. One of the major causes of these failures is lar vision problem. Recently, the problem of designing
the unreliability of the initial or basic processes which such a system has attracted significant interest [2, 4, 6,
form the initial step of most current vision systems [1, 9, 17, 27, 30] and has been done with some success in
9, 17, 18]. However it is now believed that the short- limited applications [22, 31].
comings of any single basic process (oodulg§ can The central assumption underlying this endeavour is
be overcome by using a number of different modules the belief that the modules chosen as part of a com-
in parallel and combining their results intelligently. puter vision system may be considered fixed. Hence it



66 Newman

is implicit that conventional computer vision modules
do represent a competent toolkit of modules which a Desired Output
supervisory system can (in principle) arrange to solve Oracle
many vision problems. Where extra flexibility within a q
module is required one possibility is to supply extra pa-
rameters, for example the cutoff level in a thresholding

module. Flexible D

Although an attractive idea, previous experience is Template
a warning against complacency, especially as supervi-

sory systems which automatically define module inter-
actions are still in their infancy. It is to be expected Complete

Input Requests

V]
that the more modules available the more complex and Module  |*
time-consuming the supervisory system’s task will be.
Therefore itis likely to be advantageous to have a small
Supervisory System L

set of modules which are inherently flexible. This is
because various instantiations of any such basic tem-
plates can simulate a number of different algorithms.
These may be termdtexible modules

In order to exploit the flexibility of such a module chosen. This must be a universal model to avoid in-
three things must be defined: advertently restrictind_, to a subset of computable

functions which may not contain many useful vision

1. The way the goal is presented: i.e. means of judging algorithms. In [23, 25] Turing Machines, Recursive

when a solution is acceptable. functions and more complex computer languages are
2. How the details of the template are to be expressed: gssessed for their suitability in this application. As none

i.e. the language used to express it and the informa- of these models is ideal a new universal model is de-

Figure L The mimicry model with_,.

tion it contains. 3 . fined and an algorithm developed which allolvgto
3. An algorithm which modifies the template in order  targetits questions to the Oracle efficiently. This model
to find a solution (as specified by the goal). is summarised in Section 1.1.

The rest of this paper builds on the work in [25]
to outline a complete algorithm fo,: i.e. point 3
above. In the course of doing this, practical consid-
erations require the development of a new computer
. . ) : language coineMadura To use the complete system
p_rowdes _the dgswed output cor_re;pondmg to any input developed, a computer vision module must be written
g|venlto 't', This arrangement is |IIusrt]ra:]ed 'nd!?g' 1. firstly in Madura (a simple task given the similarity of
Her_e, Lu IS a computer program which MOailies & - y44yra to the JAVA language). Using the definition of
flexible module,' thg Oracle is part of the supervisory computer program’s structure as defined in [25] and
S?/Stelm. ar;]c_J thh'ml's thehpaﬁlg tﬁmpla':]e Olf the rr}o?]- summarised below, the flexible template of this algo-
ule. Itis this template which defines the limits of the 1, is then extracted automatically. It is this which

mod;;le’s flexibility. has the ad ¢ allowing th theL, developed in this paper can modify to create an
This arrangement has the advantage of allowing the algorithm which mimics the Oracle. As will be seen

supervisory system to be ignorant both of the details of in Section 8 the final result can be expressed automat-

the modules’ operation anql of the modlflc_:anon proce- ically in the convenient form of Madura source code.
dure. Thus from the supervisory point of view, the most

useful flexible module is one which can be modified by

some other programlL(,) in response to input/output 1.1. The Decision Tree Model of Computation

pairs of desired behaviour. The supervisory system’s

task is made even easietif, determines automatically ~ This section summarises tbecision treenodel of uni-

which questions to ask the Oracle. versal computation [23, 25], while the next describes
To address the first point above the model of com- the way the structure of any computer program can be

putation used to define a flexible template must be extracted automatically from this representafion.

Considering the first point, the least structured
way of expressing a desired solution is by providing
the modification program (i.e. that which carries out
Step 3) accessto &racle The oracle is adevice which
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A function f : N" — N™ expressed in the decision
tree model consists ofstate vectoand atest tree
Define ther -dimensional state vectar:

0
m Output components

: Working variables
Xo = 0 (1.2)
Un

Un—1
Input components

uz

Unit: Always 1

Note how the output and working variables are initially
Zero.

The test tree is defined as follows. Legt and p
be row vectors (Ix r), whereqs is problem depen-
dent.q; is termed thénalt-testvector andp the output
projection matrix:

p=(10)

wherel is am x midentity matrix andd am x (r —m)
zero matrix. Define a set of indicelsandtest vectors
gi, wherei € J.

A matrix choicefunction P, (X) (i € N) is con-
structed in the following recursive manner:

Pa(X) gX<0 .
. - ified
P(X) =14 |Pa+1(X) x>0 (1.2)
An integer matrix:M; ifi g J

Attaching an index to the state vector, the input being
Xo, computation proceeds as follows:

j=0
while

{

(eX; < 0)

Xj+1 = Pu(X)X]
j=i+1
}

Answer= p - X;

67

Thus linear transformations are applied to the state
vector produce (in ordeRy, X», ..., X;. Computation
halts (atX;) if g - X; > 0. The solution (result) is the
first m elements ok;, i.e.

f(Ul,...

This model derives its name from the observation that
the matrix choice functiorP; above is most conve-
niently expressed as a (binary) decision tree.

Definition 1.1(Promotion Map. A r x nlinear pro-

motion mapIl : Z" — Z" (r > n+ 1) is defined by

the equation:
X=TI"-li+1

whereX € Z', 4 € Z" and1 is ar-vector whose

components are all zero except the lowest which is 1.

The matrixIT’ is defined as:

0

' = |
oT

whereOis a(r — n— 1) x n zero matrix,l an x n
identity matrix and 0 a 1 x n zero (row) vector.

A vectori € Z" is said to begromotedto Z" when
mapped in this way.

Definition 1.2(Input Vecto}. Given a progranP :

Z" — Z™, avalid input vector is an element &f
whose components are positive integers. Itis this which
is then promoted to form the initial state vector. Even
though the input components of the state vector may
become negative during computation, they must be ini-
tially positive. No generality is lost in this restriction
(see [3,7]).

1.2. The Structure of a Computer Program

The structural hint which is derived from the analysis
in[23, 25]is now summarised. Firstly partition the test
vectors and matrices into parts which act on the input
and output variables in the state vector.

g =(@0lq) (1.3)



68 Newman

Here the first section multiplies the output variables
and the second the input variables. Similarly:
Bi

(s <)
0 G
whereA; multiplies them output variables in the state
vector, andB; andC; arem x (n + 1) and(n + 1)

x(n + 1) respectively. Further restrictions are also
placed on thej;:

M; (1.4)

A, = Diagonal0, 1} or (15)

A is anm-dimensional permutation matrix.

It is then assumed that the following conditions apply
to the program:

e The matricesM; are block upper triangular as in
Eq. (1.4);

e Condition (1.3) applies to all test vectors;

e EachA is restricted as in Eq. (1.5) (see Eqg. (1.4)).

The structural hint consists of the following elements
of a program:

e Thenumber ofinput, working and output dimensions
in the state vector

e The test-tree structure

e The test vectorg, andqs

e The bottom block of eacM;, i.e.C; in Eq. (1.4).

Note that this definition permits the structure of any
computer program (expressed in decision tree format)
to be extracted automatically.

2. ConstructingL,

This section recalls the basic definitions which are used
both in [25] as well as the further developmentlaf
presented here.

Definition 2.1(Path). Given a progranmP : N" —
N™ expressed in terms of the decision tree model, the
list of matricesP applies to a particular input vector
Xo to compute the corresponding output is referred to
as thepathof Xo. The number of matrices in this list is
thelengthof its path. Thus points for which the com-
putation never halts have infinitely long paths.

Note that each matrix in a path is identified by its
index within the matrix choice function &. Thus, for

example, the two paths1; M, M3 and M;M,M, are
considered different even thoud, may equalMs.

Definition 2.2(Clusted. Given a progranP : N" —

N™ expressed in terms of the decision tree model, a
clusteris a set of points (ifN") which have the same
path. The length of a cluster is the length of the paths
which comprise it.

Theorem 2.3. The output of any program is linear
within any cluster.

Proof: See [23] or [25]. |

It is shown in [23, 25] how the locations and paths
of all clusters can be determined using the information
in the structural hint (Section 1.2). With each matrix in
the program constrained to be of the form in Eq. (1.4),
Ly must determine each; and B; using interaction
with the Oracle as a guide.

To see how this can be done, consider the path of a
certain cluster for a program described B (X). For
inputXo, the sequence of linear transformations applied
to it during computation of the corresponding output
may be (for example)M,, Mg, Mg, M3, M1, M,. Par-
tition the state vector into inpui € N" and output
y € N™ components. For the purposes of simplicity, it
is sufficient to consider any working variables part of
the input components in the state vectbet i; denote
the input dimensions of the state vector ajtéransfor-
mations M;) have been applied (similarly fgy). Col-
lect together (in order) the indices of any given product
of severalM; into a setJ. Thus M;MgMgM3zM;M>
results ind = {2, 0, 8, 3, 1, 2}. If there ard matrices
in the product, the resultMt) has the form

Mo — (HiJ—Jo A ZiJ':JD(HL;lJO Ak) Bi(HIﬂ:iJrl Ck))

0 M, C
2.1)

which has a zero lower left-hand block, and simple
diagonal elements. A general expression for the output
yn is therefore:

(>

i=J

([ir)= (L))

Each cluster gives rise to at most+ 1 linearly in-
dependent equations of this fofrand these must be
solved to find theA; and B;. To find theB;, observe

-

yj =

-

Up (22)
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that they enter linearly in Eq. (2.2). So if tihg¢ can be whereRy, Ry, Q1, Q> in this case are:
found, theB; follow from a simple matrix inversion.

However theA; enter non-linearly and so a method is R; = MsM,
required which can solve polynomial equations. This

problem is too difficult in general, especially as the Ra = M4Ms
are likely to be largé. It is for this reason that thé Q1 = M;M;Ms

are constrained as in Eqg. (1.5).
Q2 = MgM1 M3

3. A is a Permutation Matrix

Let the number of linearly independent points found
Requiring eachd; in the program to be a permutation by the cluster search algorithm from within ea@hbe
matrix drastically simplifies.,,’'s task without making N; (i €[1,4]). Construct the matriceX; as follows:
ittrivial. The next two sections develop a way to exploit
the properties of such matrices to discover additional | | ... |
constraints on the exact permutations eAchmay rep- 0 ) = | @y n@y ... MOy
resent. Including the alternative possibilitg(is di- Xi '
agonal) is deferred until Section 7.3. | | e |

3.1. Quartets The zero block on the left hand side is, if there are
output dimensions, & x N; matrix. Similarly, collect

The cluster search algorithm (see [23, 25]) finds a num- the corresponding output vectors together in a matrix

ber of input points (up tm + 1 for ann dimensional Yi.
input space) which belong to a cluster and the Oracle | :
supplies the corresponding correct output. Note that tfiangular block matrices

the algorithm also finds the list of matrices in a clus-

ter's path. Suppose four clustefS;( C,, Cs3, C4) can R, = <R11 Rl?) R, = <R21 R22>
be found whose paths are generated from four collec- 0 R 0 Res
tions of transformationsR;, Ry, Q1, Q>) in the fol-

From Eq. (2.2)R; andR; can be expressed as upper

lowing way: and similarly forQ; andQ,. The input/output relation
of each cluster in the quartet can now be expressed sim-
Ci= Q1R ply using these observations. For the fist, whose
C, = Q1R path is of the fornQ; Ry:
Cs = Q2R
Qu Q Ru R 0
Co= QR = '0)( 0 Qi)( 0 Ri)(xl)

Definition 3.1(Quarte). A quartetis a set of four . S
clusters whose paths are generated from four transfor-which simplifies to
mations in the above manner.
' Y1 = (QuRi2 + Q12R13) X1
Note that the transformatiorR;, Ry, Q1, Q» need
not be single matrices/; (taken from the program  The other three clusters in the quartet similarly give
structure). They could be comprised of several (or
none).of theM; .coIIected tog(.ether. For example, the Yo = (Q11R22 + Q12R23) X2
following constitute a quartet:
Y3 = (Q21R12 4+ Q22R13) X3
Cl = M1M2M3M5M4
Ys = (Q21R22 4+ Q21R23) X4
C; = MiM;M3M4Ms
Recall that as part of the structural hint, each
Cs; = MgM1M3MsM s . ; ' '
3 0L A within M; is given. Thus the matriceR;3, Rps, Q13,
Cs = MgM1{M3zM4Ms Q23 (from Eq. (2.1)) are also known. Suppose matrices
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a1, a2, az, a4 can be found which satisfy to:

U 0 U 0 a1
0 U O Us s
0 0 RUs; ROU4||as
0 0 RLUs RLUL/ \aa

RizXya1 + RosXoap =0 RyzXsaz+ RosXgas =0
then the outputs can be combined to form

Y1 + Yooz = Qui(Ri2X101 + RoaXoa2) (3.1) N _

Yaars + Yaoa = Qo1(RiaXaws + RoaXaaa) : Of course t_here may well be no non-trlvrc_ll solu_tlons
to Eq. (3.4), in which case no useful relationship be-
tween theA; in the clusters in the quartet can be found.

From Eq. (2.1),Qu and Qp; are products made up  1hig general procedure which derives quartets can be
entirely of the A, which by assumption are all per- .5 ried out for many other groups of clusters whose
mutation matrices. ThereforQy, and Qp, are sim- paths are related in some manner. Each group poten-
ply permutation matrices too and so are invertible. If tially finds a relationship between the matrio&sun-
X101 = Xaor3 and Xpap = Xqa4 the above two equa- ey giffering conditions, although the basic quartet is
tions combine together to yield sufficient in the examples shown in Section 8.

-1 -1
Yia1 + Yoap) = Yzasz + Yo 3.2
Qi (V1 202) = Qai (Yaoa + Vo) (3.2) 3.2. Processing into Equations

Expressed in matrix form, the complete set of assump- Given a list of paths as found by the cluster search

tions foras, a2, a3, as become algorithm [23, 25], itis relatively simple and efficient to
find all possible quartets. Using these the matricgs
a1 ap, a3, a4 (EQ. (3.1)) are found simply using standard
X1 0 X3 0 s Gaussian elimination in order to obtain an equation like
0 X2 O Xa =0 (33)  (3.1)foreach.
0 0 Ri3Xz RugXy s Equation (3.2) assumes eaghis a permutation ma-
4 trix (so that the inverses @;1 andQ»; exist), but note

that Eqg. (3.1) does not. Therefore a more general con-
so that if a non-trivial solution exists for Eq. (3.3) then straint can be obtained by examining Eqg. (3.1) directly.

a non-trivial relationship may be found betweén; DefineL, R, andT as follows:
andQy; via Eq. (3.2).
Recall that the block€; in Eq. (1.4) multiply both L = Yias + Yooz R = Yaars + Yaas

the input and working variables. Therefore each ma-

trix of Xy, X5, X3, X4 can be divided into two blocks T = RipXao + RppXoarz

corresponding to the working variable&/j and input = Ri2X3a3 + Ro2Xsa4
componentsy):
and so Eq. (3.1) becomes:
X W 1,4
RNV hell. 4] L=QuT R=QaT
Divide Ry3 and R,3 into corresponding blocks: Let eachA in the program be either a permutation
matrix, or a diagonal matrix with entries 0 or 1. Note
the following:
Rl RY, Re, RY, ’
Ris=|__ _, Ras=| __ q
Riz Ry Ry Ras 1. The product of permutation matrices is a permuta-
tion matrix.

Because all working variables are initially zero, the 2. The product of diagonal matrices is a diagonal ma-
blocksW, (i € [1, 4]) are zero and Eqg. (3.3) simplifies trix.
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3. For any permutation matri® and diagonal matrix Therefore the Eq. (3.5) produced by processing quar-
D, there exists a permutation matixand diagonal tets provide necessary rather than sufficient conditions
matrix D’ such thatP D = D'P’. for any assignment to the matricég in the program

to be correct. Anillustrative example of this process is
Consequently, the product3;; and Q2; can be ex- found in [23].

pressed as
Q11 = 911A1 Q1= 921A;, 4. The Madura Programming Language
whereQ;; and Q;; are permutation matrices, amd Even with all the information supplied within the struc-

and A are diagonal matrices (with entries 0 or 1). As tural hinf and the extra constraints obtained from quar-
the inverse of a permutation matrix always exists (and tets, the search has to perform is still too extensive
is, in fact, its transpose), the above equations can beto be practical in all but the simplest problems [23].

combined to form: Thus additional constraints must be imposed upon the
allowed programs to make the search practical.
A0 L = A100R (3.5 Arelated problem is the usability of the decision tree

model. Itis, as intended, a low-level description and
Because the structural constraint supplies the pathsso only simple programs can be expressed concisely
which comprise the quartet, it is known which matri- in its format. Constructing computable functions in the
cesA; combine to form botfQ1, andQy;. Therefore notation of the decision tree model is analogous to writ-
the matricesh,, Aq, Q11, Q2110 Eq. (3.5) can be pro-  ing programs for conventional computers in assembly

duced from any hypothesised assignments to%hia code. Such a feat is possible, but becomes rapidly te-
the program as permutation or diagonal matrices. dious as more complex programs are construgted.
Equation (3.5) expresses the fact that the rowk of To address both these problems a programming

and R are simply rearranged versions of each other, language, coinetladura, is developed® Madura is
with the added possibility that some of these have been based upon the sequential programming langudage

set to zero (byA; or Ap). Therefore the informa-  [14, 16] and therefore imposes a syntactical structure
tion supplied can be compressed into a format which on a program. Consequently, the task fadings sim-
records only whether each row inandR is entirely plified as its search can be restricted to include only
zero, is identical to another row in eitheror R, or is syntactically valid Madura programs. Although this re-
unique amongst these rows. This can be expressed bystriction reduces the number of possibilities must
constructing twan dimensional vectoisandr (assum- consider in its search, it does not render the mimicry
ing m output dimensions) which contain labels iden- problem trivial (see Section 8).

tifying which rows are identical, zero, or unique. A The translation of Madura source code into the

simple algorithm for doing this is outlined in [23]. decision tree format is carried out automatically by
The labels inl andr supply necessary conditions a Madura compilet! Hence another advantage of
which any hypothesised assignment@g; and Qz; Madura is that it facilitates the automatic translation
must satisfy. To see this, consider such an assignmentof computer code written in a concise and familiar for-
and note that because of Eq. (3.5): mat into a function expressed in terms of the decision
. tree model (Section 1.1). The way to achieve this trans-
A2Qpl = A1QJ)T (3.6) lation is not obvious given the differences between the

decision tree model and sequential languages, so the
Should this fail for any component, then the chosen next section examines how the most difficult technical
assignment t@;; andQo; is incorrect. However, itis  parriers can be overcome.
possible for a row irL or Rto be zero because the cor-
responding row ifT is zero, rather than because of one
of A; or A,. In addition the possibility that rows (and 5. Conventional Sequential Computer Languages
therefore labels) are repeated means that some ambi-
guity may be present. Hence itis possible for the above Programs written in sequential computer languages
equation to hold even though the chosen assignment tocomprise a list of instructions that a computer executes
Q11 and Qg is incorrect. in strict sequential order unless specifically redirected.
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The main features of such languages‘&re: the effect of these three instructions the state vector
must have each of these matrices applied to it in order.
1. Referencing memory locations by name (i.e. vari- If the state vector i%, just before these statements are

able names). executed, and, afterwards, the following must hold:
2. Allowing arrays of variables: i.e. accessing a vari- . .
able relative to another variable, the offset deter- Xg = Mz - Mz - Mz - Xo

mined during execution.
3. Functions: re-using code by defining mini-programs Let the second last component of the state vector be re-

which operate on variables defined relative to a served by the compilerto act as the program counter and

“Stack Pointer” variable. let each matrix K11, M2, M3) increment this compo-
4. Instructions in the code are executed in sequence”e”t by one. In the notation of Section 1.1 the function
unless specifically redirected. P1 becomes:
To approach the functionality of languages such as PL(X) = PZ()E) e, _1’ —2)-x=0
Java, Madura must implement at least these features. Ps(X) otherwise
The decision tree model does not inherently contain . PaX) if(...,1,-1)-x<0
them and so it is the task of the Madura compiler to Pa(X) = M;  otherwise
introduce them during compilation. The two essential
elements that must be introduced by the compiler to PAR) = My if(...,1,0)-X<0
provide this functionality are the simulations oPeo- an = M, otherwise

gram Stackand aProgram Counter
whereP; provides a path leading to other instructionsin
5.1. Program Counter the program. This process can be extended in a simple
manner to any number of sequential instructions. Thus

To emulate a program counter the compiler can sim- the compiler can constructa program trég)(n which

ply reserve a component of the state vector and use it the matrix applied is determined purely by the value of
to keep track of the instruction/matrix currently being the program counter. .

executed/applied. This is similar to the reserved com- If each instruction in the sequential Madura code can
ponent of the state vector which is required to contain be transformed into a matrix multiplication of the state

the unit element during all stages of computation. ~ Vector, this shows how to emulate sequential compu-
To see this process more clearly, examine the fol- tations. As in conventional machines, while most in-
lowing code fragment: structions will simply increment the program counter
by one, instructions which redirect the flow of control
Vari = 7: can do so by setting the program counter directly.
Var2 = Varl - 5%Var3 + Var4;
Var3 = 6xVarb; 5.2. Program Stack
In a conventional computer, each variablex1 etc.) Maintaining the analogy between the state vector and

represents a location in memory allocated by the com- the memory of a conventional computer, ttackis
piler (for examplejavag. Each of these statements simply a contiguous block of components in the state
replaces the contents of the left-hand side memory lo- vector. Normally, a pre-defined variable termed the
cation with the result of the calculation on the right.  Stack Pointercontains the address of the top of the
In the decision tree model conventional computer Stack, i.e. the first component in this contiguous block.
memory is analogous to the state vector, thus each vari- The main use of the stack is to facilitate function
able can be allocated a component (or components incalling. To execute a function call, the function’s ar-
the case of arrays) by the Madura compiler. Given that guments and the address of the current instruction are
the last component of the state vector always contains pushednto the top of the stack, and the stack pointer
a 1, each of these statements can be implemented as &ncreased by the number pushed on. Control is then set
matrix multiplication of the state vector. to the first instruction of the function called and execu-
Assume the compiler constructs one matrix for each tion continues. While executing, the function accesses
of the above instructiondl;, M», andMs. To achieve its arguments by referring to the current value of the
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stack pointer. When complete, the control is returned where a separate stack pointer is no longer needed:
to the place (address) from which the call was made,

this having been stored on the stack previously. Note 0
that this is only possible if the concept of a program 0
counter exists (see previous section). 0
Conventionally, pushing values onto the stack affects 0
the state vector (memory contents) as follows:
2 | Push 9 and 7 to Stack
0 1
0 Top of Stack— | 3
0 4
0 Unit: Always1— \ 1
Stack Pointer— | 2 | Push 9 and 7 to Stack 0
1 0
Top of Stack— | 4 >
Unit: Al 1 X !
nit: Always1— \ 1 N 3
0 9
0 Top of Stack— | 7
Stack Point / !
ack rointer> 9 Unit: Always 1— \1
= 2 The currentvaluesin the state vectorated up by the
1 required amount and the new values inserted. This can
Top of Stack— | 4 be ach!eve.d by a single mqtr|x mult|pl|cat|'on. When
3 a function is complete, the inverse operation restores
) the state vector to its original arrangement. This latter
Unit: Always 1— \ 1 operation also sets the program counter component to

the return address value stored on the stack.

This process cannot be translated directly into the ~ Note that if the top element of the state vector is a
decision tree model, because a function’s arguments meaningful value, i.e. its contents are the value of a
may be contained in any number of components of the variable in the program, a “Push” operation will over-
state vector. This is because they are located relativewrite its value (it will be pushed over the top of the state
to the value of the stack pointer and so their exact po- vector). This is an example of stack overflow which
sition is known only during execution. However, in is a common problem in stack-based languages. The
the new model, all matrices in a program are fixed and standard solution is to make the stack so large that it is
so always access and alter the same elements in theextremely unlikely.
state vector. Thus the components they affect cannot
be modified during execution by the current value of 5.3. Variable Arrays
the stack pointer.

Fortunately, although the matrices cannot be altered Another important feature Madura must allow is the
during execution, the state vector contents can. Insteaduse of arrays of variables. This is essentially a way to
of letting the top of the stack change as the program refer to a memory location as an offset from another
executes, it can be fixed during compilation to some reference location. In “C” for example, arrays are im-
known location. Now when a value is pushed onto the plemented in exactly this way. As seen above how-
stack, all the values in the state vector can be shifted up ever, because the matrix entries are fixed, onlyset
by one and the new value inserted at the (set) location components of the state vector (memory) may be ac-
of the top of the stack. This procedure is shown below, cessed/modified. It may be imagined that swapping
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elements of the state vector may avoid this problem
as it did when implementing the stack. However this
situation is more difficult as the position with which to
swap must be determined during execution.

Examine, for example, how the following section of
code might be processed:

Vehicle[4*i - j*j] = 5;
Before the assignment is made, the element which is
to be set must be determined. This can be done by
performing the calculation in the square brackets and
storing the result in a temporary locatidnThe array
Vehiclemust then beolled t times so that the appropri-

ate element becomes the first element The assignmentX, =

canthen be made by a fixed matrix which alters this first
elementyehicle [0]=5, before the revergelling op-
eration is performed to restore the array to its original
order.

The difficulty in performing this procedure is not
theoretical, but rather practical. The code to roll the
arrays as above requires on averaguatrix applica-
tions ( being the size of the array). As the arrays in
vision are likely to be largé} the number of matrices
which must be applied to perform even simple array
computations is too large to be practical.

The problem can be minimised by observing that in
most programs, including vision algorithms, the most
common way to access elements in an array is in se-
guence:

for (i=0; i<10; i++)
Vehiclel[i] 5;

This functionality can be provided in Madura by giv-
ing the programmer access tarall function. This
function is modelled as a hard-coded Madura language
call (such as “System.out.println” in Java). To see how
this function operates, let an arrélf occupy compo-
nents 2 to 5 in the state vector. The effectoll is as
follows:

P O N W b~ O
P O W~ 1N
P O O N W b

whereXy is the initial vectorX; the result of applying
roll(VA,1) andX; the result afterrol11(VA,3) (or
equivalentlyroll (VA,-1)).

The effect ofroll on multi-dimensional arrays is
similar, but applies to the dimension indicated. For
example if the variabl® is declared as:

int V[2][3];

thenroll1 (V[0],1) alters the state vector in the fol-
lowing way:

V[1][2] V[1][2]
V[1][1] VI[1][1]
V[1][0] V[1][0]
V[O][2] roll(V([0],1) = V[0l[0]
VI[0][1] VI[0][2]
V[0][0] VI[0][1]
whereaso11(V,1) does:
V[1][2] V[0][2]
VI[1][1] VI[O][1]
_ V[1][0] VI[0][0]
=1 v | Y= v
VI[O][1] V[1][1]
VI[0][0] V[1][0]

Each call to thero11 function translates simply into

a single matrix in the decision tree implementation,
as each effectively permutes the contents of the state
vector (computer memory). The above loop can now
be written efficiently as follows:

for (i=0; i<10; i++)
{
Vehicle[0] = 5;
roll(Vehicle, 1);
}

This construction will be used extensively.
6. A Brief Madura Outline

As Madura is a subset of Java, a Madura program
should be mostly familiar to the readér.The reader
unfamiliar with programming concepts such sc-
larations, Variables Functions Function arguments
StatementsKeywordsis referred to [14, 16] for an
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appropriate introduction. A Madura program structure in this case, the possibilities can be reduced sensibly to
is essentially that of a single Java class. the following:

Madura currently supports the following Java
programming statementsf -then -else, assign-
ments, addition, subtraction, multiplication by a con-
stant as well as three types of loops. The latter are
while-do, do-while andfor loops. Function calls 2,
are possible with all parameters called by reference,
each function returningoid type. Note that the in-
dices of an array access must be constants (set during are possible (i.e. in conventional computer language
compilation). terminology: inscopé.

Because of the latter restriction, Madura supports 3. A function call with an output argument: If the ar-
three built-in functions:roll, zero and swap. The gument is a 5ing|e output variable, then On|y the
roll function is explained above, theero function stated possibility is allowed. If the argument is an
zeros its argument (in the case of arrays, it zeros all  array, then only those permutations generated by
elements of the array) and teap function exchanges varying the index (or indices in the case of a multi-
the values of its arguments. dimensional array) through its legal values are al-

1. Aroll statement: Only those permutations which
can be generated by varying the second argument
(through all its legal values) are possible.

A swap statement: Only those permutations which
result from replacing either argument with any of
the output variables in the current variable context

In practise the compilation of Madura code is fast lowed.
and convenient. 4. A zero statement. This is considered fixed and
known byL,,.

7. Consequences of Madura

for the Structural Hint For example, ify is defined as an array of 4 output

This section describes how the syntax of the Madura variables the following Madura statement:

language translates into further restrictions on the ma-
tricesM; inthe programL , canthen exploitthese extra o _ _ .
constraints to restrict its search and consider only valid S compiled into a matrix whoséy is a permutation
Madura programs. An important consequence of this Matrix. Th_e permutation matrices which could replace
is that any solution to the mimicry problem can then be this Ai during the search proceddfeare those which
expressed automatically as a Madura program (rathercorrespond to the Madura statemenmtsil(y,0),

than in decision tree format). roll(y,1),roll(y,2) orroll(y,3).
In the case of awap statement, let’1 be another

single output variable currently defined (in scope). The
Madura statement:

roll(y, 1);

7.1. The ABlocks

The structures of the Madura language which control,
via the compiler, the format of tha; blocks are: swap(y[1], y[2]);
also compiles into a matrix whodg is not the default
identity matrix. The permutation matrices which could
replace thisA; during the search are those correspond-

ing to the following Madura statements:

1. Any roll statements which act on an output vari-
able or array.

2. Anyswap statements which act on output variables.

3. Any callto afunction which takes an output variable

(or array) as an argument.
4. Any zero statements which act on an output vari-
able or array.

The first three of these translate into permutation ma-
trices, while the last becomes a diagonal matrix with
zeros in the appropriate locations.

The simplest way to reduce the possibilities is to
consider all block®\ fixed and known unless they have
been produced by one of the statements above. Even

swap (y[0],y[0])
swap (y[0],y[2])
swap(y[1],y[0])
swap(y[1],y[2])
swap(y[2],y[0])
swap(y[2],y[2])
swap (y[3],y[0])
swap (y[3],y[2])
swap(y[0],y1)

swap(y[2],y1)

swap(y[0],y[1])
swap(y[0],y[3])
swap(y[1],y[1])
swap(y[1],y[3])
swap(y[2],y[1])
swap(y[2],y[3])
swap(y[3],y[1])
swap(y[3],y[3])
swap(y[1],y1)

swap(y[3],y1)
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swap(y1l,y[0])
swap(y1,y[2])
swap(y1,y1)

swap(yl,y[1])
swap(yl,y[3])

The final example examines the possibilities arising
out of the function call:

SomeFunction(y[1])

The permutation matri®; produced is one which rear-

function:

void SomeFunction(in x[4], out y)
{

int t;

y = 4*x[1] - t;
}

Assumingy is stored in théth output component of
the state vector, the assignmenytis compiled into a
matrix which only has non-zero entries in itk row.

ranges the output variables so that the arguments are thel hese entries are those multiplying the components of

lowest in the block of output components (in the state
vector). This is how the compiler simulates pushing
values onto the output stack. The permutation matri-
ces which may replace thi&; are those which would
be produced by the following Madura statements:

SomeFunction(y[0]) SomeFunction(y[1])

SomeFunction(y[2]) SomeFunction(y[3])

Were there two output variables as arguments, the per-

mutation matrix produced by every possible pair of
valid indices would be considered for ti#g in ques-
tion.

It is immediately apparent that the number of pos-
sible permutation matrices is considerably less when
controlled in this way than when all possible permuta-
tions are allowed. In fact, the programmer has some
control over the number of possible programs within
the structural hint. This number is reduced by limit-
ing function calls with output arguments and the use
of swap statements. The search is most likely faster
than when unnecessary function cafigap androll
statements are present in the Madura code.

7.2. The BBlocks

The syntax of Madura can also limit the number of
non-zero entries in the bloclg in each of the matrices
(M;) produced by the compiler. Although once thg
blocks have been chosen finding tBe blocks is a
linear problem, the size of the matrix is prohibitive if
all entries in each block; are potentially non-zero
(see [23] for an example).

The sensible solution is to assume that all entries
in all B; are zero except those generated from an as-
signment to an output variable (in the Madura source
code). For example, consider the following Madura

the state vector which correspondktpi ] andt. When
L, constructs the linear problem to find thg, it as-
sumes that all entries in thisth row are potentially
non-zero. All other assignments to output variables in
the program are similarly treated while all remaining
entries in theB; are considered zero. This restriction
again implies that any solution can be expressed in
Madura source code automatically.

Thus, in terms of Madura, the freedom assumed by
L, corresponds to determiningp..A4 in the follow-

ing:

void SomeFunction(in x[4], out y)
{
int t;
y = AOxx[0] + Alsx[1] + A2xx[2]
+ A3+x[3] + Adxt;
}

i.e. the right-hand side of each assignment is re-
placed by a linear combination of all input variables
currently defined (i.e. in scope).

7.3. Additional Cluster Constraints

Recall how in Section 3 information from the Oracle
is combined with the known paths of points to form
quartets. The equations produced (3.1) adsjsby
reducing the number of possible assignments to the
A in the program. This section describes how using
the zero function can produce additional constraints
which assist , further.

Suppose the cluster search algorithm findiisters
(Cq, Cy, ..., Ct) whose paths can be described in the
following way:

Ci=0QZR (C;=QZR

(7.1)
C3=QZR...Ci= QZR
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Here Z is a matrix whoseA; block is diagonal with Wherever a Madura program uses #ee o function
entries either 0 or 1, whil® andR (i € [1,t]) are on an output variable, the compiler translates it into a
collections of matrices as defined by the paths of the simple matrixZ:

clusters. Forexample, clusters with the following paths

conform to this condition: 2 (A 0)

Cy = M;M,;M3MgMgM, 0 |

Cy, = MyMyM3zMgMgMsMsM, Mg whereA is a diagonal matrix with zeros in the required
components. Additionally, the constraints proposed in

Cs = MiM2MsM3MgM2MgMe M2 Section 7.1 require the diagonal mat#x; to be sup-

Cs = M;MyM3sMgMg plied in the structural hint. Therefore the above equa-
tion simplifies to:

Cs = M1 M;M3M7MgMg

whereQ = M;M,, Z = M3 and Yi = (QuAR 12+ Q12R13) X

Ry = MgMgM, Suppose now thdtmatricesy; can be found which
Ry = MsMoMaMsMaMs satisfy the following equation non-trivially:

R3 = M3M9M2M8M6M2
Ry = MgMg

Rs = M7MgMg SinceR 13 is the product of the lower blocks in the
matrices in the program (Section 1.2), evéys can

be found from the structural constraint supplied. Since
a non-trivial solution of the above equation exists, the
equation below may represent a non-trivial relationship
between the output and the unknown elements of the
| | B | matrices:

0 ; _ R
(X.>= Nlo) My ... T(n)

t t
| | | ZYiai = QuA <Z R@12Xiai> (7.2)
i=0 i=0

Here, denoting the output dimension of the program
the blockDis am x N; block of zeros. Similarly, collect
the corresponding output vectors together to form the
matricesy;.

Recall (Section 3.1) that all matrices in the program
are block upper triangular and so the produ@tsind
R, are also. Hence patrtitioninQ, Z andR; into input
and output components (working variables considered
input components):

t
D RusXiai =0
i=0

Referring to Section 3.1, assume the cluster search
producesN; linearly independent pointsi; (j €
[0, Ni]) from within C; and construct the matrice§
as follows®’

BecauseR, 1, is not known, the bracketed term on
right hand side of this equation cannot be computed.
However the zero components &fare known and for
these the term on therightis irrelevant. More precisely,
if A zeros theith component then the product of
with the term on its right will also be zero in théh
component.

This property can be used to obtain information
about the matrixQi;. Denote the left hand side of
Qu Qu\[/Z11 Zi Eq. (7.2)F, and construct a vectdwhose th compo-

0 ng) < 0 Zﬂ) n_enF is zero if theth row of F is zero and 1 otherwise.
Similarly, define a vectax whose th componentis the
Ri1 R12\/ 0 ith diagonal element of.
x ( 0 Ri13) (Xi> To assess the validity of a particular assignment to
the A; which form Qq; (this list is known from the
This simplifies to cluster search), compargo w:

Yi=(|I0)<

-

Yi = (Qu1Z11Ri12 + Q11Z12Ri13 + Q12Z13R13) X w = Q1A
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If a component ofw is zero and the corresponding constraint® tagged as unknown. The cluster search as
component of is not, then the current assignment to described in [23, 25] is then performed using this in-
the matrices which fornQy; is incorrect. However,  complete copy as the hint, the correct answers being
if a component ofw is non-zero and the correspond- supplied by the complete copy. Finally, the program
ing component of is, then this is not a contradiction.  search uses this information to reconstruct the incom-
This is because the produ@y; may contain yet more  plete copy of the decision tree implementation.

matrices produced from otheero statements, or be- Note that a link is maintained between those entries
cause the rightmosttermin Eq. (7.2) actually has a zero of the matrices which are tagged as unknown in the
component? incomplete copy and the Madura source code which

Nevertheless, this procedure can obtain useful in- produces them. Thus when the program search finds
formation about the matrices in the program. Further- a program which mimics the Oracle over a specified
more, because the condition the clusters’ paths have tonumber of clusters, the solution can be expressed auto-
satisfy in order to use this procedure is weaker than for matically in terms of the original Madura source code.
quartets (Eq. (7.1)), it is expected that such constraints A simple check of the overall success is therefore to
will be readily found (Eq. (7.2)). confirm that this source code is equivalent to the orig-

inal code compiled to produce the Oracle’s program.
8. Learning to Solve Vision Problems

8.1. Thresholding
This section demonstrates the effectiveness ofLthe
developed by showing how a number of basic vision Image thresholding algorithms attemptto quantise each
processes can be learnt (mimicked) in a matter of sec- pixel in an image into either 1 or 0. Pixels setto 1 are
onds. Three classes are considered in the following intended for further processing, while the others are

sections: considered background. The result of thresholding is
termed abinaryimage [29].

1. thresholding For a 10x 10 image, the general outline of a Madura

2. edge detection program which performs thresholding is:

3. corner detection
void main(in x[10][10], out y[10][10])

Following these, a number of additional algorithms

. . int i, j, Threshold;
and techniques are examined to show the power of the J

Madura-based structural constraint and associated for (i=0; i<10; i += 1)
In particular some flexible modules are designed and {
it is shown howL , can modify these automatically to for (j=0; j<10; j += 1)
mimic the required function. {
The results in this chapter are produced using a Calculate_Threshold(...);

Madura compiler/debugger/runner environment writ-
ten in Java. This is run on amtra-sparc computer
with a Java JIT (just-in-time) compiler enabled. All
the following example images and program searches
(by L) are each produced in at most a few minutes.

In the examples which follow the Madura source roll(x[0], 1);
code shown is used as the Oracle as well as the ba- roll(y[ol, 1);
sis of the structural hint supplied tg, (as augmented }
with Madura). The Oracle’s program is the decision roll(x, 1);
tree representation of the Madura source code as con- roll(y, 1);
structed by the Madura compiler. The structural con- }
straint (hint) is produced by firstly using the Madura
compiler again to create a separate copy of this decision
tree representation. This second copy then has all en-wherex andy are arrays containing the inputand output
tries of each matrix which are not part of the structural images respectively.

if (x[0][0] > Threshold)
ylo1[o]l = 1;

else
y[ol[o]

n
o
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8.1.1. Bernsen’s Method. As outlined in [29] this
method initially examines e x r locality around each
pixel Iy to find the maximum and minimum grey level.
The threshold level is then:

I max — Imin
2
The pixellyy is then set as follows:

T=

1 if llmax— Iminll >l @ndlyy > T

Lo =
710 otherwise

wherel is a contrast measure. In [28] = 15 and
| =75 is used. For the purposes here 3 andl =5
is sufficient.

The Madura code which computes this threshold is:

x[0] [0];
x[0] [0];

Min
Max

for (k=0; k<3; k += 1)

{
for (1=0; 1<3; 1+=1)
{
if (x[0][0] < Min)
Min = x[0][0];
if (x[0][0] > Max)
Max = x[0][0];
roll(x[0], 1);
}
roll(x, 1);
}
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where the image is contained in the two-dimensional
arrayx, andMax andMin are local variables.

This implementation is inefficient because most of
the computation deals with executing the loops, rather
than computing the maximum and minimum. Because
the locality is only 3x 3 a better version is to write
each test explicitly for the whole neighbourhood:

Min = x[0][0];

Max = x[0][0];

if (x[0][1] > Max)
Max = x[0][1];

if (x[0][2] > Max)
Max = x[0][2];

if (x[1]1[0] > Max)
Max = x[1][0];

if (x[11[1] > Max)

This version minimises the number of matrices which
must be applied (the lengths of computational paths)
and so both execution and processing Iy is faster.

An example of this method on a typical optical char-
acter recognitionimage is shownin Fig. 2. Bothimages
are 50x 50 pixels and the thresholding takes about 20 s.

The following table shows a summarylof process-
ing the structure of the Bernsen detector above. The
first column contains the size of the image in pixels, the
second shows the time taken (in seconds) for the clus-
ter search [25] to generate 12 clusters and the third the
time the program search takes to identify the algorithm.

Comp

Original image

Figure 2 Example of Bernsen’s thresholding.

Binary image
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The fourth column contains the total number of pos-
sible assignments to th&; in the program, while the
fifth lists the number of quartet constraints found.

Cluster  Program
Size  search search Total  Quartets
3 120 15 81
300 130 256
5 600 300 625

Although the main delay is caused by the cluster
search, the program search is not efficient as there ar
rarely any constraints fouR#i(Section 3). This can be
solved by includingzero statementsin the code. Inthe
threshold test, if the input pixel is below the threshold
explicitly call the zero function to set the output to
zero (rather than simply leaving it unchanged). For
example ify [0] [0] is the output pixelx [0] [0] the
input pixel andt the threshold write:

if (x[0][0] > t)
y[ol[0] = 1;
else
zero(y[0] [01);

Now L, can determine 3eroconstraints from the first

8 clusters obtained, and these reduce (in thel4ase)
the number of assignments to tie which need to
be processed further to 6 out of the original 256. This

reduces the program search time to a couple of seconds.

Therefore without altering the program’s behaviour,
extra constraints can be induced by using #heo
function.

8.1.2. Niblack’s Method. A locality (15x 15in[29])
is examined around each pixék{) and the threshold
value is:

T = mxy_k'S(y (8.1)
wherem,y is the mean ansl,, the standard deviation of
the pixel values in the locality around the centre pixel:
Ixy-

This is more difficult to translate into Madura be-
cause the standard deviatia) ¢f a series of valuek
(i = 0..n) requires numerous products of variables:

2 _ Yiol? (Zino Ii)
n

S
n

e

A much simpler alternative to Niblack's method is
often sufficient for obtaining a threshold value [8]. This
is motivated by the fact that the threshold’s value is not
important provided it separates the pixels corregtly.
One simple but popular expression for the threshold is:

T=p—-kM—p)

Herek is a parameter (set by experiment)the mean
value of the pixels in a local neighbourhood around the
pixel being thresholded and their maximum.

This is much simpler to implement in Madura. For
example when the neighbourhood is 3 and the im-
age is contained in the two dimensional variabléhe
following code fragment computes the required quan-
tities:

Mean = x[0] [0]
x[1] [0]
x[2][0]

x[0] [0];

+ x[01[1] + x[0][2] +
+ x[1101] + x[1]1[2] +
+ x[2]1[1] + x[2][2];

Max =

for (k=0; k<3;
{

k += 1)

for (1=0; 1<3; 1+=1)
{
if (x[0][0] > Max)
Max = x[0][0];

roll(x[0], 1);
}
roll(x, 1);

Because the variabMean above cannot be divided by
n (in this casen = 25), the thresholding comparison
must be altered to:

if (250 * x[0] [0] >= 10 * Mean - (25 * Max - Mean))
y[01[0] += 1;

where the paramet&rhas been settaD. An example
of this algorithm is shown in Fig. 3.

The following table shows a summarylof process-
ing the structure of the simplified Niblack algorithm
above. The first column contains the size of the image
in pixels, the second shows the time taken (in seconds)
forthe cluster search [25] to generate 12 clusters and the
third the time the program search takes to identify the
algorithm. The fourth column contains the total num-
ber of possible assignments to thein the program,
while the fifth lists the number of quartet constraints
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Comp

Original image Binary image

Figure 3 Example of the simplified Niblack thresholding.

found. for (i=0; i<10; i += 1)
{
Cluster  Program for (j=0; j<10; j += 1)
Size search  search  Total Quartets {
Calculate_Local_Edge_Response(...);
4 90 15 16 y[0] [0] = Response;
5 210 120 25 0 roll(x[0], 1);
roll(y[0], 1);
}
Again, addingzero function calls can induce addi- zero(y[0]1[01);
tional constraints. zero(y[0][9]);
roll(x, 1);
8.2. Edge Detection roll(y, 1);
¥
This is possibly the most popular initial vision pro- zero(y[01);
cessing algorithm, as edges can provide much of the zero(y[91);

salient information required to compute symbolic in- 3
formation. Many schemes are based upon anideal edge,

where the image intensity is changing rapidly in some 8.2.1. Simple Edge Detection. This section examines
direction. Consequently many detectors use some ap-a Madura implementation of a simple edge detector
proximation to the local image gradient. described in [8]. The response is determined from the

The basic outline of the local edge detectors con- first order differences in image intensity anddy:
sidered is similar to that of thresholding algorithm in

Section 8.1. Each pixel is examined in turn by two dx
nested loops, but as most detectors cannot compute a dy
response on the edge of the image (as local differences

are impossible), theero function is used to remove  The result, Max||d x|, |dy]|}, is computed using the

x[11[0] - x[0][0];
x[0][1] - x[o][0];

these. Therefore, for a 10 10 image: following Madura code fragment:
void main(in x[10]1[10], out y[10][10]) if (dx < 0)
{ dx = -dx;

int i, j, Response; if (dy < 0)
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Original Image Edges

Figure 4 Example of the simple edge detector.

dy = -dy; the matricesA to less than 3 (in all cases above). This
if (dx > dy) explains why the program search is so fast.

y[11[1] += dx; Aninteresting alternative can be explored if #ero
else function is not used. To implement the edge detector

y[11[1] += dy; without it alter the main loop so that the last pixel on

_ _ each line, as well as the entire last row are not pro-
An example of this edge detector on anx880 image  cessed at all. Their value is therefore unchanged from

is shown in Fig. 4. the original of zero. The main loop of the code now
The following table lists the execution times (in sec- pecomes in the case of 55 detector:

onds) of the cluster search [25] (time taken to get 12

clusters) and the time the program search takes to €x-void main(in x[5][5], out y[5][5])
amine all the possibilities (the total number being in  {

column four). The latter search is simplified if any

constraints generated as described in Sections 3 and int i, j, Response;

7.3 are present. The fifth column lists the number of for (i=0; i<4; i += 1)
quartet constraints found (Section 3) and the sixth the {

number of zero constraints (Section 7.3). The first col- for (j=0; j<4; j += 1)
umn indicates the size of the image being processed. {

Calculate_Local_Edge_Response(...);

y[0] [0] = Response;
roll(x[0], 1);
roll(y[0], 1);

Cluster  Program
Size  search search Total Quartets Zeros

3 40 5 9 2 25 }
4 120 10 16 0 24 roll(y[0], 1);
5 900 120 25 0 22 roll(x, 1);
6 1200 120 36 0 23 roll(y, 1);
}
roll(y, 1);

It is clear that the cluster search is the slowest part 4
of the learning process in this case. Another point of
interest is that the constraints supplied by the calls to  Unfortunately in this case the quartet constraints do
zero reduce the number of consistent assignments to not restrict the allowable assignments to the matrices.
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The solution is found eventually by counting through of possibilities increase. One of the main causesiis that,
all possible assignments to ti#¢ (in brute-force fash- in the code aboved., , assumes the right hand side of
ion) and attempting to find thB; in each case. This the assignment tg [0] [0] can be a combination of

is still reasonably fast because the number of possibili- all input variables currently in scope. As the whole
ties is not vast. The results are summarised in the tableimage is in scope in the functiafiein, this number
below. grows quadratically with image size. This problem can
be avoided by passing the output variajpl@] [0] to

the functionCalculate_Local_Edge_Response as

an argument. The assignmentytfo] [0] now occurs
inside this function and because only a few input vari-

Cluster  Program
Size  search search Total  Quartets

4 60 150 256 27 ables are in scope (i.e. only global variables and input
120 1750 625 15 arguments to the function), the task of finding the right
240 5000 1296 23 hand side is much simpler (see also Section 7.2).

The results ol processing the edge detector writ-
ten using the above alteration are nhow summarised.
This structure has the unexpected property that sev- Note thattheero functionis notused. For a4 im-
eral programs which mimic the output can be written age, the cluster search algorithm takes approximately
based on it. Inthe 5 5 casel, takesupto 5 minto 20 sto find 12 clusters and 19 quartets. The total num-
find successive programs which do this, one example ber of possibilities (for the; ) is 4096 and the program
being: search takes approximately 30 s to discover the first

identical program shown below:
void main(in x[5][5], out y[5][5])

{ void main(in x[4][4], out y[4][41)
int i, j, Response; {
int i, j;
for (i=0; i<4; i += 1)
{ for (i=0; i<3; i += 1)
for (j=0; j<4; j += 1) {
{ for (j=0; j<3; j += 1)
Calculate_Local_Edge_Response(...); {
y[01[0] = Response; Response (x[0] [0], x[1][0],
roll(x[0], 1); x[0][11, yl[0l1[11);
roll(y[0], 2); roll(x[0], 1);
} roll(x[1], 1);
roll(y[0], 4); roll(y[0], 1);
roll(x, 1); }
roll(y, 4); roll(y[0], 2);
} roll(x, 1);
roll(y, 0); roll(y, 1);
} }
roll(y, 1);

It is not immediately obvious how this code mimics }

the required output, but becaukg is not constrained

by conventional programming it can find such unintu- A number of alternative solutions exist ahg discov-

itive programs. Note in particular that, because the last ers them every 30 s. Importantly, the quartets in this

roll function has a zero second argument, it can be example drastically reduce the search time. Every pos-

removed from the code without altering the behaviour. sible assignment to th&; which passes the conditions

Thus there may well be prospects fiog in program imposed by the quartets found is actually a solution to

optimisation. the problem. The constraints obtained by the quartet
The table above also shows that the program searchalgorithm therefore save large numbers of unnecessary

eventually overtakes the cluster search as the numbermatrix inversions in futile attempts to find thg. The
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improvement factor, well over 100 in this example, in-
creases dramatically as the complexity of the program
increases. The same results for a 5 algorithm take
only a few more seconds to produce, while & ®
version takes about twice as long.

This last version of the edge detector clearly demon-

strates the usefulness of the quartet constraints derived S_x

by Ly. Their presence makes the search much faster
than brute-force enumeration, justifying the back-
ground work required to extract them.

8.2.2. Sobel's Method. Sobel's edge detector, one
of the first, simply computes the magnitude of the
(smoothed) discrete image gradient [8]. A 3 neigh-
bourhood of pixels is examined to determine the de-
tector's response at the central pixel. Firstly, the im-
age gradient in the horizontag() and vertical §))
directions are approximated by applying the following
convolution masks:

-1 0 1 1 2 1
S=|[-202] s=[0 o0 o
10 1 -1 -2 -1

The respons® at the centre pixel is most often deter-
mined by one of the following magnitude operations

[8]:

R=I[S]+1Sl

1.
2. R=Max{|S. IS/[}

The Madura code listed in the previous section can
compute either of these two.

If the two dimensional array contains the input
image, and the output image, the Sobel convolutions
in Madura are:

x[2]1[0] + 2xx[2][1] + x[2][2]
- x[0][0] - 2*x[0][1] - x[0][2];
x[01[0] + 2*xx[11[0] + x[2][0]
- x[0][2] - 2*xx[1][2] - x[2][2];

S_y

An example is shown in Fig. 5, where the images are
both 80x 80 pixels large.

Unsurprisingly, the performance bf; in this case is
similar to the previous section. When examining-a
detector the cluster search takes about 400 s to find 12
clusters and 21 quartet constraints can be constructed
from these. The result is that only very few of the pos-
sible assignments to th&; in the program are valid.

In fact every valid assignment actually represents the
Madura code of a program which mimics the required
response. The result is that, while searching the 4096
possibilities, valid programs are discovered yonce
every 120 s.

8.2.3. Smith Edge Detector. This edge detector is
again based on a local calculation and a detailed anal-
ysis is found in [28]. The value of centre pixkly is
comparedto all othersinalocality and an edge response
is based upon the number of pixels whose values are
greatery. Indetail, lett be a preset threshold (usually

Original Image

Figure 5 Example of the Sobel edge detector.

Edges
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Original Image

Figure 6 Example of the Smith edge detector.
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Edge Strength

about 15 for 8-bitimages) and define the edge response An example of this edge detector is shown in Fig. 6.

ny
3
Ry = MaX{Zn - Z H ([ Tx+uy+v — IxyD, 0
uv
1 x>t
Hoo = {5 X2

(8.2)

Here the sum oven andv extends throughout the lo-
cality considered, usually a circular region of about
3.4 pixels in radius [28]. The parameteiis the total
number of pixels in the locality.

A simpler version of this detector uses only & 3
neighbourhood. The Madura code for comparing the
centre pixel to another is:

if (x[01[0] - x[11[1] > t)

C +=1;
if (x[11[1] - x[0][0] < ©)
C +=1;

whereCis alocal variable in which the value of the sum
in EQ. (8.2) is stored. For thex33 locality, seven other

This is produced using the above Madura code, where
the inputand outputimages are both<&&D pixels large
and the thresholtlis 15. When examining a4 4 ver-
sion of this detector the cluster search [25] generates
12 clusters in approximately 15 min. In the particu-
lar Madura implementation used there are 2 valid pro-
grams (16 total), both of which,, finds in about 40 s.

8.3. Corner Detection

As summarised in [24], more complex models of local
image structure are sometimes preferred to basic edges.
The simplest example is a corner detector, where sharp
junctions of edges are sought. This section examines
the Smith and Moravec corner detectors.

8.3.1. Smith Corner Detector. This detector is a sim-
ple extension of the edge detector of Section 8.2.3. The
only change is that the response functiRyy is now:

. n
1 if Z H({ Ixquyro — Ixy D < 5
v

ny = u
0 otherwise

such comparisons must be made and the edge responsg'S implementation in Madura is a trivial change from

computed by:

if (4*C < 27)
y[11[1] += 27 - 4xC;
else

y[11[1] +=

the Smith edge detector in Section 8.2.3. An example
of this Madura implementation is shown in Fig. 7. Both
images are 8% 80 pixels large and the result takes a
few seconds to produce. The performance gin this
example is almost identical to that when processing the
Smith edge detector.
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Original Image

Figure 7. Example of the Smith corner detector.

8.3.2. Moravec Corner Detector. Moravec's corner
detector [13] considers a local window around a central
pixel Iy and examines the changes in average image
intensity that result from shifting the window by a small
amountin various directions. If centre of the window is
on a corner, then all shifts will result in a large change
in this average. Define the average intensity change
due to a small shiftx, y) to be Eyy:

2
Exy = Z | |x+u,y+v - I><y|
uv

whereu andv range over the locality examined. The
only shifts considered ai@, 0), (1, 1), (0, 1), (—1, 1).

The central pixelyy is considered a corner if the min-
imum of all theExy calculated for it is above a preset
threshold. In fact this detector is the predecessor of

the more accurate (but slower) Plessey corner detector,

[13].

This section presents a simple version of the
Moravec detector. The local window isx33 and the
following Madura code computes the intensity changes
above (the input image is contained in the arty

E10 = 0;
if (x[21[11 > x[11[11)

E10 = x[2]1[1] - x[11[1];
else

E10 = x[11[1] - x[2]1[1];
EO1 = 0;

if (x[1]1[0] > x[11[1D)
EO1 = x[1]1[0] - x[1]1[1];

‘-._ - ':.-l’ -
- " .l
XL
- Ie. "
- . . -
Corners
else
EO1 = x[1]1[1] - x[1]1([0];
El1 = 0;

if (x[2]1[00] > x[1101D)

E11 = x[2][0] - x[1]1[1];
else

E11 = x[1]1[1] - x[2]1[0];
E111 = 0;

if (x[0][0] > x[11[1D)

E111 = x[0][0] - x[1]1[1];
else

E111

x[11[1] - x[0][0];

Note thatE111 denotesE_; ;, thus if the minimum

of E10, EO1, E11, E111 is above the threshold then
x[0] [0] is a corner.

An example of this Maduraimplementation is shown
in Fig. 8. Both images are 8080 pixels large and the
output is produced in about 20 s. Again a the effect of
this detector on smaller images can be learnt.pyn
only minutes.

8.4. Creating Multiply Flexible Modules

The previous sections demonstrate how a representa-
tive set of state-of-the-art vision algorithms can be writ-
ten in Madura and learnt bly, effectively. The basic
structure of any of these algorithms can be extracted au-
tomatically once the Madura compiler has translated it
into the decision tree representation. This can then be
passed td., as demonstrated in the previous sections.
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Original Image

Figure 8 Example of the simple Moravec corner detector.

As outlined in [24] this inherent flexibility may be ex-
tremely helpful in creating computer vision systems
automatically (via a supervisory system).

The flexibility of the modules constructed previously
have relied on that intrinsically introduced by the fact
that the source code is written in Madura. However, it
is possible to construct a program whose structure can
be altered byL, into a number of known algorithms.
Thus these modules may be termedltiply flexible
Three such modules are now outlined.

8.4.1. A Flexible Threshold Module. Examine the
thresholding algorithms described in Sections 8.1.1 and
8.1.2. Apart from the raster-scan progress through the
image they all perform, each bases its threshold on only
a few values calculated from a locality around the pixel
in question.

Consider a thresholding program which calculates
the quantities required by both of these methods (for a
3 x 3 implementation):

1. The mean of the locality (required by simplified
Niblack).

The maximum pixel value (required by Bernsen,
and simplified Niblack).

The minimum pixel value (required by Bernsen).

2.
3.

Instead of a single condition which determines whether
a pixel should be setto 1 or 0, imagine a set of nested
conditions so that any condition of the three meth-

ods can be accommodated. For example the following

Corners

code can emulate both the simplified Niblack and the
Bernsen method:

if (Max - Min > 5)

{
if (2 * (255 - x[11[1]) >= Max - Min)
{
if (90 * x[1]1[1] >= 10 * Mean
- (9 * Max - Mean))
y[11[1] += 255;
else
y[11[1] += 0;
}
else
{
if (90 * x[1]1[1] >= 10 * Mean
- (9 * Max - Mean))
y[1]1[1] += 255;
else
y[1]1[1] += 255;
¥
}
else
{
if (x[11[1] < 128)
{
if (90 * x[1]1[1] >= 10 * Mean
- (9 * Max - Mean))
y[1]1[1] += 255;
else
y[1]1[1] += 0;
¥
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else if (dx1 < 0)
{ dx1 = -dx1;

if (90 * x[1]1[1] >= 10 * Mean if (dx2 < 0)
- (9 * Max - Mean)) dx2 = -dx2;

y[11[1] += 255;

else if (dyl < 0)
y[11[1] += 255; dyl = -dyi;

} if (dy2 < 0)

} dy2 = -dy2;
The outer two levels of conditionals derive from if (dx1 > dy1)
Bernsen’'s method, while the inner conditions come {
from simplified Niblack. Becaus¢, is able to de- if (dx2 > dy2)
termine the right hand side of any assignment to an y = dx2;
output variable (in this casgl[1] [1]), it can modify else
this structure to mimic whichever method the Oracle y += dy2;
is executing. Importantlyi-, is also capable of con- }
structing novel blends of these methods in an attempt else
to mimic the Oracle. {

if (dx2 > dy2)
y += dx2;
8.4.2. A Flexible Edge Detector. This section de- else
scribes a flexible module which, can alter to create y += dy2;
the following edge detectors: }

1. The simple detector outlined in Section 8.2.1.

2. The Sobel detector in Section 8.2.2, using either of
the last two magnitude operations.

3. Alinear convolution with a set mask.

Becausé., can determine the right hand sides of all the
above assignments g it can alter this code to behave
like any of the edge detectors above. In addition, a
vast number of (potentially) non-linear combinations
of these algorithms can also be found lby based on
the above structure.

The similarity between these detectors can be ex-
ploited to define a structure capable of modelling all
three. The first in the above list requires a simple lo-
cal pixel difference (in the andy directions, while the
Sobel detector requires a more complex version. These8.4.3. Flexible Morphology. This section develops a

can be provided by four local variables: flexible module which is capable of performing a num-
ber of morphological processes. The reader is referred
Sobeldx = x[2]1[0] + 2*x[2][1] + x[2]1[2] to [20] for an introduction to the morphological oper-
- x[01[0] - 2*x[0]1[1] - x[01[2]; ators used in computer vision.
Sobeldy = x[0][0] + 2*x[1][0] + x[2][0] A general morphological structure can be con-
- x[0]1[2] - 2%x[11[2] - x[21[2]; structed based on the fact that dilation and erosion
Simpledx = x[2]1[1] - x[11[1]; operations are based on the maximum and minimum
Simpledy = x[11[2] - x[1]1[1]; respectively of pixels in a small locality. To perform

morphological operations using ax22 square struc-

The edge response is set by a call to the funckien turing element, define a local array of 4 valvelues
sponse, which has these variables passed to it as pa- and assume the input image is contained in the array

rameters (together with, the central pixel of the 3 3 x. The following code orders the values of the im-
neighbourhood). age contained within the structuring element using a

bubble-sorimethod:

void Response(in x, out y, in dx1,
in dx2, in dyl, in dy2) Values[0]
{ Values[1]

x[0] [0];
x[1][0];
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Values[2]
Values [3]

x[0] [1];
x[1][11;

for (Swapped = 1; Swapped > 0; )

{
Swapped = -1;
for (k=0; k<3; k += 1)
{
if (Values[0] < Values[1])
{
Swapped = 1;
swap(Values[1], Values[0]);
}
roll(Values, 1);
}
roll(Values, 1);
}

The following single assignments to an output pixgl
can then achieve the associated operations listed:

1.
2.
3.

Dilation: y+=Values[3]

Erosion:y+=Values [0]

Simple morphological edge detection [2G}=

x[0] [0]-Values[O]

. Better morphological edge detection [2G}+=
Values[3]-Values[0]

. Median Filtering (replace each pixel with the me-

dian of the pixels in the locality)y+=Values [1]

Note that median filtering is not possible using only
dilations and erosions.
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model allowsL, to determine the most useful ques-
tions to pose to the Oracle, the answers to wHigh
combines automatically into additional restrictions on
the possible solutions it must consider. Although the-
oretically L, must search through the whole space of
computer programs spanned by the given template, its
search is generally more efficient due to these addi-
tional constraints (Sections 3 and 7.3).

The new computer language Madura is also outlined
to facilitate the translation of familiar computer code
into the decision tree format required by thg devel-
oped. Another advantage of Madura is that, because
of its natural syntactical structure, even stronger con-
straints can be imposed on the possible solutiops
must consider when attempting to mimic the Oracle.
The result is thak, can mimic several state-of-the art
basic vision algorithms in a matter of minutes.

All the examples examined possess inherent flexi-
bility as a result of their translation into Madura, but
not all programdL, can explore using this represent
algorithms whose function is well understood by a hu-
man programmer. It is programs at these limits which
may represent interesting modifications to well-known
algorithms, or indeed exotic blends of more than one.
Consequently there is good reason to supposelthat
and the theory behind its design will be of significant
service to the continuing efforts of constructing com-
puter vision systems, especially those systems which
attempt to solve vision problems automatically [2, 4,
6,9, 17, 27, 30].
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Notes

1.
2.

The termL,, is derived from “Universal Learner”.

Details of the motivation and the theory behind the work here

are found in [23, 25].

In this section working variables are considered part of the input

components.

. Py is the matrix choice function of the program once translated
into decision tree format.

5. The unit element is also considered partiof

. As the output within any cluster is linear and the input space is
n dimensional.

7. There is a large number of output components in most vision

algorithms

Including the restriction that the matricés in the program be

asin Eq. (1.5).

3.

8.
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9. Note that constructing programs by hand using this new model
is still far more tractable than using Turing machine code or
recursive functions, especially for multi-dimensional functions.
See [23] for a detailed description of Madura.

The detailed development of a Madura compiler is found in [23],
to which the interested reader is referred.

There are clearly other important features, this list being those
of most concern here.

Set during compilation rather than execution.

Typically animage is an array of pixels in vision problems: most
likely over 100 elements.

Java is, in turn, similar to “C”.

Performed by .

Refer to Section 1.1 for a definition of the promotion niap

This would propagate throug@i1 and imitate an extra zero

in A.

As developed in Section 1.2 and augmented with Madura in
Section 7.

There are no zero constraints because#re statement is not
used in the program.

i.e. those of interest from the background.

10.
11.

12.

13.
14.

15.
16.
17.
18.

19.
20.

21.
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