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Abstract. Recently the idea of designing a computer system which automatically connects a number of indepen-
dent vision modules together to solve a given computer vision problem has attracted significant interest. However
the main assumption of this endeavour, namely that the modules used as the building blocks of the vision system
are essentially fixed, is questionable in the light of previous experience. Therefore it is important to be able to
modify even the detailed operation of the basic modules used, something which is not practical using conventional
techniques.

This paper constructs a general method by which the computer code of a vision module can be altered automatically
to make it mimic a desired behaviour. The system which does this, termedLu, modifies a basic module template
using interaction with anOracleas a guide. The Oracle is an entity which, when given an input value, produces
the corresponding output of the function which is to be mimicked. The system developed is based upon a new
model of computation which endows it with the important properties that extracting the template (i.e. structure) of
any module’s computer code, as well as determining the best questions to pose to the Oracle are both performed
automatically. Thus theLu described has significant advantages over many other models which might be used (e.g.
Neural Networks).

Dealing directly with this new model is not always convenient. Therefore a new computer languageMadura
is defined which provides a high-level interface to it. As Madura is syntactically similar to JAVA, it is simple to
express the code of many basic vision modules in its terms and the results ofLu (the Madura code of a module
which mimics the Oracle) are similarly simple to understand and use.

This paper shows a number of results which demonstrate how theLu developed can learn many state-of-the-art
initial vision algorithms in a matter of minutes. The current and future impact of this work is also examined.
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1. Introduction

Despite the rapid improvements of computer hardware
over the last few years, competent computer vision sys-
tems have not been forthcoming except in controlled or
restricted applications [5, 10, 11, 12, 15, 17, 18, 19, 21,
26, 30, 32]. One of the major causes of these failures is
the unreliability of the initial or basic processes which
form the initial step of most current vision systems [1,
9, 17, 18]. However it is now believed that the short-
comings of any single basic process (ormodule) can
be overcome by using a number of different modules
in parallel and combining their results intelligently.

Unfortunately, the task of deciding which modules
to use and how to connect them is still unclear. Thus
the idea of designing a system to do this automatically
is attractive. This approach introduces the concept of
asupervisorycomputer system whose task it is to con-
nect basic vision modules together to solve any particu-
lar vision problem. Recently, the problem of designing
such a system has attracted significant interest [2, 4, 6,
9, 17, 27, 30] and has been done with some success in
limited applications [22, 31].

The central assumption underlying this endeavour is
the belief that the modules chosen as part of a com-
puter vision system may be considered fixed. Hence it
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is implicit that conventional computer vision modules
do represent a competent toolkit of modules which a
supervisory system can (in principle) arrange to solve
many vision problems. Where extra flexibility within a
module is required one possibility is to supply extra pa-
rameters, for example the cutoff level in a thresholding
module.

Although an attractive idea, previous experience is
a warning against complacency, especially as supervi-
sory systems which automatically define module inter-
actions are still in their infancy. It is to be expected
that the more modules available the more complex and
time-consuming the supervisory system’s task will be.
Therefore it is likely to be advantageous to have a small
set of modules which are inherently flexible. This is
because various instantiations of any such basic tem-
plates can simulate a number of different algorithms.
These may be termedflexible modules.

In order to exploit the flexibility of such a module
three things must be defined:

1. The way the goal is presented: i.e. means of judging
when a solution is acceptable.

2. How the details of the template are to be expressed:
i.e. the language used to express it and the informa-
tion it contains.

3. An algorithm which modifies the template in order
to find a solution (as specified by the goal).

Considering the first point, the least structured
way of expressing a desired solution is by providing
the modification program (i.e. that which carries out
Step 3) access to anOracle. The oracle is a device which
provides the desired output corresponding to any input
given to it. This arrangement is illustrated in Fig. 1.
Here,1 Lu is a computer program which modifies a
flexible module, the Oracle is part of the supervisory
system and thehint is the basic template of the mod-
ule. It is this template which defines the limits of the
module’s flexibility.

This arrangement has the advantage of allowing the
supervisory system to be ignorant both of the details of
the modules’ operation and of the modification proce-
dure. Thus from the supervisory point of view, the most
useful flexible module is one which can be modified by
some other program (Lu) in response to input/output
pairs of desired behaviour. The supervisory system’s
task is made even easier ifLu determines automatically
which questions to ask the Oracle.

To address the first point above the model of com-
putation used to define a flexible template must be

Figure 1. The mimicry model withLu.

chosen. This must be a universal model to avoid in-
advertently restrictingLu to a subset of computable
functions which may not contain many useful vision
algorithms. In [23, 25] Turing Machines, Recursive
functions and more complex computer languages are
assessed for their suitability in this application. As none
of these models is ideal a new universal model is de-
fined and an algorithm developed which allowsLu to
target its questions to the Oracle efficiently. This model
is summarised in Section 1.1.

The rest of this paper builds on the work in [25]
to outline a complete algorithm forLu: i.e. point 3
above. In the course of doing this, practical consid-
erations require the development of a new computer
language coinedMadura. To use the complete system
developed, a computer vision module must be written
firstly in Madura (a simple task given the similarity of
Madura to the JAVA language). Using the definition of
a computer program’s structure as defined in [25] and
summarised below, the flexible template of this algo-
rithm is then extracted automatically. It is this which
theLu developed in this paper can modify to create an
algorithm which mimics the Oracle. As will be seen
in Section 8 the final result can be expressed automat-
ically in the convenient form of Madura source code.

1.1. The Decision Tree Model of Computation

This section summarises thedecision treemodel of uni-
versal computation [23, 25], while the next describes
the way the structure of any computer program can be
extracted automatically from this representation.2
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A function f : Nn → Nm expressed in the decision
tree model consists of astate vectorand atest tree.

Define ther -dimensional state vectorEx:

Ex0 =



0
...

0

0
...

0

un

un−1

...

u1

1



 m Output components

 Working variables

 Input components

Unit: Always 1

(1.1)

Note how the output and working variables are initially
zero.

The test tree is defined as follows. Letqf and p
be row vectors (1× r ), whereqf is problem depen-
dent.qf is termed thehalt-testvector andp the output
projection matrix:

p = (I | O)

whereI is am×m identity matrix andO am× (r −m)
zero matrix. Define a set of indicesJ andtest vectors
qi , wherei ∈ J.

A matrix choicefunction Pi (Ex) (i ∈ N) is con-
structed in the following recursive manner:

Pi (Ex) =


{

P2i (Ex) qi Ex ≤ 0

P2i+1(Ex) qi Ex > 0
if i ∈ J

An integer matrix:Mi if i 6∈ J

(1.2)

Attaching an index to the state vector, the input being
Ex0, computation proceeds as follows:

j = 0
while (qf Exj ≤ 0)
{

Exj+1 = P1(Exj )Exj

j = j + 1
}
Answer= p · Exj

Thus linear transformations are applied to the state
vector produce (in order)Ex1, Ex2, . . . , Exj . Computation
halts (atExj ) if qf · Exj > 0. The solution (result) is the
first m elements ofExj , i.e.

f (u1, . . . ,un) = p · Exj

This model derives its name from the observation that
the matrix choice functionP1 above is most conve-
niently expressed as a (binary) decision tree.

Definition 1.1(Promotion Map). A r × n linear pro-
motion map5 : Zn → Zr (r ≥ n + 1) is defined by
the equation:

Ex = 5′ · Eu+ 1

where Ex ∈ Zr , Eu ∈ Zn and 1 is a r -vector whose
components are all zero except the lowest which is 1.
The matrix5′ is defined as:

5′ =


0

I

0T


where0 is a (r − n − 1) × n zero matrix,I a n × n
identity matrix and 0T a 1× n zero (row) vector.

A vector Eu ∈ Zn is said to bepromotedto Zr when
mapped in this way.

Definition 1.2(Input Vector). Given a programP :
Zn → Zm, a valid input vector is an element ofZn

whose components are positive integers. It is this which
is then promoted to form the initial state vector. Even
though the input components of the state vector may
become negative during computation, they must be ini-
tially positive. No generality is lost in this restriction
(see [3, 7]).

1.2. The Structure of a Computer Program

The structural hint which is derived from the analysis
in [23, 25] is now summarised. Firstly partition the test
vectors and matrices into parts which act on the input
and output variables in the state vector.3

qi = (0 | q′i ) (1.3)
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Here the first section multiplies the output variables
and the second the input variables. Similarly:

Mi =
(

Ai Bi

0 Ci

)
(1.4)

whereAi multiplies them output variables in the state
vector, andBi andCi arem × (n + 1) and (n + 1)
×(n + 1) respectively. Further restrictions are also
placed on theAi :

Ai = Diagonal{0, 1} or

Ai is anm-dimensional permutation matrix.
(1.5)

It is then assumed that the following conditions apply
to the program:

• The matricesMi are block upper triangular as in
Eq. (1.4);
• Condition (1.3) applies to all test vectors;
• EachAi is restricted as in Eq. (1.5) (see Eq. (1.4)).

The structural hint consists of the following elements
of a program:

• The number of input, working and output dimensions
in the state vector
• The test-tree structure
• The test vectorsqi andqf

• The bottom block of eachMi , i.e.Ci in Eq. (1.4).

Note that this definition permits the structure of any
computer program (expressed in decision tree format)
to be extracted automatically.

2. Constructing Lu

This section recalls the basic definitions which are used
both in [25] as well as the further development ofLu

presented here.

Definition 2.1(Path). Given a programP : Nn →
Nm expressed in terms of the decision tree model, the
list of matricesP applies to a particular input vector
Ex0 to compute the corresponding output is referred to
as thepathof Ex0. The number of matrices in this list is
the lengthof its path. Thus points for which the com-
putation never halts have infinitely long paths.

Note that each matrix in a path is identified by its
index within the matrix choice function ofP. Thus, for

example, the two pathsM1M2M3 and M1M2M2 are
considered different even thoughM2 may equalM3.

Definition 2.2(Cluster). Given a programP : Nn→
Nm expressed in terms of the decision tree model, a
cluster is a set of points (inNn) which have the same
path. The length of a cluster is the length of the paths
which comprise it.

Theorem 2.3. The output of any program is linear
within any cluster.

Proof: See [23] or [25]. 2

It is shown in [23, 25] how the locations and paths
of all clusters can be determined using the information
in the structural hint (Section 1.2). With each matrix in
the program constrained to be of the form in Eq. (1.4),
Lu must determine eachAi and Bi using interaction
with the Oracle as a guide.

To see how this can be done, consider the path of a
certain cluster for a program described by4 P1(Ex). For
input Ex0, the sequence of linear transformations applied
to it during computation of the corresponding output
may be (for example):M2,M0,M8,M3,M1,M2. Par-
tition the state vector into inputEu ∈ Nn and output
Ey ∈ Nm components. For the purposes of simplicity, it
is sufficient to consider any working variables part of
the input components in the state vector.5 Let Eu j denote
the input dimensions of the state vector afterj transfor-
mations (Mi ) have been applied (similarly forEyj ). Col-
lect together (in order) the indices of any given product
of severalMi into a setJ. Thus M2M0M8M3M1M2

results inJ = {2, 0, 8, 3, 1, 2}. If there arel matrices
in the product, the result (MT ) has the form

MT =
(∏Jl

i=J0
Ai

∑Jl
i=J0

(∏i−1
k=J0

Ak
)
Bi
(∏Jl

k=i+1 Ck
)

0
∏Jl

i=J0
Ci

)
(2.1)

which has a zero lower left-hand block, and simple
diagonal elements. A general expression for the output
Eyn is therefore:

Eyj =
(

Jl∑
i=J0

(
i−1∏

k=J0

Ak

)
Bi

(
Jl∏

k=i+1

Ck

))
Eu0 (2.2)

Each cluster gives rise to at mostn+ 1 linearly in-
dependent equations of this form6 and these must be
solved to find theAi and Bi . To find theBi , observe
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that they enter linearly in Eq. (2.2). So if theAi can be
found, theBi follow from a simple matrix inversion.
However theAi enter non-linearly and so a method is
required which can solve polynomial equations. This
problem is too difficult in general, especially as theAi

are likely to be large.7 It is for this reason that theAi

are constrained as in Eq. (1.5).

3. Ai is a Permutation Matrix

Requiring eachAi in the program to be a permutation
matrix drastically simplifiesLu’s task without making
it trivial. The next two sections develop a way to exploit
the properties of such matrices to discover additional
constraints on the exact permutations eachAi may rep-
resent. Including the alternative possibility (Ai is di-
agonal) is deferred until Section 7.3.

3.1. Quartets

The cluster search algorithm (see [23, 25]) finds a num-
ber of input points (up ton + 1 for ann dimensional
input space) which belong to a cluster and the Oracle
supplies the corresponding correct output. Note that
the algorithm also finds the list of matrices in a clus-
ter’s path. Suppose four clusters (C1,C2,C3,C4) can
be found whose paths are generated from four collec-
tions of transformations (R1, R2, Q1, Q2) in the fol-
lowing way:

C1 = Q1R1

C2 = Q1R2

C3 = Q2R1

C4 = Q2R2

Definition 3.1(Quartet). A quartet is a set of four
clusters whose paths are generated from four transfor-
mations in the above manner.

Note that the transformationsR1, R2, Q1, Q2 need
not be single matricesMi (taken from the program
structure). They could be comprised of several (or
none) of theMi collected together. For example, the
following constitute a quartet:

C1 = M1M2M3M5M4

C2 = M1M2M3M4M5

C3 = M0M1M3M5M4

C4 = M0M1M3M4M5

whereR1, R2, Q1, Q2 in this case are:

R1 = M5M4

R2 = M4M5

Q1 = M1M2M3

Q2 = M0M1M3

Let the number of linearly independent points found
by the cluster search algorithm from within eachCi be
Ni (i ∈ [1, 4]). Construct the matricesXi as follows:

(
0

Xi

)
=

 | | . . . |
5(Eu0) 5(Eu1) . . . 5(EuNi )

| | . . . |


The zero block on the left hand side is, if there arem
output dimensions, am× Ni matrix. Similarly, collect
the corresponding output vectors together in a matrix
Yi .

From Eq. (2.2)R1 andR2 can be expressed as upper
triangular block matrices

R1 =
(

R11 R12

0 R13

)
R2 =

(
R21 R22

0 R23

)
and similarly forQ1 andQ2. The input/output relation
of each cluster in the quartet can now be expressed sim-
ply using these observations. For the first,C1, whose
path is of the formQ1R1:

Y1 = (I | 0)
(

Q11 Q12

0 Q13

)(
R11 R12

0 R13

)(
0

X1

)
which simplifies to

Y1 = (Q11R12+ Q12R13)X1

The other three clusters in the quartet similarly give

Y2 = (Q11R22+ Q12R23)X2

Y3 = (Q21R12+ Q22R13)X3

Y4 = (Q21R22+ Q21R23)X4

Recall that as part of the structural hint, eachCi

within Mi is given. Thus the matricesR13, R23, Q13,
Q23 (from Eq. (2.1)) are also known. Suppose matrices
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α1, α2, α3, α4 can be found which satisfy

R13X1α1+ R23X2α2 = 0 R13X3α3+ R23X4α4 = 0

then the outputs can be combined to form

Y1α1+ Y2α2 = Q11(R12X1α1+ R22X2α2)

Y3α3+ Y4α4 = Q21(R12X3α3+ R22X4α4)
(3.1)

From Eq. (2.1),Q11 and Q21 are products made up
entirely of theAi , which by assumption are all per-
mutation matrices. ThereforeQ11 and Q21 are sim-
ply permutation matrices too and so are invertible. If
X1α1 = X3α3 andX2α2 = X4α4 the above two equa-
tions combine together to yield

Q−1
11 (Y1α1+ Y2α2) = Q−1

21 (Y3α3+ Y4α4) (3.2)

Expressed in matrix form, the complete set of assump-
tions forα1, α2, α3, α4 become

X1 0 X3 0

0 X2 0 X4

0 0 R13X3 R23X4



α1

α2

α3

α4

 = 0 (3.3)

so that if a non-trivial solution exists for Eq. (3.3) then
a non-trivial relationship may be found betweenQ11

andQ21 via Eq. (3.2).
Recall that the blocksCi in Eq. (1.4) multiply both

the input and working variables. Therefore each ma-
trix of X1, X2, X3, X4 can be divided into two blocks
corresponding to the working variables (W) and input
components (U ):

Xi =
(

Wi

Ui

)
i ∈ [1, 4]

Divide R13 andR23 into corresponding blocks:

R13 =
(

Ra
13 Rb

13

Rc
13 Rd

13

)
R23 =

(
Ra

23 Rb
23

Rc
23 Rd

23

)

Because all working variables are initially zero, the
blocksWi (i ∈ [1, 4]) are zero and Eq. (3.3) simplifies

to: 
U1 0 U3 0

0 U2 0 U4

0 0 Rb
13U3 Rb

23U4

0 0 Rd
13U3 Rd

23U4



α1

α2

α3

α4

 = 0 (3.4)

Of course there may well be no non-trivial solutions
to Eq. (3.4), in which case no useful relationship be-
tween theAi in the clusters in the quartet can be found.
This general procedure which derives quartets can be
carried out for many other groups of clusters whose
paths are related in some manner. Each group poten-
tially finds a relationship between the matricesAi un-
der differing conditions, although the basic quartet is
sufficient in the examples shown in Section 8.

3.2. Processing into Equations

Given a list of paths as found by the cluster search
algorithm [23, 25], it is relatively simple and efficient to
find all possible quartets. Using these the matricesα1,
α2, α3, α4 (Eq. (3.1)) are found simply using standard
Gaussian elimination in order to obtain an equation like
(3.1) for each.

Equation (3.2) assumes eachAi is a permutation ma-
trix (so that the inverses ofQ11 andQ21 exist), but note
that Eq. (3.1) does not. Therefore a more general con-
straint can be obtained by examining Eq. (3.1) directly.
DefineL, R, andT as follows:

L = Y1α1+ Y2α2 R= Y3α3+ Y4α4

T = R12X1α1+ R22X2α2

= R12X3α3+ R22X4α4

and so Eq. (3.1) becomes:

L = Q11T R= Q21T

Let eachAi in the program be either a permutation
matrix, or a diagonal matrix with entries 0 or 1. Note
the following:

1. The product of permutation matrices is a permuta-
tion matrix.

2. The product of diagonal matrices is a diagonal ma-
trix.
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3. For any permutation matrixP and diagonal matrix
D, there exists a permutation matrixP′ and diagonal
matrix D′ such thatP D = D′P′.

Consequently, the productsQ11 and Q21 can be ex-
pressed as

Q11 = Q1131 Q11 = Q2132

whereQ11 andQ11 are permutation matrices, and31

and32 are diagonal matrices (with entries 0 or 1). As
the inverse of a permutation matrix always exists (and
is, in fact, its transpose), the above equations can be
combined to form:

32QT
11L = 31QT

21R (3.5)

Because the structural constraint supplies the paths
which comprise the quartet, it is known which matri-
cesAi combine to form bothQ11 andQ21. Therefore
the matrices32,31,Q11,Q21 in Eq. (3.5) can be pro-
duced from any hypothesised assignments to theAi in
the program as permutation or diagonal matrices.

Equation (3.5) expresses the fact that the rows ofL
and R are simply rearranged versions of each other,
with the added possibility that some of these have been
set to zero (by31 or 32). Therefore the informa-
tion supplied can be compressed into a format which
records only whether each row inL and R is entirely
zero, is identical to another row in eitherL or R, or is
unique amongst these rows. This can be expressed by
constructing twomdimensional vectorsEl andEr (assum-
ing m output dimensions) which contain labels iden-
tifying which rows are identical, zero, or unique. A
simple algorithm for doing this is outlined in [23].

The labels inEl and Er supply necessary conditions
which any hypothesised assignment toQ11 and Q21

must satisfy. To see this, consider such an assignment
and note that because of Eq. (3.5):

32QT
11
El = 31QT

21Er (3.6)

Should this fail for any component, then the chosen
assignment toQ11 andQ21 is incorrect. However, it is
possible for a row inL or R to be zero because the cor-
responding row inT is zero, rather than because of one
of 31 or32. In addition the possibility that rows (and
therefore labels) are repeated means that some ambi-
guity may be present. Hence it is possible for the above
equation to hold even though the chosen assignment to
Q11 andQ21 is incorrect.

Therefore the Eq. (3.5) produced by processing quar-
tets provide necessary rather than sufficient conditions
for any assignment to the matricesAi in the program
to be correct. An illustrative example of this process is
found in [23].

4. The Madura Programming Language

Even with all the information supplied within the struc-
tural hint8 and the extra constraints obtained from quar-
tets, the searchLu has to perform is still too extensive
to be practical in all but the simplest problems [23].
Thus additional constraints must be imposed upon the
allowed programs to make the search practical.

A related problem is the usability of the decision tree
model. It is, as intended, a low-level description and
so only simple programs can be expressed concisely
in its format. Constructing computable functions in the
notation of the decision tree model is analogous to writ-
ing programs for conventional computers in assembly
code. Such a feat is possible, but becomes rapidly te-
dious as more complex programs are constructed.9

To address both these problems a programming
language, coinedMadura, is developed.10 Madura is
based upon the sequential programming languageJava
[14, 16] and therefore imposes a syntactical structure
on a program. Consequently, the task facingLu is sim-
plified as its search can be restricted to include only
syntactically valid Madura programs. Although this re-
striction reduces the number of possibilitiesLu must
consider in its search, it does not render the mimicry
problem trivial (see Section 8).

The translation of Madura source code into the
decision tree format is carried out automatically by
a Madura compiler.11 Hence another advantage of
Madura is that it facilitates the automatic translation
of computer code written in a concise and familiar for-
mat into a function expressed in terms of the decision
tree model (Section 1.1). The way to achieve this trans-
lation is not obvious given the differences between the
decision tree model and sequential languages, so the
next section examines how the most difficult technical
barriers can be overcome.

5. Conventional Sequential Computer Languages

Programs written in sequential computer languages
comprise a list of instructions that a computer executes
in strict sequential order unless specifically redirected.
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The main features of such languages are:12

1. Referencing memory locations by name (i.e. vari-
able names).

2. Allowing arrays of variables: i.e. accessing a vari-
able relative to another variable, the offset deter-
mined during execution.

3. Functions: re-using code by defining mini-programs
which operate on variables defined relative to a
“Stack Pointer” variable.

4. Instructions in the code are executed in sequence
unless specifically redirected.

To approach the functionality of languages such as
Java, Madura must implement at least these features.
The decision tree model does not inherently contain
them and so it is the task of the Madura compiler to
introduce them during compilation. The two essential
elements that must be introduced by the compiler to
provide this functionality are the simulations of aPro-
gram Stackand aProgram Counter.

5.1. Program Counter

To emulate a program counter the compiler can sim-
ply reserve a component of the state vector and use it
to keep track of the instruction/matrix currently being
executed/applied. This is similar to the reserved com-
ponent of the state vector which is required to contain
the unit element during all stages of computation.

To see this process more clearly, examine the fol-
lowing code fragment:

Var1 = 7;
Var2 = Var1 - 5*Var3 + Var4;
Var3 = 6*Var5;

In a conventional computer, each variable (Var1 etc.)
represents a location in memory allocated by the com-
piler (for examplejavac). Each of these statements
replaces the contents of the left-hand side memory lo-
cation with the result of the calculation on the right.

In the decision tree model conventional computer
memory is analogous to the state vector, thus each vari-
able can be allocated a component (or components in
the case of arrays) by the Madura compiler. Given that
the last component of the state vector always contains
a 1, each of these statements can be implemented as a
matrix multiplication of the state vector.

Assume the compiler constructs one matrix for each
of the above instructions:M1, M2, andM3. To achieve

the effect of these three instructions the state vector
must have each of these matrices applied to it in order.
If the state vector isEx0 just before these statements are
executed, andEx4 afterwards, the following must hold:

Ex4 = M3 · M2 · M1 · Ex0

Let the second last component of the state vector be re-
served by the compiler to act as the program counter and
let each matrix (M1, M2, M3) increment this compo-
nent by one. In the notation of Section 1.1 the function
P1 becomes:

P1(Ex) =
{

P2(Ex) if (. . . ,1,−2) · Ex ≤ 0

P3(Ex) otherwise

P2(Ex) =
{

P4(Ex) if (. . . ,1,−1) · Ex ≤ 0

M3 otherwise

P4(Ex) =
{

M1 if (. . . ,1, 0) · Ex ≤ 0

M2 otherwise

whereP3 provides a path leading to other instructions in
the program. This process can be extended in a simple
manner to any number of sequential instructions. Thus
the compiler can construct a program tree (P1) in which
the matrix applied is determined purely by the value of
the program counter.

If each instruction in the sequential Madura code can
be transformed into a matrix multiplication of the state
vector, this shows how to emulate sequential compu-
tations. As in conventional machines, while most in-
structions will simply increment the program counter
by one, instructions which redirect the flow of control
can do so by setting the program counter directly.

5.2. Program Stack

Maintaining the analogy between the state vector and
the memory of a conventional computer, thestackis
simply a contiguous block of components in the state
vector. Normally, a pre-defined variable termed the
Stack Pointercontains the address of the top of the
Stack, i.e. the first component in this contiguous block.

The main use of the stack is to facilitate function
calling. To execute a function call, the function’s ar-
guments and the address of the current instruction are
pushedonto the top of the stack, and the stack pointer
increased by the number pushed on. Control is then set
to the first instruction of the function called and execu-
tion continues. While executing, the function accesses
its arguments by referring to the current value of the
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stack pointer. When complete, the control is returned
to the place (address) from which the call was made,
this having been stored on the stack previously. Note
that this is only possible if the concept of a program
counter exists (see previous section).

Conventionally, pushing values onto the stack affects
the state vector (memory contents) as follows:

Stack Pointer→

Top of Stack→

Unit: Always 1→



0

0

0

0

2

1

4

3

1


Push 9 and 7 to Stack

⇒

Stack Pointer→

Top of Stack→

Unit: Always 1→



0

0

7

9

2

1

4

3

1


This process cannot be translated directly into the

decision tree model, because a function’s arguments
may be contained in any number of components of the
state vector. This is because they are located relative
to the value of the stack pointer and so their exact po-
sition is known only during execution. However, in
the new model, all matrices in a program are fixed and
so always access and alter the same elements in the
state vector. Thus the components they affect cannot
be modified during execution by the current value of
the stack pointer.

Fortunately, although the matrices cannot be altered
during execution, the state vector contents can. Instead
of letting the top of the stack change as the program
executes, it can be fixed during compilation to some
known location. Now when a value is pushed onto the
stack, all the values in the state vector can be shifted up
by one and the new value inserted at the (set) location
of the top of the stack. This procedure is shown below,

where a separate stack pointer is no longer needed:

Top of Stack→

Unit: Always 1→



0

0

0

0

2

1

3

4

1


Push 9 and 7 to Stack

⇒

Top of Stack→

Unit: Always 1→



0

0

2

1

3

9

7

4

1


The current values in the state vector arerolledup by the
required amount and the new values inserted. This can
be achieved by a single matrix multiplication. When
a function is complete, the inverse operation restores
the state vector to its original arrangement. This latter
operation also sets the program counter component to
the return address value stored on the stack.

Note that if the top element of the state vector is a
meaningful value, i.e. its contents are the value of a
variable in the program, a “Push” operation will over-
write its value (it will be pushed over the top of the state
vector). This is an example of stack overflow which
is a common problem in stack-based languages. The
standard solution is to make the stack so large that it is
extremely unlikely.

5.3. Variable Arrays

Another important feature Madura must allow is the
use of arrays of variables. This is essentially a way to
refer to a memory location as an offset from another
reference location. In “C” for example, arrays are im-
plemented in exactly this way. As seen above how-
ever, because the matrix entries are fixed, only set13

components of the state vector (memory) may be ac-
cessed/modified. It may be imagined that swapping
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elements of the state vector may avoid this problem
as it did when implementing the stack. However this
situation is more difficult as the position with which to
swap must be determined during execution.

Examine, for example, how the following section of
code might be processed:

Vehicle[4*i - j*j] = 5;

Before the assignment is made, the element which is
to be set must be determined. This can be done by
performing the calculation in the square brackets and
storing the result in a temporary location:t . The array
Vehiclemust then berolled t times so that the appropri-
ate element becomes the first element The assignment
can then be made by a fixed matrix which alters this first
element,Vehicle[0]=5, before the reverserolling op-
eration is performed to restore the array to its original
order.

The difficulty in performing this procedure is not
theoretical, but rather practical. The code to roll the
arrays as above requires on averagen matrix applica-
tions (n being the size of the array). As the arrays in
vision are likely to be large,14 the number of matrices
which must be applied to perform even simple array
computations is too large to be practical.

The problem can be minimised by observing that in
most programs, including vision algorithms, the most
common way to access elements in an array is in se-
quence:

for (i=0; i<10; i++)
Vehicle[i] = 5;

This functionality can be provided in Madura by giv-
ing the programmer access to aroll function. This
function is modelled as a hard-coded Madura language
call (such as “System.out.println” in Java). To see how
this function operates, let an arrayVA occupy compo-
nents 2 to 5 in the state vector. The effect ofroll is as
follows:

Ex0 =



5

4

3

2

0

1


Ex1 =



2

5

4

3

0

1


Ex2 =



4

3

2

5

0

1



whereEx0 is the initial vector,Ex1 the result of applying
roll(VA,1) and Ex2 the result afterroll(VA,3) (or
equivalentlyroll(VA,-1)).

The effect ofroll on multi-dimensional arrays is
similar, but applies to the dimension indicated. For
example if the variableV is declared as:

int V[2][3];

thenroll(V[0],1) alters the state vector in the fol-
lowing way:

Ex0 =



V [1][2]

V [1][1]

V [1][0]

V [0][2]

V [0][1]

V [0][0]


roll(V[0],1)⇒



V [1][2]

V [1][1]

V [1][0]

V [0][0]

V [0][2]

V [0][1]


whereasroll(V,1) does:

Ex0 =



V [1][2]

V [1][1]

V [1][0]

V [0][2]

V [0][1]

V [0][0]


roll(V,1)⇒



V [0][2]

V [0][1]

V [0][0]

V [1][2]

V [1][1]

V [1][0]


Each call to theroll function translates simply into
a single matrix in the decision tree implementation,
as each effectively permutes the contents of the state
vector (computer memory). The above loop can now
be written efficiently as follows:

for (i=0; i<10; i++)
{

Vehicle[0] = 5;
roll(Vehicle, 1);

}

This construction will be used extensively.

6. A Brief Madura Outline

As Madura is a subset of Java, a Madura program
should be mostly familiar to the reader.15 The reader
unfamiliar with programming concepts such asDec-
larations, Variables, Functions, Function arguments,
Statements, Keywordsis referred to [14, 16] for an
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appropriate introduction. A Madura program structure
is essentially that of a single Java class.

Madura currently supports the following Java
programming statements:if -then -else, assign-
ments, addition, subtraction, multiplication by a con-
stant as well as three types of loops. The latter are
while-do, do-while andfor loops. Function calls
are possible with all parameters called by reference,
each function returningvoid type. Note that the in-
dices of an array access must be constants (set during
compilation).

Because of the latter restriction, Madura supports
three built-in functions:roll, zero andswap. The
roll function is explained above, thezero function
zeros its argument (in the case of arrays, it zeros all
elements of the array) and theswap function exchanges
the values of its arguments.

In practise the compilation of Madura code is fast
and convenient.

7. Consequences of Madura
for the Structural Hint

This section describes how the syntax of the Madura
language translates into further restrictions on the ma-
tricesMi in the program.Lu can then exploit these extra
constraints to restrict its search and consider only valid
Madura programs. An important consequence of this
is that any solution to the mimicry problem can then be
expressed automatically as a Madura program (rather
than in decision tree format).

7.1. The Ai Blocks

The structures of the Madura language which control,
via the compiler, the format of theAi blocks are:

1. Any roll statements which act on an output vari-
able or array.

2. Anyswap statements which act on output variables.
3. Any call to a function which takes an output variable

(or array) as an argument.
4. Any zero statements which act on an output vari-

able or array.

The first three of these translate into permutation ma-
trices, while the last becomes a diagonal matrix with
zeros in the appropriate locations.

The simplest way to reduce the possibilities is to
consider all blocksAi fixed and known unless they have
been produced by one of the statements above. Even

in this case, the possibilities can be reduced sensibly to
the following:

1. A roll statement: Only those permutations which
can be generated by varying the second argument
(through all its legal values) are possible.

2. A swap statement: Only those permutations which
result from replacing either argument with any of
the output variables in the current variable context
are possible (i.e. in conventional computer language
terminology: inscope).

3. A function call with an output argument: If the ar-
gument is a single output variable, then only the
stated possibility is allowed. If the argument is an
array, then only those permutations generated by
varying the index (or indices in the case of a multi–
dimensional array) through its legal values are al-
lowed.

4. A zero statement: This is considered fixed and
known byLu.

For example, ify is defined as an array of 4 output
variables the following Madura statement:

roll(y, 1);

is compiled into a matrix whoseAi is a permutation
matrix. The permutation matrices which could replace
this Ai during the search procedure16 are those which
correspond to the Madura statementsroll(y,0),
roll(y,1), roll(y,2) or roll(y,3).

In the case of aswap statement, lety1 be another
single output variable currently defined (in scope). The
Madura statement:

swap(y[1], y[2]);

also compiles into a matrix whoseAi is not the default
identity matrix. The permutation matrices which could
replace thisAi during the search are those correspond-
ing to the following Madura statements:

swap(y[0],y[0]) swap(y[0],y[1])
swap(y[0],y[2]) swap(y[0],y[3])
swap(y[1],y[0]) swap(y[1],y[1])
swap(y[1],y[2]) swap(y[1],y[3])
swap(y[2],y[0]) swap(y[2],y[1])
swap(y[2],y[2]) swap(y[2],y[3])
swap(y[3],y[0]) swap(y[3],y[1])
swap(y[3],y[2]) swap(y[3],y[3])
swap(y[0],y1) swap(y[1],y1)
swap(y[2],y1) swap(y[3],y1)
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swap(y1,y[0]) swap(y1,y[1])
swap(y1,y[2]) swap(y1,y[3])
swap(y1,y1)

The final example examines the possibilities arising
out of the function call:

SomeFunction(y[1])

The permutation matrixAi produced is one which rear-
ranges the output variables so that the arguments are the
lowest in the block of output components (in the state
vector). This is how the compiler simulates pushing
values onto the output stack. The permutation matri-
ces which may replace thisAi are those which would
be produced by the following Madura statements:

SomeFunction(y[0]) SomeFunction(y[1])

SomeFunction(y[2]) SomeFunction(y[3])

Were there two output variables as arguments, the per-
mutation matrix produced by every possible pair of
valid indices would be considered for theAi in ques-
tion.

It is immediately apparent that the number of pos-
sible permutation matrices is considerably less when
controlled in this way than when all possible permuta-
tions are allowed. In fact, the programmer has some
control over the number of possible programs within
the structural hint. This number is reduced by limit-
ing function calls with output arguments and the use
of swap statements. The search is most likely faster
than when unnecessary function calls,swap androll
statements are present in the Madura code.

7.2. The Bi Blocks

The syntax of Madura can also limit the number of
non-zero entries in the blocksBi in each of the matrices
(Mi ) produced by the compiler. Although once theAi

blocks have been chosen finding theBi blocks is a
linear problem, the size of the matrix is prohibitive if
all entries in each blockBi are potentially non-zero
(see [23] for an example).

The sensible solution is to assume that all entries
in all Bi are zero except those generated from an as-
signment to an output variable (in the Madura source
code). For example, consider the following Madura

function:

void SomeFunction(in x[4], out y)
{

int t;
y = 4*x[1] - t;

}

Assumingy is stored in thei th output component of
the state vector, the assignment toy is compiled into a
matrix which only has non-zero entries in itsi th row.
These entries are those multiplying the components of
the state vector which correspond tox[1] andt. When
Lu constructs the linear problem to find theBi , it as-
sumes that all entries in thisnth row are potentially
non-zero. All other assignments to output variables in
the program are similarly treated while all remaining
entries in theBi are considered zero. This restriction
again implies that any solution can be expressed in
Madura source code automatically.

Thus, in terms of Madura, the freedom assumed by
Lu corresponds to determiningA0..A4 in the follow-
ing:

void SomeFunction(in x[4], out y)
{

int t;
y = A0*x[0] + A1*x[1] + A2*x[2]

+ A3*x[3] + A4*t;
}

i.e. the right-hand side of each assignment is re-
placed by a linear combination of all input variables
currently defined (i.e. in scope).

7.3. Additional Cluster Constraints

Recall how in Section 3 information from the Oracle
is combined with the known paths of points to form
quartets. The equations produced (3.1) assistLu by
reducing the number of possible assignments to the
Ai in the program. This section describes how using
the zero function can produce additional constraints
which assistLu further.

Suppose the cluster search algorithm findst clusters
(C1,C2, . . . ,Ct ) whose paths can be described in the
following way:

C1 = QZ R1 C2 = QZ R2
(7.1)

C3 = QZ R3 . . .Ct = QZ Rt
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Here Z is a matrix whoseAi block is diagonal with
entries either 0 or 1, whileQ and Ri (i ∈ [1, t ]) are
collections of matrices as defined by the paths of the
clusters. For example, clusters with the following paths
conform to this condition:

C1 = M1M2M3M8M9M2

C2 = M1M2M3M8M9M4M5M4M3

C3 = M1M2M3M3M9M2M8M6M2

C4 = M1M2M3M8M9

C5 = M1M2M3M7M9M6

whereQ = M1M2, Z = M3 and

R1 = M8M9M2

R2 = M8M9M4M5M4M3

R3 = M3M9M2M8M6M2

R4 = M8M9

R5 = M7M9M6

Referring to Section 3.1, assume the cluster search
producesNi linearly independent pointsEu j ( j ∈
[0, Ni ]) from within Ci and construct the matricesXi

as follows:17

(
0

Xi

)
=

 | | . . . |
5(Eu0) 5(Eu1) . . . 5

(EuNi

)
| | . . . |


Here, denoting the output dimension of the programm,
the block0 is am×Ni block of zeros. Similarly, collect
the corresponding output vectors together to form the
matricesYi .

Recall (Section 3.1) that all matrices in the program
are block upper triangular and so the productsQ and
Ri are also. Hence partitioningQ, Z andRi into input
and output components (working variables considered
input components):

Yi = (I | 0)
(

Q11 Q12

0 Q13

)(
Z11 Z12

0 Z13

)

×
(

Ri 11 Ri 12

0 Ri 13

)(
0

Xi

)
This simplifies to

Yi = (Q11Z11Ri 12+ Q11Z12Ri 13+ Q12Z13Ri 13)Xi

Wherever a Madura program uses thezero function
on an output variable, the compiler translates it into a
simple matrixZ:

Z =
(
3 0

0 I

)
where3 is a diagonal matrix with zeros in the required
components. Additionally, the constraints proposed in
Section 7.1 require the diagonal matrixZ11 to be sup-
plied in the structural hint. Therefore the above equa-
tion simplifies to:

Yi = (Q113Ri 12+ Q12Ri 13)Xi

Suppose now thatt matricesαi can be found which
satisfy the following equation non-trivially:

t∑
i=0

Ri 13Xiαi = 0

SinceRi 13 is the product of the lower blocksC in the
matrices in the program (Section 1.2), everyRi 13 can
be found from the structural constraint supplied. Since
a non-trivial solution of the above equation exists, the
equation below may represent a non-trivial relationship
between the output and the unknown elements of the
matrices:

t∑
i=0

Yiαi = Q113

(
t∑

i=0

Ri 12Xiαi

)
(7.2)

BecauseRi 12 is not known, the bracketed term on
right hand side of this equation cannot be computed.
However the zero components of3 are known and for
these the term on the right is irrelevant. More precisely,
if 3 zeros thei th component then the product of3
with the term on its right will also be zero in thei th
component.

This property can be used to obtain information
about the matrixQ11. Denote the left hand side of
Eq. (7.2)F , and construct a vectorEz whosei th compo-
nent is zero if thei th row of F is zero and 1 otherwise.
Similarly, define a vectorEλwhosei th component is the
i th diagonal element of3.

To assess the validity of a particular assignment to
the Ai which form Q11 (this list is known from the
cluster search), compareEz to Ew:

Ew = Q11Eλ
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If a component ofEw is zero and the corresponding
component ofEz is not, then the current assignment to
the matrices which formQ11 is incorrect. However,
if a component ofEw is non-zero and the correspond-
ing component ofEz is, then this is not a contradiction.
This is because the productQ11 may contain yet more
matrices produced from otherzero statements, or be-
cause the rightmost term in Eq. (7.2) actually has a zero
component.18

Nevertheless, this procedure can obtain useful in-
formation about the matrices in the program. Further-
more, because the condition the clusters’ paths have to
satisfy in order to use this procedure is weaker than for
quartets (Eq. (7.1)), it is expected that such constraints
will be readily found (Eq. (7.2)).

8. Learning to Solve Vision Problems

This section demonstrates the effectiveness of theLu

developed by showing how a number of basic vision
processes can be learnt (mimicked) in a matter of sec-
onds. Three classes are considered in the following
sections:

1. thresholding
2. edge detection
3. corner detection

Following these, a number of additional algorithms
and techniques are examined to show the power of the
Madura-based structural constraint and associatedLu.
In particular some flexible modules are designed and
it is shown howLu can modify these automatically to
mimic the required function.

The results in this chapter are produced using a
Madura compiler/debugger/runner environment writ-
ten in Java. This is run on anultra-sparc computer
with a Java JIT (just-in-time) compiler enabled. All
the following example images and program searches
(by Lu) are each produced in at most a few minutes.

In the examples which follow the Madura source
code shown is used as the Oracle as well as the ba-
sis of the structural hint supplied toLu (as augmented
with Madura). The Oracle’s program is the decision
tree representation of the Madura source code as con-
structed by the Madura compiler. The structural con-
straint (hint) is produced by firstly using the Madura
compiler again to create a separate copy of this decision
tree representation. This second copy then has all en-
tries of each matrix which are not part of the structural

constraint19 tagged as unknown. The cluster search as
described in [23, 25] is then performed using this in-
complete copy as the hint, the correct answers being
supplied by the complete copy. Finally, the program
search uses this information to reconstruct the incom-
plete copy of the decision tree implementation.

Note that a link is maintained between those entries
of the matrices which are tagged as unknown in the
incomplete copy and the Madura source code which
produces them. Thus when the program search finds
a program which mimics the Oracle over a specified
number of clusters, the solution can be expressed auto-
matically in terms of the original Madura source code.
A simple check of the overall success is therefore to
confirm that this source code is equivalent to the orig-
inal code compiled to produce the Oracle’s program.

8.1. Thresholding

Image thresholding algorithms attempt to quantise each
pixel in an image into either 1 or 0. Pixels set to 1 are
intended for further processing, while the others are
considered background. The result of thresholding is
termed abinary image [29].

For a 10×10 image, the general outline of a Madura

program which performs thresholding is:

void main(in x[10][10], out y[10][10])

{

int i, j, Threshold;

for (i=0; i<10; i += 1)

{

for (j=0; j<10; j += 1)

{

Calculate_Threshold(...);

if (x[0][0] > Threshold)

y[0][0] = 1;

else

y[0][0] = 0;

roll(x[0], 1);

roll(y[0], 1);

}

roll(x, 1);

roll(y, 1);

}

}

wherexandyare arrays containing the input and output
images respectively.
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8.1.1. Bernsen’s Method. As outlined in [29] this
method initially examines ar × r locality around each
pixel Ixy to find the maximum and minimum grey level.
The threshold level is then:

T = Imax− Imin

2

The pixel Ixy is then set as follows:

Ixy =
{

1 if ‖Imax− Imin‖ > l and Ixy > T

0 otherwise

where l is a contrast measure. In [29]r = 15 and
l = 75 is used. For the purposes herer = 3 andl = 5
is sufficient.

The Madura code which computes this threshold is:

Min = x[0][0];
Max = x[0][0];

for (k=0; k<3; k += 1)
{

for (l=0; l<3; l+=1)
{

if (x[0][0] < Min)
Min = x[0][0];

if (x[0][0] > Max)
Max = x[0][0];

roll(x[0], 1);
}
roll(x, 1);

}

Figure 2. Example of Bernsen’s thresholding.

where the image is contained in the two-dimensional
arrayx, andMax andMin are local variables.

This implementation is inefficient because most of
the computation deals with executing the loops, rather
than computing the maximum and minimum. Because
the locality is only 3× 3 a better version is to write
each test explicitly for the whole neighbourhood:

Min = x[0][0];
Max = x[0][0];

if (x[0][1] > Max)
Max = x[0][1];

if (x[0][2] > Max)
Max = x[0][2];

if (x[1][0] > Max)
Max = x[1][0];

if (x[1][1] > Max)
...

This version minimises the number of matrices which
must be applied (the lengths of computational paths)
and so both execution and processing (byLu) is faster.

An example of this method on a typical optical char-
acter recognition image is shown in Fig. 2. Both images
are 50×50 pixels and the thresholding takes about 20 s.

The following table shows a summary ofLu process-
ing the structure of the Bernsen detector above. The
first column contains the size of the image in pixels, the
second shows the time taken (in seconds) for the clus-
ter search [25] to generate 12 clusters and the third the
time the program search takes to identify the algorithm.
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The fourth column contains the total number of pos-
sible assignments to theAi in the program, while the
fifth lists the number of quartet constraints found.

Cluster Program
Size search search Total Quartets

3 120 15 81 0

4 300 130 256 2

5 600 300 625 0

Although the main delay is caused by the cluster
search, the program search is not efficient as there are
rarely any constraints found20 (Section 3). This can be
solved by includingzero statements in the code. In the
threshold test, if the input pixel is below the threshold
explicitly call thezero function to set the output to
zero (rather than simply leaving it unchanged). For
example ify[0][0] is the output pixel,x[0][0] the
input pixel andt the threshold write:

if (x[0][0] > t)
y[0][0] = 1;

else
zero(y[0][0]);

Now Lu can determine 3zeroconstraints from the first
8 clusters obtained, and these reduce (in the 4×4 case)
the number of assignments to theAi which need to
be processed further to 6 out of the original 256. This
reduces the program search time to a couple of seconds.
Therefore without altering the program’s behaviour,
extra constraints can be induced by using thezero
function.

8.1.2. Niblack’s Method. A locality (15×15 in [29])
is examined around each pixel (Ixy) and the threshold
value is:

T = mxy− k · sxy (8.1)

wheremxy is the mean andsxy the standard deviation of
the pixel values in the locality around the centre pixel:
Ixy.

This is more difficult to translate into Madura be-
cause the standard deviation (s) of a series of valuesIi

(i = 0..n) requires numerous products of variables:

s2 =
∑n

i=0 I 2
i

n
−
(∑n

i=0 Ii

n

)

A much simpler alternative to Niblack’s method is
often sufficient for obtaining a threshold value [8]. This
is motivated by the fact that the threshold’s value is not
important provided it separates the pixels correctly.21

One simple but popular expression for the threshold is:

T = µ− k(M − µ)
Herek is a parameter (set by experiment),µ the mean
value of the pixels in a local neighbourhood around the
pixel being thresholded andM their maximum.

This is much simpler to implement in Madura. For
example when the neighbourhood is 3× 3 and the im-
age is contained in the two dimensional variablex, the
following code fragment computes the required quan-
tities:

Mean = x[0][0] + x[0][1] + x[0][2] +
x[1][0] + x[1][1] + x[1][2] +
x[2][0] + x[2][1] + x[2][2];

Max = x[0][0];

for (k=0; k<3; k += 1)
{

for (l=0; l<3; l+=1)
{

if (x[0][0] > Max)
Max = x[0][0];

roll(x[0], 1);
}
roll(x, 1);

}

Because the variableMean above cannot be divided by
n (in this casen = 25), the thresholding comparison
must be altered to:

if (250 * x[0][0] >= 10 * Mean - (25 * Max - Mean))
y[0][0] += 1;

where the parameterk has been set to 0.1. An example
of this algorithm is shown in Fig. 3.

The following table shows a summary ofLu process-
ing the structure of the simplified Niblack algorithm
above. The first column contains the size of the image
in pixels, the second shows the time taken (in seconds)
for the cluster search [25] to generate 12 clusters and the
third the time the program search takes to identify the
algorithm. The fourth column contains the total num-
ber of possible assignments to theAi in the program,
while the fifth lists the number of quartet constraints
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Figure 3. Example of the simplified Niblack thresholding.

found.

Cluster Program
Size search search Total Quartets

4 90 15 16 5

5 210 120 25 0

Again, addingzero function calls can induce addi-
tional constraints.

8.2. Edge Detection

This is possibly the most popular initial vision pro-
cessing algorithm, as edges can provide much of the
salient information required to compute symbolic in-
formation. Many schemes are based upon an ideal edge,
where the image intensity is changing rapidly in some
direction. Consequently many detectors use some ap-
proximation to the local image gradient.

The basic outline of the local edge detectors con-
sidered is similar to that of thresholding algorithm in
Section 8.1. Each pixel is examined in turn by two
nested loops, but as most detectors cannot compute a
response on the edge of the image (as local differences
are impossible), thezero function is used to remove
these. Therefore, for a 10× 10 image:

void main(in x[10][10], out y[10][10])

{

int i, j, Response;

for (i=0; i<10; i += 1)

{

for (j=0; j<10; j += 1)

{

Calculate_Local_Edge_Response(...);

y[0][0] = Response;

roll(x[0], 1);

roll(y[0], 1);

}

zero(y[0][0]);

zero(y[0][9]);

roll(x, 1);

roll(y, 1);

}

zero(y[0]);

zero(y[9]);

}

8.2.1. Simple Edge Detection.This section examines
a Madura implementation of a simple edge detector
described in [8]. The response is determined from the
first order differences in image intensitydx anddy:

dx = x[1][0] - x[0][0];

dy = x[0][1] - x[0][0];

The result, Max{‖dx‖, ‖dy‖}, is computed using the
following Madura code fragment:

if (dx < 0)
dx = -dx;

if (dy < 0)
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Figure 4. Example of the simple edge detector.

dy = -dy;
if (dx > dy)

y[1][1] += dx;
else

y[1][1] += dy;

An example of this edge detector on an 80× 80 image
is shown in Fig. 4.

The following table lists the execution times (in sec-
onds) of the cluster search [25] (time taken to get 12
clusters) and the time the program search takes to ex-
amine all the possibilities (the total number being in
column four). The latter search is simplified if any
constraints generated as described in Sections 3 and
7.3 are present. The fifth column lists the number of
quartet constraints found (Section 3) and the sixth the
number of zero constraints (Section 7.3). The first col-
umn indicates the size of the image being processed.

Cluster Program
Size search search Total Quartets Zeros

3 40 5 9 2 25

4 120 10 16 0 24

5 900 120 25 0 22

6 1200 120 36 0 23

It is clear that the cluster search is the slowest part
of the learning process in this case. Another point of
interest is that the constraints supplied by the calls to
zero reduce the number of consistent assignments to

the matricesAi to less than 3 (in all cases above). This
explains why the program search is so fast.

An interesting alternative can be explored if thezero
function is not used. To implement the edge detector
without it alter the main loop so that the last pixel on
each line, as well as the entire last row are not pro-
cessed at all. Their value is therefore unchanged from
the original of zero. The main loop of the code now
becomes in the case of a 5× 5 detector:

void main(in x[5][5], out y[5][5])

{

int i, j, Response;

for (i=0; i<4; i += 1)

{

for (j=0; j<4; j += 1)

{

Calculate_Local_Edge_Response(...);

y[0][0] = Response;

roll(x[0], 1);

roll(y[0], 1);

}

roll(y[0], 1);

roll(x, 1);

roll(y, 1);

}

roll(y, 1);

}

Unfortunately in this case the quartet constraints do
not restrict the allowable assignments to the matrices.
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The solution is found eventually by counting through
all possible assignments to theAi (in brute-force fash-
ion) and attempting to find theBi in each case. This
is still reasonably fast because the number of possibili-
ties is not vast. The results are summarised in the table
below.

Cluster Program
Size search search Total Quartets

4 60 150 256 27

5 120 1750 625 15

6 240 5000 1296 23

This structure has the unexpected property that sev-
eral programs which mimic the output can be written
based on it. In the 5× 5 caseLu takes up to 5 min to
find successive programs which do this, one example
being:

void main(in x[5][5], out y[5][5])

{

int i, j, Response;

for (i=0; i<4; i += 1)

{

for (j=0; j<4; j += 1)

{

Calculate_Local_Edge_Response(...);

y[0][0] = Response;

roll(x[0], 1);

roll(y[0], 2);

}

roll(y[0], 4);

roll(x, 1);

roll(y, 4);

}

roll(y, 0);

}

It is not immediately obvious how this code mimics
the required output, but becauseLu is not constrained
by conventional programming it can find such unintu-
itive programs. Note in particular that, because the last
roll function has a zero second argument, it can be
removed from the code without altering the behaviour.
Thus there may well be prospects forLu in program
optimisation.

The table above also shows that the program search
eventually overtakes the cluster search as the number

of possibilities increase. One of the main causes is that,
in the code above,Lu assumes the right hand side of
the assignment toy[0][0] can be a combination of
all input variables currently in scope. As the whole
image is in scope in the functionmain, this number
grows quadratically with image size. This problem can
be avoided by passing the output variabley[0][0] to
the functionCalculate_Local_Edge_Response as
an argument. The assignment toy[0][0] now occurs
inside this function and because only a few input vari-
ables are in scope (i.e. only global variables and input
arguments to the function), the task of finding the right
hand side is much simpler (see also Section 7.2).

The results ofLu processing the edge detector writ-
ten using the above alteration are now summarised.
Note that thezero function is not used. For a 4×4 im-
age, the cluster search algorithm takes approximately
20 s to find 12 clusters and 19 quartets. The total num-
ber of possibilities (for theAi ) is 4096 and the program
search takes approximately 30 s to discover the first
identical program shown below:

void main(in x[4][4], out y[4][4])

{

int i, j;

for (i=0; i<3; i += 1)

{

for (j=0; j<3; j += 1)

{

Response(x[0][0], x[1][0],

x[0][1], y[0][1]);

roll(x[0], 1);

roll(x[1], 1);

roll(y[0], 1);

}

roll(y[0], 2);

roll(x, 1);

roll(y, 1);

}

roll(y, 1);

}

A number of alternative solutions exist andLu discov-
ers them every 30 s. Importantly, the quartets in this
example drastically reduce the search time. Every pos-
sible assignment to theAi which passes the conditions
imposed by the quartets found is actually a solution to
the problem. The constraints obtained by the quartet
algorithm therefore save large numbers of unnecessary
matrix inversions in futile attempts to find theBi . The
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improvement factor, well over 100 in this example, in-
creases dramatically as the complexity of the program
increases. The same results for a 5× 5 algorithm take
only a few more seconds to produce, while a 6× 6
version takes about twice as long.

This last version of the edge detector clearly demon-
strates the usefulness of the quartet constraints derived
by Lu. Their presence makes the search much faster
than brute-force enumeration, justifying the back-
ground work required to extract them.

8.2.2. Sobel’s Method. Sobel’s edge detector, one
of the first, simply computes the magnitude of the
(smoothed) discrete image gradient [8]. A 3×3 neigh-
bourhood of pixels is examined to determine the de-
tector’s response at the central pixel. Firstly, the im-
age gradient in the horizontal (Sx) and vertical (Sy)
directions are approximated by applying the following
convolution masks:

Sx =

−1 0 1

−2 0 2

−1 0 1

 Sy =

 1 2 1

0 0 0

−1 −2 −1


The responseR at the centre pixel is most often deter-
mined by one of the following magnitude operations
[8]:

1. R= |Sx| + |Sy|
2. R= Max{|Sx|, |Sy|}

Figure 5. Example of the Sobel edge detector.

The Madura code listed in the previous section can
compute either of these two.

If the two dimensional arrayx contains the input
image, andy the output image, the Sobel convolutions
in Madura are:

S_x = x[2][0] + 2*x[2][1] + x[2][2]
- x[0][0] - 2*x[0][1] - x[0][2];

S_y = x[0][0] + 2*x[1][0] + x[2][0]
- x[0][2] - 2*x[1][2] - x[2][2];

An example is shown in Fig. 5, where the images are
both 80× 80 pixels large.

Unsurprisingly, the performance ofLu in this case is
similar to the previous section. When examining a 6×6
detector the cluster search takes about 400 s to find 12
clusters and 21 quartet constraints can be constructed
from these. The result is that only very few of the pos-
sible assignments to theAi in the program are valid.
In fact every valid assignment actually represents the
Madura code of a program which mimics the required
response. The result is that, while searching the 4096
possibilities, valid programs are discovered byLu once
every 120 s.

8.2.3. Smith Edge Detector.This edge detector is
again based on a local calculation and a detailed anal-
ysis is found in [28]. The value of centre pixelIxy is
compared to all others in a locality and an edge response
is based upon the number of pixels whose values are
greaterIxy. In detail, lett be a preset threshold (usually



Madura: A Language for Learning Vision Programs from Examples 85

Figure 6. Example of the Smith edge detector.

about 15 for 8-bit images) and define the edge response
Rxy

Rxy = Max

{
3

4
n−

∑
uv

H(|Ix+u,y+v − Ixy|), 0
}

H(x) =
{

1 x ≥ t
0 x < t

(8.2)

Here the sum overu andv extends throughout the lo-
cality considered, usually a circular region of about
3.4 pixels in radius [28]. The parametern is the total
number of pixels in the locality.

A simpler version of this detector uses only a 3× 3
neighbourhood. The Madura code for comparing the
centre pixel to another is:

if (x[0][0] - x[1][1] > t)
C += 1;

if (x[1][1] - x[0][0] < t)
C += 1;

whereC is a local variable in which the value of the sum
in Eq. (8.2) is stored. For the 3×3 locality, seven other
such comparisons must be made and the edge response
computed by:

if (4*C < 27)
y[1][1] += 27 - 4*C;

else
y[1][1] += 0;

An example of this edge detector is shown in Fig. 6.
This is produced using the above Madura code, where
the input and output images are both 80×80 pixels large
and the thresholdt is 15. When examining a 4×4 ver-
sion of this detector the cluster search [25] generates
12 clusters in approximately 15 min. In the particu-
lar Madura implementation used there are 2 valid pro-
grams (16 total), both of whichLu finds in about 40 s.

8.3. Corner Detection

As summarised in [24], more complex models of local
image structure are sometimes preferred to basic edges.
The simplest example is a corner detector, where sharp
junctions of edges are sought. This section examines
the Smith and Moravec corner detectors.

8.3.1. Smith Corner Detector. This detector is a sim-
ple extension of the edge detector of Section 8.2.3. The
only change is that the response functionRxy is now:

Rxy =
1 if

∑
uv

H(| Ix+u,y+v − Ixy |) < n

2
0 otherwise

It’s implementation in Madura is a trivial change from
the Smith edge detector in Section 8.2.3. An example
of this Madura implementation is shown in Fig. 7. Both
images are 80× 80 pixels large and the result takes a
few seconds to produce. The performance ofLu in this
example is almost identical to that when processing the
Smith edge detector.
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Figure 7. Example of the Smith corner detector.

8.3.2. Moravec Corner Detector.Moravec’s corner
detector [13] considers a local window around a central
pixel Ixy and examines the changes in average image
intensity that result from shifting the window by a small
amount in various directions. If centre of the window is
on a corner, then all shifts will result in a large change
in this average. Define the average intensity change
due to a small shift(x, y) to beExy:

Exy =
∑
uv

|Ix+u,y+v − Ixy|2

whereu andv range over the locality examined. The
only shifts considered are(1, 0), (1, 1), (0, 1), (−1, 1).
The central pixelIxy is considered a corner if the min-
imum of all theExy calculated for it is above a preset
threshold. In fact this detector is the predecessor of
the more accurate (but slower) Plessey corner detector
[13].

This section presents a simple version of the
Moravec detector. The local window is 3× 3 and the
following Madura code computes the intensity changes
above (the input image is contained in the arrayx):

E10 = 0;
if (x[2][1] > x[1][1])

E10 = x[2][1] - x[1][1];
else

E10 = x[1][1] - x[2][1];
E01 = 0;
if (x[1][0] > x[1][1])

E01 = x[1][0] - x[1][1];

else
E01 = x[1][1] - x[1][0];

E11 = 0;
if (x[2][0] > x[1][1])

E11 = x[2][0] - x[1][1];
else

E11 = x[1][1] - x[2][0];
E111 = 0;
if (x[0][0] > x[1][1])

E111 = x[0][0] - x[1][1];
else

E111 = x[1][1] - x[0][0];

Note thatE111 denotesE−1,1, thus if the minimum
of E10, E01, E11, E111 is above the threshold then
x[0][0] is a corner.

An example of this Madura implementation is shown
in Fig. 8. Both images are 80×80 pixels large and the
output is produced in about 20 s. Again a the effect of
this detector on smaller images can be learnt byLu in
only minutes.

8.4. Creating Multiply Flexible Modules

The previous sections demonstrate how a representa-
tive set of state-of-the-art vision algorithms can be writ-
ten in Madura and learnt byLu effectively. The basic
structure of any of these algorithms can be extracted au-
tomatically once the Madura compiler has translated it
into the decision tree representation. This can then be
passed toLu as demonstrated in the previous sections.
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Figure 8. Example of the simple Moravec corner detector.

As outlined in [24] this inherent flexibility may be ex-
tremely helpful in creating computer vision systems
automatically (via a supervisory system).

The flexibility of the modules constructed previously
have relied on that intrinsically introduced by the fact
that the source code is written in Madura. However, it
is possible to construct a program whose structure can
be altered byLu into a number of known algorithms.
Thus these modules may be termedmultiply flexible.
Three such modules are now outlined.

8.4.1. A Flexible Threshold Module. Examine the
thresholding algorithms described in Sections 8.1.1 and
8.1.2. Apart from the raster-scan progress through the
image they all perform, each bases its threshold on only
a few values calculated from a locality around the pixel
in question.

Consider a thresholding program which calculates
the quantities required by both of these methods (for a
3× 3 implementation):

1. The mean of the locality (required by simplified
Niblack).

2. The maximum pixel value (required by Bernsen,
and simplified Niblack).

3. The minimum pixel value (required by Bernsen).

Instead of a single condition which determines whether
a pixel should be set to 1 or 0, imagine a set of nested
conditions so that any condition of the three meth-
ods can be accommodated. For example the following

code can emulate both the simplified Niblack and the
Bernsen method:

if (Max - Min > 5)

{

if (2 * (255 - x[1][1]) >= Max - Min)

{

if (90 * x[1][1] >= 10 * Mean

- (9 * Max - Mean))

y[1][1] += 255;

else

y[1][1] += 0;

}

else

{

if (90 * x[1][1] >= 10 * Mean

- (9 * Max - Mean))

y[1][1] += 255;

else

y[1][1] += 255;

}

}

else

{

if (x[1][1] < 128)

{

if (90 * x[1][1] >= 10 * Mean

- (9 * Max - Mean))

y[1][1] += 255;

else

y[1][1] += 0;

}
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else

{

if (90 * x[1][1] >= 10 * Mean

- (9 * Max - Mean))

y[1][1] += 255;

else

y[1][1] += 255;

}

}

The outer two levels of conditionals derive from
Bernsen’s method, while the inner conditions come
from simplified Niblack. BecauseLu is able to de-
termine the right hand side of any assignment to an
output variable (in this casey[1][1]), it can modify
this structure to mimic whichever method the Oracle
is executing. Importantly,Lu is also capable of con-
structing novel blends of these methods in an attempt
to mimic the Oracle.

8.4.2. A Flexible Edge Detector. This section de-
scribes a flexible module whichLu can alter to create
the following edge detectors:

1. The simple detector outlined in Section 8.2.1.
2. The Sobel detector in Section 8.2.2, using either of

the last two magnitude operations.
3. A linear convolution with a set mask.

The similarity between these detectors can be ex-
ploited to define a structure capable of modelling all
three. The first in the above list requires a simple lo-
cal pixel difference (in thex andy directions, while the
Sobel detector requires a more complex version. These
can be provided by four local variables:

Sobeldx = x[2][0] + 2*x[2][1] + x[2][2]
- x[0][0] - 2*x[0][1] - x[0][2];

Sobeldy = x[0][0] + 2*x[1][0] + x[2][0]
- x[0][2] - 2*x[1][2] - x[2][2];

Simpledx = x[2][1] - x[1][1];
Simpledy = x[1][2] - x[1][1];

The edge response is set by a call to the functionRe-
sponse, which has these variables passed to it as pa-
rameters (together withx, the central pixel of the 3×3
neighbourhood).

void Response(in x, out y, in dx1,
in dx2, in dy1, in dy2)

{

if (dx1 < 0)
dx1 = -dx1;

if (dx2 < 0)
dx2 = -dx2;

if (dy1 < 0)
dy1 = -dy1;

if (dy2 < 0)
dy2 = -dy2;

if (dx1 > dy1)
{

if (dx2 > dy2)
y += dx2;

else
y += dy2;

}
else
{

if (dx2 > dy2)
y += dx2;

else
y += dy2;

}
}

BecauseLu can determine the right hand sides of all the
above assignments toy, it can alter this code to behave
like any of the edge detectors above. In addition, a
vast number of (potentially) non-linear combinations
of these algorithms can also be found byLu based on
the above structure.

8.4.3. Flexible Morphology. This section develops a
flexible module which is capable of performing a num-
ber of morphological processes. The reader is referred
to [20] for an introduction to the morphological oper-
ators used in computer vision.

A general morphological structure can be con-
structed based on the fact that dilation and erosion
operations are based on the maximum and minimum
respectively of pixels in a small locality. To perform
morphological operations using a 2× 2 square struc-
turing element, define a local array of 4 valuesValues
and assume the input image is contained in the array
x. The following code orders the values of the im-
age contained within the structuring element using a
bubble-sortmethod:

Values[0] = x[0][0];
Values[1] = x[1][0];
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Values[2] = x[0][1];
Values[3] = x[1][1];

for (Swapped = 1; Swapped > 0; )
{

Swapped = -1;

for (k=0; k<3; k += 1)
{

if (Values[0] < Values[1])
{

Swapped = 1;
swap(Values[1], Values[0]);

}
roll(Values, 1);

}
roll(Values, 1);

}

The following single assignments to an output pixel (y)
can then achieve the associated operations listed:

1. Dilation: y+=Values[3]
2. Erosion:y+=Values[0]
3. Simple morphological edge detection [20]:y+=

x[0][0]-Values[0]
4. Better morphological edge detection [20]:y+=

Values[3]-Values[0]
5. Median Filtering (replace each pixel with the me-

dian of the pixels in the locality):y+=Values[1]

Note that median filtering is not possible using only
dilations and erosions.

Importantly, because each of the above assignments
are to the output variabley, Lu is able to determine the
right hand side from the examples it requests. There-
fore depending on the behaviour of the Oracle,Lu can
alter this code into that of an erosion, dilation, median
filter, either morphological edge detector shown, or a
novel combination of these.

9. Conclusion

This paper addresses the important problem of auto-
matically modifying the basic structure of computer
program so that it mimics the behaviour of an Oracle.
The Oracle is an entity which, given an input request,
responds with the desired output. The formal defini-
tion of a program’s structure or template is extracted
by examining the decision tree model of computation
[23, 25] and an algorithm (Lu) is developed which can
modify this to mimic the Oracle. The decision tree

model allowsLu to determine the most useful ques-
tions to pose to the Oracle, the answers to whichLu

combines automatically into additional restrictions on
the possible solutions it must consider. Although the-
oretically Lu must search through the whole space of
computer programs spanned by the given template, its
search is generally more efficient due to these addi-
tional constraints (Sections 3 and 7.3).

The new computer language Madura is also outlined
to facilitate the translation of familiar computer code
into the decision tree format required by theLu devel-
oped. Another advantage of Madura is that, because
of its natural syntactical structure, even stronger con-
straints can be imposed on the possible solutionsLu

must consider when attempting to mimic the Oracle.
The result is thatLu can mimic several state-of-the art
basic vision algorithms in a matter of minutes.

All the examples examined possess inherent flexi-
bility as a result of their translation into Madura, but
not all programsLu can explore using this represent
algorithms whose function is well understood by a hu-
man programmer. It is programs at these limits which
may represent interesting modifications to well-known
algorithms, or indeed exotic blends of more than one.
Consequently there is good reason to suppose thatLu

and the theory behind its design will be of significant
service to the continuing efforts of constructing com-
puter vision systems, especially those systems which
attempt to solve vision problems automatically [2, 4,
6, 9, 17, 27, 30].
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Notes

1. The termLu is derived from “Universal Learner”.
2. Details of the motivation and the theory behind the work here

are found in [23, 25].
3. In this section working variables are considered part of the input

components.
4. P1 is the matrix choice function of the program once translated

into decision tree format.
5. The unit element is also considered part ofEu.
6. As the output within any cluster is linear and the input space is

n dimensional.
7. There is a large number of output components in most vision

algorithms.
8. Including the restriction that the matricesAi in the program be

as in Eq. (1.5).
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9. Note that constructing programs by hand using this new model
is still far more tractable than using Turing machine code or
recursive functions, especially for multi-dimensional functions.

10. See [23] for a detailed description of Madura.
11. The detailed development of a Madura compiler is found in [23],

to which the interested reader is referred.
12. There are clearly other important features, this list being those

of most concern here.
13. Set during compilation rather than execution.
14. Typically an image is an array of pixels in vision problems: most

likely over 100 elements.
15. Java is, in turn, similar to “C”.
16. Performed byLu.
17. Refer to Section 1.1 for a definition of the promotion map5.
18. This would propagate throughQ11 and imitate an extra zero

in 3.
19. As developed in Section 1.2 and augmented with Madura in

Section 7.
20. There are no zero constraints because thezero statement is not

used in the program.
21. i.e. those of interest from the background.
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