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Abstract. Analog computation is a processing method that solves a given problem by utilizing an analogy of a

physical system to the problem. An idea is presented here for relating the behavior of single-electron circuits to

analog computation. As an instance, a method is proposed for solving a combinatorial problem, the three-

colorability problem, by using the properties of single-electron circuits. In problem solving, a single-electron

circuit is constructed that is analogous to a given problem; then, through an annealing procedure, the circuit is

made to settle down to its minimun energy state. The correct solution to the problem can be obtained by checking

the ®nal arrangement of electrons in the circuit. Analog computation is a promising architecture for single-electron

computing systems.
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1. Introduction

One of the promising areas of research in microelec-

tronics is the development of novel computing

systems based on single-carrier electronics. To

create such systems, we must employ a method of

computation that makes the best use of the properties

of single-electron circuits. This paper proposes one

such computation method: that is, analog computa-
tion utilizing the energy-minimizing principle in
single-electron circuits.

Single-carrier electronics is a technology for

manipulating electronic functions by controlling the

transport of individual electrons, through the use of

single-electron circuits [1,2]. It has been receiving

increasing attention because it affords the possibility

of producing computation systems that provide novel

functions beyond those of conventional devices.

To take steps toward this goal, various logic devices

consisting of single-electron circuits have been

proposed that perform digital processing in the

manner of Boolean operation [see 3±6 for

examples].

In this article, we present for future discussion an

idea of a novel computation device based on non-

Boolean operation. It is a single-electron analog

computation device. Analog computation is a way

of processing that solves a given problem by applying

an analogy of a physical system to the problem. By

relating the properties of single-electron circuits with

the method of analog computation, we will be able to

create a novel computation device that furnishes quick

solutions to combinatorial problems.

In the following sections, ®rst, the concept of

analog computation is explained using a known

example of an analog-computation system, a soap-

®lm system that solves the Steiner tree problem

(Section 2). After that we present the idea for relating

single-electron circuits to analog computation. This

concept is illustrated with an example, a solution to

the three-colorability problem, that utilizes the

energy-minimizing behavior of single-electron cir-

cuits. The construction of the circuits for solving the

problem is presented (Section 4). Results of computer-

simulated operation of the circuit is then discussed to

demonstrate the problem-solving behavior (Section

5). The authors hope that this will stimulate the

thinking of readers who are aiming to develop new

processing devices that utilize single-electron phe-

nomena.



2. The Concept of Analog Computation

2.1. What is Analog Computation?

Analog computation is a way of processing that solves

a mathematical problem by applying an analogy of a

physical system to the problem. To solve the problem

in this way, you prepare an appropriate physical

system and represent each problem variable by a

physical quantity in the system. If the mathematical

relations between the physical quantities are analo-

gous to those of the problem, then you can ®nd the

solution to the problem by observing the behavior of

the system and measuring the corresponding physical

quantities. Away of processing based on this principle

is called analog computation.

The analog computation is quite different from the

commonly used binary-digital computation. In the

digital approach, you ®rst devise an algorithm (a set of

instructions for ®nding the solution to a problem),

then execute each step of the algorithm in the manner

of Boolean operation. In contrast, analog computation

is concerned with no symbolic Boolean operation;

instead it utilizes the properties of a physical system to

perform the mathematical operations required for the

solution. An important feature of analog computation

is concurrency or parallelism in computing, through

which analog computation can provide the possibility

of solving complex problems in a short time.

2.2. An Example of Analog Computation: Solving
the Steiner Tree Problem by Means of a
Soap-Film System

Consider the following problem (Fig. 1). Connect n
points on a plane with a graph of minimum overall

length, using additional junction points if necessary.

This is a combinatorial problem called the Steiner tree
problem. Plainly expressed, the problem is ``to

connect n cities by a road network of minimum total

length.''

This problem is intractable for digital computation.

There are many possible graphs with junction points,

and we must examine all the possible ones to ®nd the

minimum solution. The number of computational

steps required increases exponentially with the

number n of original points. Indeed, the Steiner tree

problem belongs to the class of NP-hard problems

(non-deterministic polynomial-time hard problems).

Except for inef®cient exponential-time procedures, no

algorithm is known for the solution. This problem

therefore requires enormous computing time to solve

and is virtually unsolvable for large values of n.

Neverthless, there is an ingenious analog-computa-

tion method that can quickly solve the problem (see

[7]). We use soap ®lms to make a physical system

analogous to the problem (Fig. 2). Prepare two

parallel glass plates and insert n pins between the

plates to represent the points; then dip the structure

into a soap solution and withdraw it. The soap ®lm

will connect the n pins in the minimum Steiner-tree

graph. The computing process is parallel and

instantaneous, so we can obtain the solution in a

very short time regardless of the number n of the pins.

In this analog computation, the energy-minimizing

principle is well utilized for problem solving. Any

physical system changes its con®guration to decrease

its total energy. In liquids at rest, the relevant energy

components are the gravitational potential energy and

Fig. 1. The Steiner tree problem. Connect given points on a plane

with a graph of minimum overall length. This is dif®cult to solve

using existing computers because it requires enormous computing

time.

Fig. 2. A soap ®lm solution to the Steiner tree problem. The

problem can be quickly solved by utilizing the equilibrium of a

soap-®lm system (see [7]).
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the surface energy. The latter is dominant in a thin

soap ®lm, and so a soap-®lm system changes its

con®guration to minimize its total area (therefore its

length) and thereby its surface energy.

Strictly speaking, it is not possible to be certain, in

this system, that the absolute minimum solution can

always be obtained. Depending on the angle at which

the system is withdrawn from the soap solution, the

soap-®lm network sometimes assumes topologies

different from the optimum one that gives the

minimum network length (this is due to the fact

that, in a soap ®lm, many local minima exist in the

energy-topology relation). Even in such cases,

however, the networks obtained are always nearly

equal to the minimum one. Hence it can be said that

the system works well in general.

3. Single-Electron Circuit for Solving the
Colorability Problem

3.1. Relating Single-Electron Circuits to
Combinatorial Problems

It is interesting to speculate what analog computations

are possible using the properties of single-electron

devices. We here utilize the property of the single-

electron circuit changing its state to decrease its free

energy. This can be used for solving combinatorial

problems, as in the soap ®lm computation above. By

constructing a single-electron circuit such that its free

energy function is related to the objective function of

a given combinatorial problem, we will be able to

solve the problem simply by observing to which state

the circuit will settle down.

Setting aside the issue of the feasibility of

fabricating actual devices under existing process

technologies, the authors present here an instance of

a single-electron circuit system that can be applied to

combinatorial problems. It is a circuit system for

solving the three-colorability problem. In the fol-

lowing, we will describe the three-colorability

problem, and then will propose the structure of the

single-electron circuit system for solving this problem.

3.2. The Three-Colorability Problem

Consider the following problem: can the countries on

a given map be colored with three colors such that no

two countries that share a border have the same color

(Fig. 3)? This is called the three-colorability problem

and is dif®cult to solve for a map with many countries.

There are colorable maps and uncolorable ones, but

we cannot tell whether a given map can be colored

before examining all the possible colorings. (The

problem is easy if we can use four colors because it

has been proved that four colors suf®ce for any map.)

The three-colorability problem belongs to the class of

NP-complete (nondeterministic polynomial-time

complete problems), and is intractable for digital

computation because only exponential-time algo-

rithms are known for the solution.

This problem is reduced to graph coloring (Fig. 4).

Any map can be converted into a corresponding dual

graph by reducing each country to a vertex and by

drawing an edge between two vertices if the

corresponding two countries share a border.

Coloring the map is then equivalent to coloring the

graph, under the rule that two vertices connected by an

edge cannot have the same color.

Fig. 3. Coloring of a given map with three colors. (a), (b)

Colorable maps. The numbers 0, 1, and 2 represent three colors.

(c) An uncolorable map. The trial solution fails on reaching

region F.

Fig. 4. The dual graph for the map in Fig. 3(a). Each vertex is

colored in one of three colors. Two vertices connected by an edge

cannot have the same color.
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3.3. Single-Electron Circuit for Problem Solving

The following describes a way of solving the three-

colorability problem by using the single-electron

circuit. Our work is ®rst to construct a single-electron

circuit analogous to a given map for the problem and

then to solve the problem by using the circuit.

A. Implementing a Dual Graph by Using a Single-
Electron Circuit. Taking the map given in Fig. 3(a)

as an example, we construct the analogous single-

electron circuit for problem solving. The map can be

converted into the dual graph shown in Fig. 4,

reducing our task to constructing a single-electron

circuit analogous to the graph.

To represent a vertex on the graph, we use a

triangular subcircuit illustrated in Fig. 5(a), which

consists of three identical tunnel junctions �Cj�
connected in series to form a ring with three nodes

(A1, A2, A3). One excess electron �eÿ� is put in the

subcircuit, and it occupies one of the three nodes. A

ground capacitance C0 exists between each node and

ground. We de®ne that the three nodes represent three

differing colors (e.g., A1 represents red, A2 blue, and

A3 green), and that the color of the vertex is equal to

the color of the node occupied by the excess electron

(e.g., the vertex is colored green if the electron is on

node A3). Hereafter, we call this subcircuit with the

excess electron a triangle subcircuit and call the

excess electron simply an electron.

We ®rst implement two vertices, A, and B, that are

connected by an edge. This is done by coupling two

triangle subcircuits in the manner illustrated in Fig.

5(b), using a coupling capacitor C to connect each two

nodes that represent the same color. (A ground

capacitance exists for each node, but it is not

illustrated for simplicity.) Free energy in this coupling

circuit is equal to electrostatic energy and takes a large

value for a state in which two electrons occupy same-

color nodes to face each other (e.g., occupying nodes

A1 and B1); therefore, to keep its energy level at a

minimum, the circuit will tend to avoid such single-
color states. In consequence, two electrons in the two

coupled triangle subcircuits will occupy two nodes

that represent differing colors; e.g., if the electron in

triangle subcircuit A is on node A1, then the electron

in triangle subcircuit B will be on a node of a differing

color, B2 or B3.

A complete circuit analogous to the graph given in

Fig. 4 can be obtained by connecting seven triangul

subcircuits, using 33 coupling capacitors C, as

depicted in Fig. 6. (Each node has a ground

capacitance, but these are omitted in the illustration.)

Electrons in two neighboring triangle subcircuits tend

to occupy nodes of differing color to reduce the total

energy of the circuit, which satis®es the requirement

of the three-colorability problem.

It should be stressed that this procedure of

constructing analogous circuits can be applied to

every other map. For any problem map given, we can

Fig. 5. Construction of a single-electron circuit analogous to the three-colorability problem. (a) A triangular subcircuit representing a

vertex of the graph. (b) A circuit analogous to the two connected vertices A and B ( for simplicity, the ground capacitance for each node is

omitted in the illustration).
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construct the corresponding analogous circuit by

combining identical triangle subcircuits and coupling

capacitors.

B. Solving the Problem by Using the Constructed
Circuit. The three-colorability problem asks

whether a given map is colorable, and the answer is

either ``yes'' or ``no''. To solve the problem by using

the analogous circuit, we carry out the following

procedure. Put the circuit in an initial state (any state

will do), then let the circuit settle down to its

equilibrium state with the minimum electrostatic

energy, and then check to see whether two electrons

in any coupled triangle subcircuits are on nodes of

differing colors. If they are, the answer is ``yes'' and

the colors of the occupied nodes indicate a way of

coloring in which the map can be colored. If they are

not, the answer is ``no''. (As for the circuit in Fig. 6,

we will obtain a ``yes'' answer because the circuit is

for the leftmost colorable map in Fig. 3.) This solution

is based on the following two principles:

(a) Electrostatic energy in the analogous circuit has a

large value when two electrons face each other

at neighboring nodes of the same color.

Consequently the circuit will change its state to

minimize the number of such electron pairs and, if

possible, to reduce such pairs to zero.

(b) ``A map is colorable'' is equivalent to ``in the

analogous circuit, at least one arrangement of

electrons exists such that no two electrons face

each other at same-color nodes.'' (Let's call such

a state of electron arrangement a satisfaction
state.) In contrast, a circuit for an uncolorable

map has no such satisfaction state.

In the minimum-energy state, the circuit for a

colorable map is in a satisfaction state, and we will

®nd that electron pairs in any coupled triangle

subcircuits are on dots of differing colors. In a circuit

for an uncolorable map, no satisfaction state can be

attained, so we will ®nd one or more electron pairs

occupying the dots of the same color.

A similar solution using single-electron circuits

should exist for other NP-complete problems. This

is because every NP-complete problem belongs

to the same class and one can be converted into

another.

4. Simulating Circuit Operation of Problem
Solving

For problem solving, it is essential that, starting with a

given initial state, analogous circuits should settle

down to their minimum-energy states. Unfortunately,

analogous circuits in general have many states of

locally minimum energy, as will be shown later, and

in consequence we cannot be certain, as things stand,

that the circuit can achieve the state of globally

minimum energy without becoming stuck in the local

minima. To make the circuit converge exactly to the

minimum energy state, we here use the annealing
method to operate the analogous circuits successfully.

Using this method, we can obtain the global minimum

state in the circuit and thence the correct solution to

the problem. The details are described in the

following sections, using results of computer simula-

tions.

Fig. 6. The analogous circuit for solving the three-colorability

problem for the graph in Fig. 4 (or for the map in Fig. 3(a)).
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4.1. Energy Function and Local Minima in
Analogous Circuits

The electrostatic energy of single-electron circuits is a

function of the electron arrangement in the circuit. For

various instances of the three-colorability problem,

we designed the corresponding analogous circuits and

calculated the energy of each circuit for all possible

arrangements of electrons. We found that all the

circuits have many local minima in their energy

functions.

To illustrate this situation, a con®guration of the

energy function is depicted in Fig. 7, taking the circuit

shown in Fig. 6 as an example. The horizontal axis in

the ®gure indicates the number of the electron

arrangement. One number corresponds to one

arrangement of electrons; 2187 arrangements are

possible because three possible arrangements exist

for an electron in each of the seven triangle circuits.

(In calculation, the circuit parameters were assumed

as: tunnel junction capacitance Cj� 100 aF, coupling

capacitance C� 100 aF, and ground capacitance C0 of

each circuit node� 1 aF. There is no special reason for

these valuesÐany other value can be used.)

The energy of this circuit becomes minimum for

several speci®c electron arrangements (the arrange-

ments of numbers 429, 584, 939, 1249, 1604, and

1759; indicated by solid arrows in the ®gure), which

correspond to the satisfaction states representing the

correct solution to the graph (or the map) coloring.

But it can also be seen that many local minima exist

that have energy values close to that of the minimum-

energy states. It is therefore not possible to be certain

that the circuit can always achieve the correct solution

without getting stuck in the local minima.

(The electron arrangements of numbers 1, 1094,

and 2187, indicated by dashed arrows, correspond to

states of monochromatic coloringÐi.e., coloring the

graph (or the map) with a single color. These states

have the maximum energy value.)

To elucidate the effect of the local minima, we

will here observe by computer simulation the state

transition in analogous circuits. In simulation, we

used a Monte Carlo method that was combined with

the basic equations for electric-charge distribution,

charging energy, and tunneling probability; the

probabilistic characteristic of electron tunneling

was introduced through the use of random numbers

(see [8]). The co-tunneling phenomenon was

ignored for simplicity, and temperature was assumed

to be 0 K.

The result is illustrated in Fig. 8, for the sample

circuit shown in Fig. 6. The circuit was initially set at

the state of monochromatic coloring, then was left

changing its state without restraint. After some

transition time the circuit stabilized in a ®nal state.

This procedure, a trial, was repeated many times

using a different series of random numbers; the results

of three trials are illustrated in the ®gure. We observed

that the circuit in most cases became stuck in a local

minimum and could not reach the global-minimum

energy state. Very rarely, the circuit successfully

stabilized in the global minimum, but this was by

sheer chance.

Fig. 8. State transition in the analogous circuit given in Fig. 6

(computer simulation). The results of three trials are plotted. The

circuit ®nally became stuck in a local-minimum state.

Fig. 7. Electrostatic energy vs. electron arrangement for the

circuit given in Fig. 6.
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4.2. Annealing Operation Method

To overcome the above dif®culty, we consider

operating the circuit by the annealing method. This

method consists of the following four steps (Fig. 9).

(1) Put the analogous circuit into a heat bath, and set

the circuit at an initial state (any state will do).

(2) Initially increase the temperature of the heat bath

to a maximum value at which the circuit changes

its state or electron arrangement randomly.

(3) Carefully decrease the temperature of the heat

bath until the circuit arranges its electrons in an

equilibrium state (or until the circuit reaches

convergence).

(4) Check the ®nal arrangement of electrons in the

circuit to see whether the circuit is in the

satisfaction state.

If the lowering of the temperature is done slowly

enough, the analogous circuit can reach thermal

equilibrium at each temperature, and so can approach

the global-minimum state with decrease in tempera-

ture. And thus we can obtain the solution to the

problem by observing the ®nal state of the circuit.

The term ``annealing'' is principally used for the

metallurgical process for obtaining a perfect crystal

without deformations and dislocationsÐheating a

body of metal to near its melting point and then

cooling it slowly to room temperature. In this study,

we adopted annealing as an effective method for

achieving successful operation of analogous circuits.

4.3. Convergence to the Minimum Energy State
through the Annealing

We simulated the process of annealing operation for

various analogous circuits and con®rmed successful

convergence to the minimum energy state. For the

cooling schedule (a decrement function for lowering

the temperature in annealing), we used the natural
cooling given by T � T0 exp�ÿ rt�, where T is the

temperature, T0 is an initial value of the temperature,

r is a cooling-speed coef®cient, and t is time.

(Parameters T0 and r govern the convergence of a

circuit during annealing. The values for successful

convergence can be inferred by experience from the

size of a given analogous circuit.)

The simulation result for annealing is illustrated in

Fig. 10, taking the circuit of Fig. 6 as an example. The

circuit was initially set at a monochromatic-coloring

state, then was left changing its state under the natural

cooling given by T0� 1.0 mK and r� 0.03 (1/ms).

The result for a trial is plotted in the ®gure. It is shown

that the circuit successfully reaches the global-

minimum energy state. (At the ®rst stage of annealing,

the circuit was excited transitorily, as can be seen in

Fig. 10, to states the energy of which is higher than

that for monochromatic coloring, 0.18816 meV. These

``upper'' states are the states in which, owing to

thermal excitation, a conduction electron of a node

metal is extracted from the node and is transferred to

another node. This situation vanishes with the

Fig. 9. Concept of the annealing procedure.

Fig. 10. State transition in the analogous circuit with annealing

(computer simulation). The result for a trial is shown. The circuit

can successfully reach the global-minimum state.
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decrease in annealing temperature and has no

in¯uence on problem solving.)

In this way, we can ®nd the global-minimum state

of analogous circuits and thence the correct solution to

given problems.

5. Conclusion

Analog computation is a processing method that

solves mathematical problems by applying an analogy

of a physical system to the problem. An idea for

relating single-electron circuits with analog computa-

tion was presented. As an instance, a method was

proposed for solving the three-colorability problem by

using the properties of single-electron circuits. In

problem solving, we construct a single-electron

circuit analogous to the problem and ®nd the

minimum energy state of the circuit through

annealing. By checking the ®nal arrangement of

electrons in the circuit, we can obtain the correct

solution to the given problem. Analog computation is

a promising architecture for single-electron proces-

sing systems.
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