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Abstract. This paper investigates two constraints for the connected operator class. For binary images, connected
operators are those that treat grains and pores of the input in an all or nothing way, and therefore they do not
introduce discontinuities. The first constraint, called connected-component (c.c.) locality, constrains the part of
the input that can be used for computing the output of each grain and pore. The second, called adjacency stability,
establishes an adjacency constraint between connected components of the input set and those of the output set.
Among increasing operators, usual morphological filters can satisfy both requirements. On the other hand, some
(non-idempotent) morphological operators such as the median cannot have the adjacency stability property. When
these two requirements are applied to connected and idempotent morphological operators, we are lead to a new
approach to the class of filters by reconstruction. The important case of translation invariant operators and the
relationships between translation invariance and connectivity are studied in detail. Concepts are developed within
the binary (or set) framework; however, conclusions apply as well to flat non-binary (gray-level) operators.
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Connected operators do not introduce discontinuities.
For binary images (or sets), they treat the connected
components of the input and its complement in an all or
nothing way. The relationship between the general class
of connected operators and morphological connected
filters will be investigated in this paper. This will be
done by presenting two constraints calledconnected-
component(c.c.) locality andadjacency stability.

Connectivity plays an important role in this paper,
and we are going to be interested in those openings (or
respectively closings) that exclusively remove grains
(respectively fill pores) of the input set. These are all
connected operators (but they are not, of course, the
only ones). An important group of connected filters
is the class of filters by reconstruction [2, 4, 26, 27].
In this work (as in [4]), filters by reconstruction are
those combinations of openings̃γ and closingsϕ̃ by

reconstruction that are idempotent. Theactionsof the
openingsγ̃ and closings̃ϕ by reconstruction are:

(a) removing grains using̃γ ;
(b) filling pores usingϕ̃; and
(c) both removing grains and filling pores usingϕ̃γ̃ ,

γ̃ ϕ̃,
∧n

i =1ϕ̃i γ̃i [5], etc., whereγ̃i and ϕ̃i belong
respectively to a granulometry{γ̃i } and an anti-
granulometry{ϕ̃i } by reconstruction [16, 26].

We might think that by combining (as in group (c)
above) the basic openings̃γ and closingsϕ̃, it would
be possible to remove grains and fill pores in such
a way that any possible connected operation (i.e., an
operation that does not introduce discontinuities) can
be implemented. However, this is not true. Figure 1
shows a case in which it is not possible to obtain, for
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Figure 1. Connected operation: one-dimensional example. For the input shown in part (a), no combination of openings and closings can
compute the output (b).

the input in Fig. 1(a), the output displayed in Fig. 1(b)
by means of any combination of openings and clos-
ings. Figure 2 gives a more complete insight into the
problem by showing all possible outputs of connected
operators acting on a simple study case: two grains and
one pore in a connected one-dimensional space. There
are 23 = 8 possibilities; there are three flat zones and
there exists two possibilities for each, either being in
the output set or in its complement. The following
questions, not treated in the mathematical morphology
literature, arise then:

• Why is not possible to compute the output shown
in Fig. 1 by means of openings and closings by
reconstruction?

• Is there any relation between Fig. 2 and morpholog-
ical connected filters? Which outputs can be com-
puted usingγ̃ andϕ̃?

• Is there some reason why all classes of “usual” mor-
phological filters are combinations of extensive and
anti-extensive operations?

In this paper, we will address these questions by study-
ing some properties that are satisfied by the usual
morphological filters. Our study will be simplified by
focusing on the so-called c.c. local operators. Then, ad-
jacency relationships between grains and pores of the
input set and the output of a connected operator will be
studied.

This paper extends part of the thesis work by Crespo
in [2]. The concepts treated in this paper were in-
troduced by Crespo, Serra and Schafer in [5]. The
c.c. locality and adjacency stability constraints treated
in this paper are most meaningful when applied to con-
nected operators. Nevertheless, they can also be used
for non-connected operators. These requirements will
allow us to obtain some interesting properties of con-
nected operators that satisfy one or both of them. An

Figure 2. Stability and connected operators: one-dimensional ex-
ample. For the input set on the left (a non-connected set), there exists
eight possible outputs of connected operators. Which outputs cannot
be computed using some combination of openings and closings?

important result is the discovery that it is not possi-
ble to compute any arbitrary connected operator by
means of openings and closings by reconstruction.



          P1: RBAP1: RBA

Journal of Mathematical Imaging and Vision 07˙Crespo December 3, 1996 11:34

Locality and Adjacency Stability Constraints for Morphological Connected Operators 87

This result also applies to the more general case of non-
connected operators: it is not possible to compute any
arbitrary (connected or not) operator solely by means
of (connected or not) openings and closings. When
these constraints are applied to morphological filters,
it will be observed that openings and closings arise
naturally as the building blocks for morphological fil-
tering. If the restriction of translation invariant opera-
tors to subspaces (more precisely, their re-definition)
is required to bewell behaved(in the sense that the
re-defined operator operates in the same way in sub-
spaces), we find the class ofopeningsandclosings by
reconstructionas the only group of connected filters
that are both c.c. local and adjacency stable. Thus, in
this work we approach the class of morphological filters
in an alternative way to the axiomatic way (by means
of their definitions) that is normally used in mathe-
matical morphology. The relationship between trans-
lation invariance and connectivity is examined in this
paper.

The outline of the paper is as follows. Section 1 gives
some background on mathematical morphology and on
connected operators. Section 2 introduces and inves-
tigates the c.c. locality and adjacency stability condi-
tions. The translation invariant operator case is treated
in Section 3, which includes a study of the relation-
ships between translation invariance and connectivity.
Proofs are included in the paper.

1. Background on Mathematical Morphology

Mathematical morphology is concerned with the appli-
cation of set theory to image analysis. Morphological
signal and image processing rests on a framework es-
tablished by Matheron and Serra [6, 12–16, 22, 24].
This section offers some background on morphologi-
cal filtering and on connected operators.

Connected operators [2, 26] are those that do not
introduce discontinuities. When they are applied to
binary images, for example, either connected compo-
nents of the foreground (grains) are removed or those
of the background (pores) are filled. They are called
morphological when they areincreasing. Morphologi-
cal connected filters are those morphological connected
operators that areidempotent.

Filters by reconstruction[2, 4, 26, 27] are a class
of connected filters that are composed ofopeningsand
closings by reconstruction, denoted in the following by
γ̃ andϕ̃. When applied to a binary image (a concept
equivalent to that of a set), the openings and closings by

reconstruction treat each grain or pore independently
from the rest of grains or pores.

1.1. Morphological Filtering

This background section reviews some concepts re-
garding morphological filtering [9, 17–20, 22–24].
Morphological operators operate on an algebraic struc-
ture called acomplete lattice[1, 24], which is the min-
imal structure required.

Definition. A setT is a complete lattice if: (a) there
exists a partial ordering≤ over T ; and (b) for any
family {Ai } of elements inT , there exists: a smallest
majorant

∨
i Ai called the “sup” (for supremum), and a

greatest minorant
∧

i Ai called the “inf” (for infimum).

In all theoretical expressions in this paper, we will
be working on the latticeP(E), whereE is a given
set of points calledspaceandP(E) denotes the set of
all subsets ofE (i.e.,P(E) = {A : A ⊆ E}). In other
words, inputs and outputs will be supposed to be sets
or, equivalently, binary functions. In this lattice, the
sup

∨
and the inf

∧
operations are the set union

⋃
and the set intersection

⋂
operations, while the order

relation is the set inclusion relation⊆. Even though we
will work on the latticeP(E), results are extendable
for gray-level functions by means of the so called flat
operators [7, 11, 12, 22, 25].

Mathematical morphology deals withincreasing
mappings. A mapping (or transformation)ψ is increas-
ing if it preserves ordering, i.e., if two inputs are or-
dered then their outputs are likewise ordered. For an
increasing set operatorψ :P(E) → P(E), A ≤ B ⇒
ψ(A) ≤ ψ(B), whereA, B ∈ P(E). The sup, the inf
and the sequential composition of increasing operators
is increasing.

Two elementary morphological operations areero-
sionsanddilations, denoted respectively byε andδ.

Definition. Let E be any space. The mappingψ :
P(E) → P(E) that commute with the inf (or respec-
tively the sup) are callederosionsε (respectivelydi-
lations δ). That is, for all Ai ∈ P(E), ε(

∧
i Ai ) =∧

i ε(Ai ) (respectivelyδ(
∨

i Ai ) = ∨
i δ(Ai )).

Before defining what a morphological filter is, let us
establish the idempotence concept. A transformation
ψ is idempotentif when ψ is applied twice it leaves
the first output unchanged. Mathematically, this can be
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expressed asψψ(A) = ψ(A), ∀A ∈ P(E), or as
ψψ = ψ .

Definition. A mappingψ is amorphological filter if
and only ifψ is increasing and idempotent.

In general when we refer tofilters we will have the
meaning of the previous definition.

An operatorψ is anti-extensive(or respectivelyex-
tensive) if ψ ≤ I (respectivelyψ ≥ I ), whereI repre-
sents the identity operator (for allA∈P(E), I (A) =
A). Notice that, for two operatorsψ1 andψ2 defined
2fromP(E) to P(E), the order relationψ1 ≤ ψ2 (or
respectivelyψ1 ≥ ψ2) means thatψ1(A) ≤ ψ2(A)

(respectivelyψ1(A) ≥ ψ2(A)) for all A ∈ P(E).

Definition. Anopeningγ (or respectively aclosingϕ)
is an antiextensive (respectively extensive) filter.

The alternating compositions of an opening and a
closingϕγ andγ ϕ are idempotent; i.e., they are filters,
calledalternating filters.

Each morphological operation has adualoperation.
Two operatorsψ1 andψ2 are the dual of each other if
ψ1 = I cψ2I c, whereI c is the complementation oper-
ator, and vice-versa. (For allA ∈ P(E), I c(A) = Ac,
whereAc is the complement ofA.)

Some morphological filters show a robustness prop-
erty called the strong property [20]. A filterψ is strong
if it is both an

∧
-filter (i.e., if ψ = ψ(I

∧
ψ)) and a∨

-filter (i.e., if ψ = ψ(I
∨

ψ)). That is,ψ is a strong
filter if

ψ = ψ
(

I
∧

ψ
)

= ψ
(

I
∨

ψ
)
. (1)

1.2. Connectivity in Mathematical Morphology

Connectivity is introduced in mathematical morphol-
ogy by the operation that extracts theconnected com-
ponentsof a set. As will be seen in this section, those
operators that do not break the connected components
of either the foreground or the background of an image
are calledconnected operators.

The Point Openingγx. Connectivity is established
in [24] by means of theconnected classconcept. A
connected classC in P(E) is a subset ofP(E) such
that (a)∅ ∈ C and for allx ∈ E, {x} ∈ C; and (b) for
each familyCi in C,

∧
i Ci 6= ∅ implies

∨
i Ci ∈ C.

No definition of neighborhood relationships (i.e., no

particular topology) has been assumed forE in the
definition of the connected classC.

The subclassCx that has all members ofC that con-
tain x (i.e., Cx = {C : x ∈ C ∈ C}) defines an opening
called apoint opening[21]. The point opening of a
point x, denoted byγx, has as invariant class (i.e., the
class formed by those sets that are left unchanged by
γx) Cx ∪ {∅}. For allx ∈ E, A ∈ P(E)

γx(A) =
∨

{C : C ∈ Cx, C ≤ A}. (2)

The operation γx is therefore idempotent (i.e.,
γx(γx(A)) = γx(A) or, equivalently,γxγx = γx)
and antiextensive (i.e.,γx(A) ≤ A or, equivalently,
γx ≤ I ). Properties satisfied byγx(A) are:

(a) ∀x ∈ E, γx({x}) = {x}.
(b) ∀A ∈ P(E), ∀x, y ∈ E, γx(A) and γy(A) are

equal or disjoint.
(c) ∀A ∈ P(E), x 6∈ A impliesγx(A) = ∅.

When we associate, for example, the operationγx

with the usual connectivity inZ2, the openingγx(A),
A ∈ P (Z2), can be defined as the union of all paths
that containx and that are included inA. Figure 3
shows an example ofγx(A) where x belongs toA.
It can be seen that the point openingγx simply has
the effect of selecting the connected component ofA
to which x belongs. A simple way to implement the
γx(A) operation is by iterating thegeodesic dilationof
the set{x} insideA until idempotence [8, 10, 22].

The dual operation ofγx is the closingϕx, which is
equal toE\γx I c(A), for all A ∈ P(E), where\ denotes
set difference. Figure 4 shows a one-dimensional ex-
ample of both dual operationsγx andϕx, along with
the pore extraction operation.

Figure 3. Connected component extraction. The openingγx(A)

extracts the connected component ofA to whichx belongs.
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Figure 4. γx , ϕx , γx I c: one-dimensional example. Notice that
ϕx2(A) (part (c)) is equal toE\γx2 I c(A).

The operation that extracts the pore to which a point
x of the spaceE belongs is not the dual operation of the
grain extraction operation. Figure 4(d) shows a pore
extraction operation. For a pointx of E, two equivalent
ways to extract the pore to whichx belongs areγx I c

or I cϕx. In the following, the first wayγx I c has been
(arbitrarily) chosen.

Connected Operators.Connected operators belong to
a class of operators thatconsiderthe connectivity of
an input setA, A ∈ P(E). If two pointsx, y in E are
connected inA or in Ac (foreground and background
are regarded symmetrically), then for a connected op-
erator the pairx, y will be connected either in the out-
put set or in the complement of the output set. This
forces connected operators to process grains and pores
in an all-or-nothing way. If a grain is removed (i.e.,
the grain is modified) then all its component points
will be removed. Similarly for pores: either they are
filled or they are left unchanged. On the other hand,
non-connected operators process sets without any re-
striction on changes of connectivity from the input set
to the output set. In particular, a morphological non-
connected operator must only be increasing.

The following definition of connected filter is due to
Serra and Matheron. Let us define first the concept of
flat zone which is defined more generally for functions
rather than for sets [26]. Figure 5 gives an illustrative
example.

Figure 5. Flat zones example. For an input gray-level image (a),
part (b) shows its four flat zones, i.e., those regions with a same
function value. Notice that there aretwo flat zones with intensity
value 2 (and not one) because pixels with value 2 form two separated
regions.

Definition. Let E be a space equipped withγx andT a
complete lattice. The flat zones of a functionf : E →
T are defined as the largest connected components of
pointsx ∈ E with the same function value.

Notice that the flat zone of pointx in setA, is Fx(A) =
γx(A)

∨
γx I c(A), A ∈ P(E) [2].

Definition. An operatorψ is connectedif and only
if it extends the flat zones for its input function.

For the binary case, an equivalent definition of con-
nected operator is that in [26], which applies only to
binary morphology: an operatorψ :P(E) → P(E)

is said to be connected if and only if both set subtrac-
tions A\ψ(A) andψ(A)\A are formed exclusively by
connected components ofA or of its complementAc.
Figure 6 shows an example.

The previous definition of connected operator, which
applies both to binary and gray-level morphology, does
not establish how each intensity level of an input func-
tion is processed. In addition, notice that growth is not
considered in the definition.

Clearly, the class of connected operators is closed
under the sup, the inf and the composition of con-
nected operators [26]. Figure 7 shows that disconti-
nuities can be introduced by non-connected operators
and that they modify the shape of the preserved con-
nected components.

1.3. Filters by Reconstruction

This section discusses an important group of connected
filters, the so calledfilters by reconstruction. Filters by
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Figure 6. Connected operator example Part (a) shows an input setA and part (b) displays the outputψ(A), whereψ is a connected operator.
Both set differencesA\ψ(A) (part (c)) andψ\A (part (d)) are composed only of grains and pores of the input setA.

Figure 7. Differences between a non-connected and a connected opening. In this example, one of the two grains of (a) has beenbrokenin (b).
Notice that image (b) shows a discontinuity that does not exist in (a).

reconstruction are defined by means of the concepts
of trivial openingγ◦ andtrivial closing ϕ◦, which ap-
peared in [21].

Definition. Let E be any space.

(1) An openingγ◦ :P(E) → P(E) is a trivial open-
ing if for all A ∈ P(E)

γ◦(A) =
{
A, if A satisfies an increasing criterion
∅, if A does not satisfy the incr. crit.

(2) A closingϕ◦ :P(E) → P(E) is a trivial closing
if for all A ∈ P(E)

ϕ◦(A) =
{
E, if A satisfies an increasing criterion
A, if A does not satisfy the incr. crit.

Increasing criteria often used to build a trivial open-
ing γ◦ or a trivial closingϕ◦ are: the area (or number
of pixels, when the space of points is a grid of points),
the length of the projection in a certain direction, a
Minkowski operation (when the space is equipped with
translation), etc.
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Definition. Let E be a space equipped withγx. An
openingγ̃ :P(E) → P(E) (or respectively a closing
ϕ̃ :P(E) → P(E)) is anopening by reconstruction
(respectivelyclosing by reconstruction) if and only if

γ̃ =
∨
x∈E

γ◦γx

(
resp. ϕ̃ =

∧
x∈E

ϕ◦ϕx

)
,

whereγ◦ is a trivial opening (respectivelyϕ◦ is a trivial
closing).

Thus, the output of an opening by reconstructionγ̃

performed on an input setA is the set formed by all
connected components ofA (grains ofA) that satisfy
the increasing criterion of the trivial openingγ◦ that
is associated with̃γ . The processing preformed by a
closing by reconstructioñϕ can be regarded in a similar
way; for each poreP of an input setA, the increasing
criterion ofϕ◦ is applied toE\P.

Whenever the action of̃γ or of ϕ̃ on a particular flat
zone (grain or pore) of a pointx using different input
sets must be studied, only the grain (forγ̃ ) or pore (for
ϕ̃) of x matters. In [4],filters by reconstruction are
those combinations of openingsγ̃ and closingsϕ̃ by
reconstruction that are idempotent.

2. Connected-Component Locality
and Adjacency Stability

The two constraints presented in this paper are intro-
duced in this section. The first one, called connected-
component (c.c.) locality, establishes a limit on which
part of the input can be used for computing the output
of a grain or pore. The second constraint, adjacency
stability, restrains in some way the behavior of adjacent
flat zones, in particular the switch from grain to pore
and vice-versa.

2.1. Connected-Component Locality

The concept ofconnected-component (c.c.) local op-
erator, which is defined next, embraces both increasing
and non-increasing operators that treat each grain and
pore independently of the rest of the input.

Definition. Let E be a space equipped withγx. An
operatorψ :P(E) → P(E) is said to beconnected-
component local(or c.c. local) if and only if, ∀A ∈
P(E), ∀x ∈ E

Figure 8. Connected-component (c.c.) local operator. A c.c. local
operator processes each grain independently of the rest of the input
set (sets appear in black, and the spaceE is shown). Therefore a
c.c. local operator preserves (or respectively removes) the grainG
in A1 (part (a)) if and only if it preserves (respectively removes)G
in A2 (part (b)). Similarly for pores. A c.c. local operator preserves
(or respectively fills) the poreP in A3 (part (c)) if and only if this
operator preserves (respectively fills)P in A4 (part (d)).

(a) γx(A) 6= ∅, γxψ(A) = ∅ ⇒ ∀B ∈ P(E), γx(A) =
γx(B) : γxψ(B) = ∅.

(b) γx(A) = ∅, γxψ(A) 6= ∅ ⇒ ∀B∈P(E), γx I c(A)=
γx I c(B) : γxψ(B) 6= ∅.

That is, a connected operatorψ is c.c. local if, for all
x ∈ E and for all A ∈ P(E), the fact whether or not
γxψ(A) is empty or not (i.e., the fact whether or notx
belongs toψ(A)) depends exclusively onγx(A) or on
γx I c(A). Figure 8 illustrates the c.c. locality concept.
Furthermore, if different input sets possess an identical
grainG, a c.c. local operator will preserve or remove
G in all cases. The same applies to pores. Notice that
ψ can be increasing or not in the c.c. locality definition
and in Proposition 2.

For a c.c. local operatorψ , we can deduce, from
the definition, that: (a)γx(A) 6= ∅, γxψ(A) = ∅ ⇒
γxψ(A) = ψγx(A) = ∅ (part (a) of the definition
when B = γx(A)); and (b)γx(A) = ∅, γxψ(A) 6= ∅
⇒ ϕxψ(A) = ψϕx(A) = E (part (b) of the defini-
tion whenB = ϕx(A)). Thus, a c.c. local connected
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Figure 9. Invariant class of a c.c. local filter. If a setA is invariant
underψ as shown in the figure (i.e.,A = ψ(A)), then its grains are
also invariant underψ . The same applies to the set difference of the
spaceE and each pore. Thus, in this case it is known thatψ(G1) =
G1, ψ(G2) = G2, ψ(E\P1) = E\P1, andψ(E\P2) = E\P2.

operator is one that

(1) Fills grains and/or remove pores.
(2) Treats each grain or pore independently from the

rest of grains and pores.

Notice that, because of item (2), if a setB is invariant
under a c.c. local operatorψ (i.e., ψ(B) = B), then
each grain ofB is also invariant underψ and, for each
poreP of B, the set formed byE\P is also invariant.
Figure 9 shows an example. It is clear that in the c.c.
locality definition that grains and pores are treated sym-
metrically (see also items (1) and (2) above). There-
fore, the dual of a c.c. local operator is dual, i.e., if ψ
is c.c. local, thenI cψ I c is also c.c. local.

The following proposition is a direct consequence of
the definitions ofγ̃ andϕ̃.

Proposition 1. The openingγ̃ and the closingϕ̃ by
reconstruction are c.c. local filters.

(The proof of Proposition 1 is obvious from the defini-
tions of γ̃ andϕ̃.)

The following proposition states when a c.c. local
connected operator can commute with the filtersϕx and
γx.

Proposition 2. Let E be a space equipped withγx. If
ψ : P(E) → P(E) is a c.c. local connected operator,
then

(a) If ψ is extensive: ψϕx = ϕxψ .
(b) If ψ is antiextensive: ψγx = γxψ .

Proof: Let us prove part (a) (proof of part (b) is sim-
ilar). Let A ∈ P(E).

(i) Case x ∈ A. We have that: (a)ϕx(A) = E,
and thereforeψϕx(A) = E; (b) x ∈ ψ(A), and
ϕxψ(A) = E.

(ii) Casex 6∈ A. Then,ϕx(A) = E\γx I c(A). Since
γx I c(A) = γx I c(E\γx I c)(A), thenψ (extensive)
fills or leaves unchanged the pores (which are iden-
tical) of x in A and in E\γx I c(A) (definition of
c.c. local operator). If the pores are filled, then
ψϕx(A) = E = ϕxψ(A). Otherwise,ψϕx(A) =
E\γx I c(A) = ϕxψ(A). 2

From Proposition 1, together with Proposition 2 we
have as particular cases thatγ̃ γx = γxγ̃ (presented in
[26]) andϕ̃ϕx = ϕxϕ̃.

The next proposition states when the combination of
c.c. local connected operators is c.c. local.

Proposition 3. The class of c.c. local connected op-
erators is closed under the sup and the inf operations.

Proof: Let A ∈ P(E). Let us prove the proposi-
tion for the sup operation (the inf case is analogous).
Let {ψ1, . . . , ψn} be a family of c.c. local connected
operators.

(i) Casex ∈ A, x 6∈ ∨
i ψi (A). If x 6∈ ∨

i ψi (A),
thenx 6∈ ψi (A), ∀i . Since allψi , ∀i , are local, then
∀B ∈ P(E) : γx(B) = γx(A), we haveγxψi (B) =
∅, ∀i ⇒ γx(

∨
i ψi (B)) = ∅.

(ii) Casex 6∈ A, x ∈ ∨
i ψi (A). If x ∈ ∨

i ψi (A),
then∃i0, x ∈ ψi0(A). Sinceψi0 is c.c. local, then
∀B ∈ P(E) : γx I c(B) = γx I c(A), we have that
γxψi0(B) 6= ∅ ⇒ γx(

∨
i ψi (B)) 6= ∅. 2

However, the sequential composition of c.c. local
operators is not c.c. local, in general. Nevertheless,
there are some cases in which the sequential com-
position of c.c. local operators is c.c. local, as stated
next.

Proposition 4. The sequential composition of exten-
sive c.c. local connected operators is c.c. local, as
well as the sequential composition of antiextensive c.c.
local connected operators.

Proof: Let us prove the extensive operator case (the
anti-extensive operator case is analogous). LetA ∈
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P(E). Let ψ1 andψ2 be two extensive c.c. local op-
erators, and let us consider the sequential composition
ψ2ψ1 (the proof considering theψ1ψ2 operator, and
more operators, would be similar).

An extensive operator can only fill pores. Letx 6∈ A,
x ∈ ψ2ψ1(A) ⇒ either (a)x ∈ ψ(A), andψ1 has filled
the pore ofx in A; or (b) x 6∈ ψ1(A), andψ2 has filled
the pore ofx in ψ1(A). In both cases, the pore filled
is the pore ofx in A, because ifx 6∈ ψ1(A), then
γx I c(A) = γx I cψ1(A). Therefore,∀B : γx I c(B) =
γx I c(A), thenx ∈ ψ2ψ1(B). 2

The alternating filter by reconstructioñϕγ̃ is not c.c.
local (notice that the class of c.c. local operators is not
closed under sequential composition). The fact that a
grain G of the input set appears in the output is not a
consequence only ofG but also of its adjacent pores in
the case thatG has been removed bỹγ . An example
is shown in Figure 10.

Figure 10. Example of sequential composition of c.c. local opera-
tors. This figure shows that the sequential composition of c.c. local
operators is not, in general, c.c. local. Consider the alternating filter
ϕ̃γ̃ . Both γ̃ and ϕ̃ are c.c. local as stated in the text. However,
ϕ̃γ̃ is not. Imagine that̃γ removes the central grainG in A and B
(identical grain). Ifϕ̃ fills the resulting pore iñγ (A) (see part (b))
but not the one iñγ (B) (see part (e)), we have thatG is included in
ϕ̃γ̃ (A) (part (c)) but is not inϕ̃γ̃ (B) (part (f)).

2.2. Adjacency Stability

The origin of the adjacency stability concept, which ap-
peared first in [5], was an study of the strong property of
the connected operator class. This can be observed by
comparing the strong property Eq. (1) with the equation
that defines the adjacency stability below. The restric-
tion that the adjacency stability equation poses does not
only affect whether or not the strong equation holds,
but also has implications regarding the idempotence
or non-idempotence (weaker condition than the strong
property) of an operator, as will be seen in the next
section.

Let us define the concept of adjacency between
two sets, which formalizes the intuitive notion of
contiguity. Two flat zonesFx(A) and Fx′(A) in a
space E (equipped withγx) are said to beadja-
centif Fx(A)

∨
Fx′(A) = γx(Fx(A)

∨
Fx′(A)), i.e., if

Fx(A)
∨

Fx′(A), for all A ∈ P(E), is a connected set.
(Notice thatFx = γx(A)

∨
γx I c(A).) The adjacent

flat zonesof x in an input setA, symbolized byDx(A),
are the pores (ifx ∈ A) or the grains (ifx 6∈ A) that are
adjacent toFx(A), i.e., Dx(A) = ∨

x′ {Fx′(A) : x′ ∈
E, Fx′(A)

∨
Fx(A) = γx(Fx′(A)

∨
Fx(A)}. An ex-

ample of the adjacent flat zones of a point is shown in
Fig. 11.

The concept of adjacency stability is established
next. This requirement concerns how adjacent grains
and pores are treated by an operation.

Definition. Let E be a space equipped withγx. An
operatorψ :P(E) → P(E) isadjacency stableif, for
all x ∈ E

γx

(
I
∨

ψ
)

= γx

∨
γxψ. (3)

Notice that whereasγx does not commute in gen-
eral under the sup, it commutes always under the inf:
γx(

∧
i ψi ) = ∧

i γxψi [2].

Figure 11. Adjacent flat zones of a point: (a) input setA (set in
black); (b)Dx(A): adjacent flat zones ofx; and (c)Dy(A): adjacent
flat zones ofy.



                P1: RBAP1: RBA

Journal of Mathematical Imaging and Vision 07˙Crespo December 3, 1996 11:34

94 Crespo and Schafer

The consequences of adjacency stability on the rela-
tionships between the grains of the input and the output
are stated in the next proposition.

Proposition 5. Let E be a space equipped withγx.
A connected operatorψ :P(E) → P(E) is adjacency
stable if and only if, for all A ∈ P(E), the grains of
ψ(A) are a union of the

(i) grains of A
(ii) pores of A surrounded by grains in(i).

Proof: Let A ∈ P(E). Let us suppose thatψ is an
adjacency stable operator and that there exists a grain
G of ψ(A) that contains a pore ofA that is not sur-
rounded by the grains ofA included inψ(A). There-
fore, there exists a grainG′ of A that is not included
in ψ(A) and that is adjacent toG. Then, x ∈ G′ ⇒
γx(I

∨
ψ)(A) = G

∨
P 6= (γx

∨
γxψ)(A) = G′ ⇒

ψ is not adjacency stable. A contradiction has been
reached. 2

Corollary 1. Let E be a space equipped withγx. If
a connected operatorψ :P(E) → P(E) is adjacency
stable then, for all A ∈ P(E)

(a) γx(A) = ∅, γxψ(A) 6= ∅ ⇒ Dx(A) ≤ ψ(A).
(b) γx(A) 6= ∅, γxψ(A) = ∅ ⇒ Dx(A) ≤ I cψ(A).

The grain-pore relationship is illustrated in Fig. 12.
For the adjacent unstable case displayed in

Fig. 12(b), Fig. 13 shows that the adjacency stabil-
ity equation does not hold for the point marked asx
(this point is not the only one). Notice that the fact
that an operator behaves as an adjacency stable op-
erator for some inputs does not imply it is adjacency
stable. The adjacency stability equation must hold for
all A ∈ P(E) and for allx ∈ E.

Figure 12. Adjacency stability. Notice that a pore of the input setA has become a grain in (b) but that it is not surrounded by grains ofA that
appear in (b). This situation does not happen in cases (b) and (c).

The adjacency stability Eq. (3) treats grains and
pores symmetrically. We note this fact because only
the grain extraction operationγx (and not its dualϕx)
is employed in the definition of adjacency stability. The
reason is that what matters is the switch from grain to
pore and vice-versa. Therefore either in the input set
or in the output set we study only grains and, nev-
ertheless, by doing so we study as well their adjacent
pores. This symmetrical treatment can be observed also
in Corollary 1. Thus we can state thatthe dual of an
adjacency stable operator is adjacency stable.

Figure 13. Adjacency stability equation. Parts (a) and (b) display
respectively an input setA and the outputψ(A), whereψ is a con-
nected operator. The adjacency stability equation does not hold,
since there exists at least one pointx (in this case there are clearly
more than one: all the points that compose the pore to whichx be-
longs in part (a)) in whichγx(A)

∨
γxψ(A) (part (c)) is not equal to

γx(I
∨

γxψ)(A) (part (d)).
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The fact that the class formed by adjacency sta-
ble operators is closed under certain operations is
stated next in Theorem 1. The following lemma is
needed.

Lemma 1. Let E be a space equipped withγx. A
connected operatorψ :P(E) → P(E) is adjacency
stable if and only if, for all A ∈ P(E), ψ(A) and
A\ψ(A) are not connected to each other.

Proof:

(i) ψ(A) andA\ψ(A) are not connected to each other:

γx

(
A

∨
ψ(A)

)
=

γx(A), x ∈ A\ψ(A)

γxψ(A), x ∈ ψ(A)

∅, otherwise

That is,γx
(
A

∨
ψ(A)

) = γx(A)
∨

γxψ(A), ∀x.
(ii) ψ is stable: Let us supposeψ(A) andA\ψ(A) are

connected to each other, i.e., there exists at least
one grainG of ψ(A) and a grainG′ of A\ψ(A)

that are adjacent (becauseψ is connected,G′ is
a grain of A). Let x ∈ G. Then,γx(G

∨
G′) ≥

G
∨

G′ > γx(G)
∨

γx(G′) = γx(G), andγx(A
∨

ψ(A)) ≥ G
∨

G′ > γx(A)
∨

γxψ(A) = G. The
operatorψ would be adjacency unstable, and a
contradiction has been reached. 2

Theorem 1. The class of adjacency stable connected
operators is closed under the sup, the inf and the se-
quential composition operations.

Proof: Let us study each case separately. Let
{ψ1, . . . , ψn} be a family of adjacency stable opera-
tors. The case for the composition will be proved for
the two operators case, and by induction this result ap-
plies for the composition of an arbitrary number of op-
erators. From Lemma 1, it is known that if a connected
operatorψ :P(E) → P(E) is adjacency stable, then
A\ψ(A) is not connected toψ(A), A ∈ P(E).

(i)
∨

i ψi : Let us suppose that
∨

i ψi is not ad-
jacency stable. LetA ∈ P(E) such that
∃x : γx

(
A

∨
i ψi (A)

) 6= γx(A)
∨

γx(
∨

i ψi (A)).
If G is grain ofA such thatG is not in

∨
i ψi (A)

but G is connected to a grainG′ of
∨

i ψi (A),
then clearlyG is connected to a certain grainG′′

of ψi0(A), whereψi0 ∈ {ψi }, because the grains
of

∨
i ψi (A) are composed of grains of{ψi (A)}.

However, this implies thatψi0 is adjacency unsta-
ble. A contradiction has been reached.

(ii)
∧

i ψi : Similarly as in (i).
(iii) ψ2ψ1: Let us suppose thatψ2ψ1 is not adjacency

stable. LetG be a grain ofA\ψ2ψ1(A) that is
connected to a grain ofψ2ψ1(A) (notice thatG is
a grain ofA). Becauseψ1 andψ2 are connected
operators, eitherG′ ≥ G, whereG′ is adjacent
of ψ2ψ1(A), must have appeared inψ1(A), and
henceψ2 is non-stable, orG was not inψ1(A)

and therefore it was adjacent to a grain ofψ1(A),
in which caseψ1 is not adjacency stable. In either
case, a contradiction has been reached.

2

On the other hand, the combination of an adjacency
stable and an adjacency unstable operator is in general
adjacency unstable. However, there are cases in which
the result is adjacency stable: obviously, the inf (or
respectively the sup) of an adjacency stableψst and an
adjacency unstable oneψunst is stable whenψst ≤ ψunst

(respectivelyψst ≥ ψunst).
The complementation operatorI c is clearly an adja-

cency unstable operator. In fact, the operatorI c is the
“prototype” of adjacency unstable operator because it
switches all grains to pores and vice-versa. Thus, the
adjacency stability Eq. (3) does not hold for any point
of the space (assuming the spaceE is a connected set,
i.e., thatE = γx(E), x ∈ E). For allx ∈ E and for all
A ∈ P(E)\{∅, E},

γx

(
I
∨

I c
)
(A) = A

∨
Ac = E 6=

γx(A)
∨

γx I c(A) = A or Ac.

Not all adjacency unstable operators are not increas-
ing (as the complementation operatorI c). The median
operator is an example of an increasing adjacency un-
stable operator [2, 5]. Notice that the median operator
can be expressed as a sup of erosions [13, 16] (or an
inf of dilations) but that some of these erosions are not
antiextensive and are adjacency unstable. Therefore
the median operator is a sup of erosions but is not a sup
of adjacency stable operators (an operation that must
be adjacency stable, from Theorem 1). An example is
shown in Figure 14.

The next theorem establishes the adjacency stability
of all extensive and antiextensive operators, increas-
ing or not. This theorem is followed by a corollary
that guarantees the adjacency stability of any com-
bination of openingsγ and closingsϕ, connected or
not.
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Figure 14. Adjacency unstability of the median operator. For the
input displayed in part (a), the 3× 3 neighborhood median operator
gives part (b) as output. Since (b) is the complement of (a), it is clear
that the adjacency stability equation does not hold for any point of
the space. (The space isZ2 and four-connectivity is assumed.)

Theorem 2. Extensive and anti-extensive mappings
are adjacency stable.

Proof: The proof is obvious from Eq. (3).

(i) ψ is extensive (ψ ≥ I ): the left hand side of
Eq. (3) isγx(I

∨
ψ) = γxψ ; and the right hand

side,γx
∨

γxψ = γxψ .
(ii) ψ is antiextensive (ψ ≤ I ): the left hand side of

Eq. (3) isγx(I
∨

ψ) = γx; and the right hand side,
γx

∨
γxψ = γx. 2

A consequence of the previous result (and of
Theorem 1) is thatany composition of openingsγ
and closingsϕ is adjacency stable. Clearly, erosions
and dilations are also adjacency stable if they are anti-
extensive and extensive, respectively.

In Figure 2, only the first, the second, the fourth, the
seventh and the eight are outputs of stable filters. In all
other cases, Eq. (3) is not true for allx. Thus, in Fig. 2
all outputs that do not satisfy the stability equation
cannot be obtained using openingsγ̃ and closingsϕ̃
by reconstruction. We have discovered that openingsγ̃

and closings̃ϕ by reconstructioncannotcompute any
connected operation. Notice that this also applies to
any kind of openings and closings: It is not possible
to compute any operation by means of openings and
closings.

The following proposition and theorem state how to
build an adjacency stable operator from an unstable
one. Proposition 6 gives an obvious result, which is
followed by Theorem 3 that establishes the smallest ad-
jacency stable majorant (and minorant) of a connected
operator.

Proposition 6. Letψ be any operator, adjacency sta-
ble or not. The operators

ψ1 = ψ
∧

I and ψ2 = ψ
∨

I

are adjacency stable.

Proof: From Theorem 2, sinceψ1 is antiextensive
andψ2 is extensive. 2

Theorem 3. Let E be a space equipped withγx.
Any unstable connected operatorψ :P(E) → P(E)

admits a smallest majorant̂ψ and a greatest mino-
rant ψ̌ that are connected and adjacency stable. Let
A ∈ P(E). The expressions of, respectively,ψ̂ andψ̌

are

ψ̂(A) =
∨

x∈ψ(A)

γx

(
ψ(A)

∨
A
)

(4)

ψ̌(A) =
∧

x 6∈ψ(A)

ϕx

(
ψ(A)

∧
A
)

(5)

Proof: We will prove only the majorant̂ψ case (ex-
pression (4)). The operator̂ψ is clearly connected.
From Lemma 1, it is also adjacency stable because,
∀A ∈ P(E), by constructionψ̂(A) is not connected
to A\ψ̂(A). In addition,ψ̂ is the smallest adjacency
stable majorant ofψ : ψ̂ adds toψ(A) all grains ofA
that did not belong toψ(A) but that were connected to
ψ(A), and each added grain ofA is necessary for the
adjacency stability of̂ψ . 2

If ψ is adjacency stable, expressions (4) and (5) give
clearly thatψ̂ = ψ̌ = ψ . Notice thatψ̂ and ψ̌ are
not necessarily extensive nor anti-extensive, unlikeψ1

andψ2 of Proposition 6. This is an expected result
since there exist adjacency stable operators that are not
extensive nor anti-extensive such asϕ̃γ̃ , γ̃ ϕ̃, γ̃ ϕ̃γ̃ , etc.
(which are all stable from Theorem 2).

As an example of how the c.c. locality and adjacency
stability concepts can be employed, let us use them to
prove, in the following example, the classical theorem
that establishes the strong-property of the alternating
filters by reconstructioñϕγ̃ andγ̃ ϕ̃. This theorem is a
simpler version of the theorem by Matheron and Serra
that appeared in [21].

Example. Prove that the connected alternating filters
ϕ̃γ̃ andγ̃ ϕ̃ are strong, wherẽγ andϕ̃ are respectively
an opening and a closing by reconstruction.
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It is known that ϕ̃γ̃ is an
∧

-filter: ϕ̃γ̃ =
ϕ̃γ̃

(
I
∧

ϕ̃γ̃
)

[20]. Let us show that̃ϕγ̃ is also a
∨

-
filter.

Let Abe a set. Sincẽγ is c.c. local (Proposition 1), we
have, from Proposition 2, thatγ̃ = ∨

x γxγ̃ = ∨
x γ̃ γx.

Therefore, ϕ̃γ̃
(
I
∨

ϕ̃γ̃
) = ϕ̃

( ∨
x γ̃ γx

)(
I
∨

ϕ̃γ̃
)
.

From Theorem 2,ϕ̃γ̃ is adjacency stable and (from
Lemma 1)ϕ̃γ̃ (A) and A\ϕ̃γ̃ (A) are not connected.
Then,γ̃ γx

(
I
∨

ϕ̃γ̃
)
(A) is equal to{

γ̃ γx(A) = ∅, x ∈ A\ϕ̃γ̃ (A).

γ̃ γxϕ̃γ̃ (A), x ∈ ϕ̃γ̃ (A).

Using again Proposition 2,
∨

x γ̃ γxϕ̃γ̃ =∨
x γxγ̃ ϕ̃γ̃ = γ̃ ϕ̃γ̃ . Finally, it is known (from [26])

that γ̃ ϕ̃γ̃ = ϕ̃γ̃ becausẽϕγ̃ ≤ γ̃ ϕ̃.

In the example above the adjacency stability equation
arises when studying the strong property of an operator.

3. Translation Invariance Operators

In this section we will discuss translation invariance and
study its relationship with connectivity, in particular
with connected operators. Notice that c.c. locality,
as defined previously, does not assume any translation
invariance.

3.1. Translation Invariance and Connectivity

Let us denote the translation operator by Tα, whereα is
the translating vector. We will restrict our discussion to
the spacesR2 orZ2 (whereR andZ denote respectively
the set of real numbers and the set of integers). The
translation of a setA by α is

Tα(A) = {x : x − α ∈ A}.

Definition. Let E beR2 or Z2. An operatorψ :P(E)

→ P(E) is translation invariant if and only if, for all
A ∈ P(E)

ψTα(A) = Tαψ(A).

We can easily deduce that Tαψγx = ψTαγx (from
the translation-invariance definition), and that, ifx 6∈
A, Tαψ(E\γx I c(A)) = ψ(E

∨
Tαγx I c(A)) (taking

into account that, for allα, Tα(E) = E, whereE is R2

or Z2).

Proposition 7. Let E beR2 or Z2 equipped with
γx. If a c.c. local operatorψ :P(E) → P(E) is
translation invariant then,∀A ∈ P(E), ∀x ∈ E

(a) γx(A) 6= ∅, γxψ(A) = ∅ ⇒ ∀B ∈P(E), γx′Tαγx

(A) = γx′(B), x′ ∈ Tαγx(A) : γx′ψ(B) = ∅.
(b) γx(A) = ∅, γxψ(A) 6= ∅ ⇒ ∀B ∈ P(E),

γx′Tαγx I c(A) = γx′ I c(B), x′ ∈ Tαγx I c(A) :
γx′ψ(B) 6= ∅.

Proof: Let us prove part (a) (the proof of part (b)
is similar). Let A ∈ P(E). γx(A) 6= ∅, γxψ(A) =
∅ ⇒ ψTαγx(A) = ∅, sinceψ is translation invari-
ant. Becauseψ is c.c. local, thenψTαγx(A) = ∅ ⇒
∀B ∈ P(E) : γx′(B) = γx′Tαγx(A), x′ ∈ Tαγx(A), ⇒
γx′ψ(B) = ∅. 2

Clearly, the openingγx is not translation invariant:
γxTα 6= Tαγx. The reason is that, obviously, the open-
ingγx depends onx. However, an important case arises
when, given a certain grainG, the openingγx satisfies
that, after translating the grain, ifx′ belongs to the trans-
lated grain,γx′ recovers exactly the translated grain. If
this is the case, we will say thatγx is pointwise trans-
lation invariant[3], whose definition is stated next.

Definition. Let E beR2 or Z2 equipped withγx. The
openingγx is said to bepointwise translation invari-
ant if and only if, ∀α, x ∈ E, ∀A ∈ P(E)

Tαγx(A) = γx′Tαγx(A), ∀x′ ∈ Tαγx(A). (6)

As discussed in [3], ifγx is not pointwise translation
invariant, thenit can be impossible to build certain c.c.
local translation invariant operators. An example of
an openingγx in Z2 that is not pointwise translation
invariant arises when we employ 8-connectivity at the
left side of the space and 4-connectivity at the other
side. This is an unusual but possible choice; notice
thatγx is well defined for all points in the space (even
for those at the boundary of both sides).

3.2. Restriction to Subspaces

The c.c. locality and adjacency stability requirements
can greatly restrict what an operator can do. This is
particularly true when an operator, defined on a cer-
tain spaceE, is regarded together with itsrestriction
to subspaces ofE. This is in fact quite common.
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We want in general that when a grain has been re-
moved or a pore has been filled in a certain space, the
same result could be reproduced for other subspaces
that contain the grain or pore. Thus, eachE′ ≤ E
defines a “new” operator. We will define precisely,
for a c.c. local operator defined on a spaceE, its
restriction to a subspace ofE since some theoreti-
cal results will be presented regarding it. In order
to simplify the problem, only c.c. local translation-
invariant operators are treated. Notice that, as discussed
in Section 3, it can be impossible to define certain
c.c. local and translation invariant operators ifγx

does not satisfy the pointwise translation invariance
requirement.

Definition. Let E be a space equipped withγx and let
ψ :P(E) → P(E) be a c.c. local connected operator.
The subspace restricted classof ψ , denoted byCψ ,
is the set of operatorsψi :P(E′

i ) → P(E′
i ) , E′

i ≤ E,
that, for all A ∈ P(E′

i )

(a) γx(A) 6= ∅ ⇒ ψi γx(A) = ψγx(A)
∧

E′
i .

(b) γx(A) = ∅ ⇒ ψi (E′\γx I c(A)) = ψ(E\γx I c(A))∧
E′

i .

Figure 15 illustrates this concept. Notice thatAmust be
included inE′

i , the domain definition ofψi . In addition,
it can be noticed that the previous definition applies to
both translation-invariant and non translation-invariant
operators.

Most often, ψ and any element ofCψ are con-
sidered usually as the same operator. For example,
when we define and implement an erosion the fact
that a particular space isattached1 to that operation
is usually disregarded. Nevertheless when such an ero-
sion is applied to another space (we employ, for ex-
ample, an image of different size), the operation is,
strictly, different. The distinction is relevant in this pa-
per, and this is the reason why a precise definition of
the restriction of an operator to a subspace has been
given.

The following proposition relates the adjacency sta-
bility of each member of a classCψ with the extensivity
and anti-extensivity ofψ .

Proposition 8. Let E beR2 or Z2, and letψ be a c.c.
local connected translation-invariant operator defined
on E. Then,

∀ψi ∈ Cψ , ψi is adjacency stable⇔ ψ is extensive
or anti-extensive

Figure 15. Subspace restriction of an operator. In (a) we can see
the spaceE, a subspaceE′ and an input setA (A ≤ E′ ≤ E). The
symbolψ denotes a c.c. local operator defined onE, andψ ′ is its
restriction to the subspaceE′. Parts (b) and (c) show the “inputs”
that are considered byψ ′ (in (b)) and byψ (in (c)) when a grainG
is processed (in this caseA = G). The definition of the subspace
restriction of an operator, implies thatG will be preserved (or re-
spectively removed) byψ ′ in E′ if G is preserved (or respectively
removed) byψ in E. Parts (d) and (e) show the pore processing case.
The poreP will be preserved (or respectively filled) byψ ′ in E′ if
P is preserved (or respectively filled) byψ in E.

Proof:

(i) The implication in the leftwards sense is true from
Theorem 2.

(ii) Let ψ be a non-extensive and a non-antiextensive
operator, and letG and P be respectively a grain
and a pore that are variant underψ . Sinceψ

is translation-invariant (and sinceE is eitherR2

or Z2), we assume thatG and P are chosen to
be disjoint and adjacent to each other. Let us
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call Ei0 the subspace ofE formed by G
∨

P.
Then, the restrictionψi0 of ψ to Ei0 is adjacent
unstable: γx

(
I
∨

ψ ′)(G) = G
∨

P = Ei0 6=
γx(G)

∨
γxψ(G) = G or P. 2

Corollary 2. If ψ is a c.c. local connected trans-
lation-invariant operator, then

ψ is adjacency unstable⇔ ∃ψi ∈ Cψ that is not
idempotent.

Corollary 3. If ψ is a c.c. local connected trans-
lation-invariant filter, then

∀ψi ∈ Cψ, ψi is adjacency stable⇔ ψ is an opening
γ̃ or a closingϕ̃ by rec.

Corollary 2 and Corollary 3 have important conse-
quences. The first one shows that, if idempotence is
desired for all members ofCψ , whereψ is a c.c. lo-
cal translation-invariant operator, thenψ mustbe adja-
cency stable. This result was followed by Corollary 3,
in which we find the class of̃γ andϕ̃ as the only types of
connected filters that form classesCψ whose elements
can satisfy both the c.c. locality and the adjacency
stability conditions.

In the next Corollary 4, the last one of Proposition 8,
the self-duality concept is linked to idempotence. An
operatorψ is self-dual whenψ = I cψ I c.

Corollary 4. If ψ is a c.c. local connected trans-
lation-invariant operator, then,

ψ is self-dual, ψ 6= I ⇒ ∃ψi ∈ Cψ that is not
idempotent.

Therefore, the c.c. local treatment of grains and
pores (as defined in the c.c. locality definition) can
be non-compatible with idempotence when both pores
and grains are processed symmetrically. However,
Corollary 4 does not imply the impossibility of build-
ing self-dual morphological filters, besides the trivial
identity operatorI case, whose subspace restrictions
are filters as well. Themorphological centeris a self-
dual morphological filter [24] that can satisfy that its
subspaces restrictions are all idempotent. Neverthe-
less, it is not possible, as stated in Corollary 4, that
the self-dual morphological center be c.c. local. For
example, the operator

ψ =
(

I
∨

ϕ̃γ̃
) ∧

γ̃ ϕ̃ (7)

is a self-dual filter, and all elements inCψ are also filters.

However,ψ is not c.c. local (neither̃ϕγ̃ nor γ̃ ϕ̃ in (7)
are c.c. local). Notice that the caseψ = (

I
∨

γ̃
) ∧

ϕ̃

(which is self-dual, idempotent and c.c. local) is equal
to the identity operatorI .

A possible mistake could be to think that if there
exists a certainψi ∈ Cψ that is not adjacency stable,
thenψ would be adjacency unstable. It is clearly un-
true when the operatorψ is not translation invariant,
but it is also untrue when it is. An additional condition
is that there must exist a way to place at least one vari-
ant grain and one variant pore adjacent to each other
in the spaceE of definition ofψ . Figure 16 gives one
example in which this is not possible and another one
in which it is. Figure 16(a) and Fig. 16(b) refer to the
case of a connected translation-invariant operatorψcirc

that removes (or respectively fills) grains (respectively
pores) that have a circular shape and a certain area. The
restrictionψ ′

circ of the operator toE′ (see Fig. 16(a)),
whereE′ is the union of a variant grainG and a vari-
ant poreP, is clearly adjacency unstable (in Fig. 16(a),
we would haveψ ′

circ(A) = ψ ′
circ(G) = I c(G) = P,

and the adjacency stability equation would not hold for
any x ∈ E′). However, the operatorψcirc is not adja-
cency unstable because a circular grain and a circular
pore cannot be placed adjacently inE. Fig. 16(c) and
Fig. 16(d) refer to the case of another operatorψsq, de-
fined onE, that removes (or respectively fills) grains
(respectively pores) that are square and that have a cer-
tain area. In this case, not only some subspace restric-
tions are adjacency unstable (in Fig. 16(c), in which
the subspaceE′′ is composed of a variant grainG′ and
a variant poreP′, we would haveψ ′

sq(B) = ψ ′
sq(G

′) =
I c = P whereψ ′

sqis the restriction ofψsqto E′′) but also
the operatorψsq itself. As shown in Fig. 16(d), variant
grains and variant pores can be placed in the spaceE
adjacent to each other (in Fig. 16(d), the whole space
E has been partitioned into variant grains and pores).
The output given byψsq when the set in Fig. 16(d) is
the input would be its complement.

Similarly to the case concerning adjacency stabil-
ity, the existence ofψi ∈ Cψ that is not idempotent
does not imply thatψ is not idempotent. (Notice that,
on the other hand, implications in the other sense do
not mean anything: ifψ is, for example, idempotent
then obviously there exists at least oneψi ∈ Cψ that is
idempotent becauseψ ∈ Cψ .)

Previous corollaries apply only to c.c. local oper-
ators. However, they have implications as well for
non-c.c. local operators since, when a class of oper-
ators is established, c.c. locality is normally a char-
acteristic desired for at least some components of the
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Figure 16. Variant grains and pores. Ifψcirc is a c.c. local connected translation-invariant operator, defined onE, that removes (or respectively
fills) grains (respectively pores) that have a circular shape and a certain area, then its restriction toE′ is adjacency unstable (see part (a)). We
would haveψ ′

circ(A) = ψcirc(G) = I c(G) = P, and the adjacency stability equation would not hold for anyx ∈ E′). However,ψcirc would not
be adjacent unstable because it is not possible to place any pair of adjacent grains and pores adjacent to each other inE (part (b)). On the other
hand, Ifψsq is a c.c. local connected translation-invariant operator, defined onE, that removes (or respectively fills) grains (respectively pores)
that are square and that have a certain area, then both its restrictionψ ′

sq to E′′ is adjacency unstable (see part (c)), similarly to the case ofψ ′
circ,

andψsq. As shown in part (d), it is possible to place variant grains and pores adjacent to each other in the spaceE (in (d), the whole spaceE
has been partitioned into variant grains and pores).

class. Notice that, in practice, the c.c. local case is
most commonly used. Thus, when we want to build
a class of filters (i.e., idempotence is desired for all
class members) adjacency stable operators should be
used if c.c. locality is desired for some operators of the
class.

Regarding the translation-invariant requirement in
the previous theoretical results, this condition is suf-

ficient but not necessary (see, for example, the proof
of Proposition 8). We have used it in this section be-
cause the reasoning with translation-invariant operators
is simpler than with the more general case. In part (ii) of
Proposition 8,ψ does not need to be translation invari-
ant, rather it must be true that there exists at least one
variant (underψ) grainG and one variant poreP that
are adjacent (i.e.,γx(G

∨
P) = G

∨
P, x ∈ G

∨
P).
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4. Conclusion

Connected operators are those that do not introduce
discontinuities. An important class of connected op-
erators is that constituted by filters by reconstruction.
We have employed some constraints to approach and to
study the class of connected operators. The first con-
straint, connected component (c.c.) locality, requires a
connected operator to depend only on some part (which
can be, nevertheless, unbounded) of the input set for
computing the output of each grain and pore. The sec-
ond constraint restricts how adjacency is considered by
a connected operator, and is called adjacency stability.

This paper has introduced a way to approach open-
ings and closings (in particular, the classes of openings
and closings by reconstruction) that is an alternative
to the usual axiomatic way. Openings and closings by
reconstruction can form subspace restriction classes of
operators that are both c.c. local and adjacency stable.
In addition, if translation-invariance is desired, then
they are the only classes of morphological connected
filters that can satisfy both requirements. A point to
be noted is that the c.c. local treatment of grains and
pores (as defined in the c.c. locality definition) can be
non-compatible with idempotence when both pores and
grains are processed symmetrically, i.e., when a self-
dual processing is desired. An important result that
should be considered when establishing a space con-
nectivity is that it can be impossible to build certain c.c.
local and translation invariant operators if the opening
that defines the space connectivity (γx) does not satisfy
the pointwise translation invariance property.

This paper has addressed some questions regard-
ing the connected operator class that have not been
previously discussed in the literature. Some of these
questions are whether or not openings and closings by
reconstruction can compute any connected operation,
and why all “usual” classes of filters are composed of
extensive and anti-extensive operators. As discussed
in our work, it is not possible to compute any arbi-
trary output using openings and closings, and the fact
thatonlyextensive (closings and certain dilations) and
antiextensive mappings (openings and certain erosions)
are normally used as building-pieces in morphological
processing appear to have some desirable (and pos-
sibly unexpected) properties. We notice that, even
though we have considered the binary framework, re-
sults are extendable for gray-level functions by means
of the so called flat operators. The reason is that flat
operators process each gray-level independently from
the rest.
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Note

1. An operator is defined on a particular spaceE, as implicitly indi-
cated in the notationψ :P(E) → P(E).
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Masson: Paris, 1965.

16. G. Matheron,Random Sets and Integral Geometry, Wiley: New
York, 1975.

17. G. Matheron,Les Applications Idempotentes, Report Centre de
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24. J. Serra,Mathematical Morphology. Volume II: Theoretical Ad-
vances, Academic Press: London, 1988.

25. J. Serra, “Anamorphoses and function lattices,” inMathemat-
ical Morphology in Image Processing, E. Dougherty (Ed.),
Marcel Dekker: New York, Chap. 13, pp. 483–523, 1993.

26. J. Serra and P. Salembier, “Connected operators and pyramids,”
in Proceedings of SPIE, Non-Linear Algebra and Morphological
Image Processing, San Diego, July 1993, Vol. 2030, pp. 65–76.

27. J. Serra and P. Salembier, “Op´erateurs connexes et pyramides,”
in 9ème Congr̀es RFIA, AFCET/AFIA, Paris, Janvier, Vol. 1, pp.
243–254, 1994.
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