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Abstract. This paper investigates two constraints for the connected operator class. For binary images, connected
operators are those that treat grains and pores of the input in an all or nothing way, and therefore they do not
introduce discontinuities. The first constraint, called connected-component (c.c.) locality, constrains the part of
the input that can be used for computing the output of each grain and pore. The second, called adjacency stability,
establishes an adjacency constraint between connected components of the input set and those of the output se
Among increasing operators, usual morphological filters can satisfy both requirements. On the other hand, some
(non-idempotent) morphological operators such as the median cannot have the adjacency stability property. When
these two requirements are applied to connected and idempotent morphological operators, we are lead to a new
approach to the class of filters by reconstruction. The important case of translation invariant operators and the
relationships between translation invariance and connectivity are studied in detail. Concepts are developed within
the binary (or set) framework; however, conclusions apply as well to flat non-binary (gray-level) operators.

Keywords: connectivity, mathematical morphology, connected operator, connected-component locality, adja-
cency stability

Connected operators do not introduce discontinuities. reconstruction that are idempotent. Taationsof the
For binary images (or sets), they treat the connected openingsy and closing® by reconstruction are:
components of the input and its complementin an all or

nothing way. The relationship between the general class (a) removing grains using;

of connected operators and morphological connected (b) filling pores usingz; and

filters will be investigated in this paper. This will be (c) both removing grains and filling pores usi@g,

done by presenting two constraints callemhnected- v¢, A\iL1¢ivi [B], etc., wherey and @ belong
componen(c.c) locality andadjacency stability respectively to a granulometrfyfi} and an anti-
Connectivity plays an important role in this paper, granulometry{g; } by reconstruction [16, 26].

and we are going to be interested in those openings (or

respectively closings) that exclusively remove grains  We might think that by combining (as in group (c)
(respectively fill pores) of the input set. These are all above) the basic openingsand closingsg, it would
connected operators (but they are not, of course, thebe possible to remove grains and fill pores in such
only ones). An important group of connected filters a way that any possible connected operation (i.e., an
is the class of filters by reconstruction [2, 4, 26, 27]. operation that does not introduce discontinuities) can
In this work (as in [4]), filters by reconstruction are pe implemented. However, this is not true. Figure 1
those combinations of openingsand closingsy by shows a case in which it is not possible to obtain, for
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(b) Output

Figure 1 Connected operation: one-dimensional example. For the input shown in part (a), no combination of openings and closings can
compute the output (b).

the input in Fig. 1(a), the output displayed in Fig. 1(b)
by means of any combination of openings and clos-
ings. Figure 2 gives a more complete insight into the
problem by showing all possible outputs of connected
operators acting on a simple study case: two grains and
one pore in a connected one-dimensional space. There
are 2 = 8 possibilities; there are three flat zones and
there exists two possibilities for each, either being in
the output set or in its complement. The following
questions, not treated in the mathematical morphology
literature, arise then:

e Why is not possible to compute the output shown
in Fig. 1 by means of openings and closings by
reconstruction?

e Is there any relation between Fig. 2 and morpholog-
ical connected filters? Which outputs can be com-
puted usingy and¢?

e Isthere some reason why all classes of “usual” mor-
phological filters are combinations of extensive and
anti-extensive operations?

In this paper, we will address these questions by study-
ing some properties that are satisfied by the usual
morphological filters. Our study will be simplified by
focusing on the so-called c.c. local operators. Then, ad-
jacency relationships between grains and pores of the
input set and the output of a connected operator will be
studied.

This paper extends part of the thesis work by Crespo
in [2]. The concepts treated in this paper were in- _ . _ _
troduced by Crespo, Serra and Schafer in [5]. The Figure 2 Stab_lllty and connected operators: one-dimensional ex-

ample. Forthe input set on the left (a non-connected set), there exists

c.c. !Oca”ty and adjacency S_tabi“ty constraiqts treated eight possible outputs of connected operators. Which outputs cannot
in this paper are most meaningful when applied to con- be computed using some combination of openings and closings?

nected operators. Nevertheless, they can also be used

for non-connected operators. These requirements will important result is the discovery that it is not possi-
allow us to obtain some interesting properties of con- ble to compute any arbitrary connected operator by
nected operators that satisfy one or both of them. An means of openings and closings by reconstruction.




Locality and Adjacency Stability Constraints for Morphological Connected Operators 87

This result also applies to the more general case of non-reconstruction treat each grain or pore independently
connected operators: it is not possible to compute any from the rest of grains or pores.

arbitrary (connected or not) operator solely by means
of (connected or not) openings and closings. When
these constraints are applied to morphological filters,
it will be observed that openings and closings arise
naturally as the building blocks for morphological fil-
tering. If the restriction of translation invariant opera-
tors to subspaces (more precisely, their re-definition)
is required to bavell behavedin the sense that the
re-defined operator operates in the same way in sub-
spaces), we find the class @ieningsandclosings by
reconstructionas the only group of connected filters
that are both c.c. local and adjacency stable. Thus, in
this work we approach the class of morphological filters
in an alternative way to the axiomatic way (by means
of their definitions) that is normally used in mathe-
matical morphology. The relationship between trans-
lation invariance and connectivity is examined in this
paper.

The outline of the paperis as follows. Section 1 gives
some background on mathematical morphology and on i !
connected operators. Section 2 introduces and inves-WOrds, inputs and outputs will be supposed to be sets
tigates the c.c. locality and adjacency stability condi- or, equ|valently3 binary fungt|ons. In this Iatthe, the
tions. The translation invariant operator case is treated sup/ and the inf/\ .operat|ons' are thelset uniy
in Section 3, which includes a study of the relation- and the set intersectign) operations, while the order

ships between translation invariance and connectivity. "¢lationisthe setinclusion relatien Even though we
Proofs are included in the paper. will work on the latticeP(E), results are extendable

for gray-level functions by means of the so called flat

operators [7, 11, 12, 22, 25].
1. Background on Mathematical Morphology Mathematical morphology deals witmcreasing

mappings. A mapping (or transformatiop)s increas-
Mathematical morphology is concerned with the appli- ing if it preserves ordering, i.e., if two inputs are or-
cation of set theory to image analysis. Morphological dered then their outputs are likewise ordered. For an
signal and image processing rests on a framework es-increasing set operatgr: P(E) — P(E), A< B =
tablished by Matheron and Serra [6, 12-16, 22, 24]. ¥ (A) < ¥(B), whereA, B € P(E). The sup, the inf
This section offers some background on morphologi- and the sequential composition of increasing operators
cal filtering and on connected operators. is increasing.

Connected operators [2, 26] are those that do not Two elementary morphological operations are-
introduce discontinuities. When they are applied to sionsanddilations denoted respectively byands.
binary images, for example, either connected compo-
nents of the foregroundy(ains) are removed or those  Definition. Let E be any space. The mapping:
of the backgroundporeg are filled. They are called P(E) — P(E) that commute with the inf (or respec-

1.1. Morphological Filtering

This background section reviews some concepts re-
garding morphological filtering [9, 17-20, 22-24].
Morphological operators operate on an algebraic struc-
ture called a&zomplete latticg1, 24], which is the min-
imal structure required.

Definition. A setT is a complete lattice if: (a) there
exists a partial orderings over T; and (b) for any
family {A;} of elements inT, there exists: a smallest
majorant\/; A; called the “sup” (for supremum), and a
greatest minoranf\; A; called the “inf” (for infimum).

In all theoretical expressions in this paper, we will
be working on the latticé°(E), whereE is a given
set of points calledpaceandP(E) denotes the set of
all subsets ok (i.e., P(E) = {A: A C E}). In other

morphological when they aiecreasing Morphologi- tively the sup) are calledrosionse (respectivelydi-
cal connected filters are those morphological connected|lations §). That is, for allAi € P(E), e(/\;A) =
operators that anglempotent Aie(A) (respectivelys (\/; A)) = V/8(A)).

Filters by reconstructiorf2, 4, 26, 27] are a class
of connected filters that are composepéningsand Before defining what a morphological filter is, let us

closings by reconstructigenoted in the followingby  establish the idempotence concept. A transformation
y andg. When applied to a binary image (a concept v is idempotenif when v is applied twice it leaves
equivalentto that of a set), the openings and closings by the first output unchanged. Mathematically, this can be
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expressed ag v (A) = ¥ (A), VA € P(E), or as
v =1v.

Definition. A mappingy is amorphological filter if
and only ify is increasing and idempotent.

In general when we refer thlters we will have the
meaning of the previous definition.

An operatory is anti-extensivéor respectivelyex-
tensive if ¥ <1 (respectivelyy > |), wherel repre-
sents the identity operator (for ale P(E), | (A) =
A). Notice that, for two operatorg; andr, defined
2from P(E) to P(E), the order relationy; < v, (or
respectivelyy; > ;) means thaty1(A) < ¥2(A)

(respectivelyry (A) > yo(A)) for all A e P(E).

Definition. Anopeningy (orrespectively alosing ¢)
is an antiextensive (respectively extensive) filter.

The alternating compositions of an opening and a
closingyy andy ¢ are idempotent; i.e., they are filters,
calledalternating filters

Each morphological operation haslaal operation.
Two operators/; andy, are the dual of each other if
Y1 = 19,1 ¢, wherel ¢ is the complementation oper-
ator, and vice-versa. (For al € P(E), I¢(A) = AS,
where A® is the complement oA.)

Some morphological filters show a robustness prop-
erty called the strong property [20]. Afiltgris strong
if it is both an A-filter (i.e., if ¥ = ¥ (I A ¥))and a
\/filter (i.e., if = ¥ (1 \/ ¥)). Thatis, is a strong
filter if

v=v(1 Av)=v(1\/v)

1.2. Connectivity in Mathematical Morphology

1)

Connectivity is introduced in mathematical morphol-
ogy by the operation that extracts tbennected com-
ponentof a set. As will be seen in this section, those

operators that do not break the connected components

of either the foreground or the background of an image
are callecconnected operators

The Point Opening~y. Connectivity is established
in [24] by means of theeonnected classoncept. A
connected clas§ in P(E) is a subset ofP(E) such
that (a)¥ € C and for allx € E, {x} € C; and (b) for
each familyC; in C, A\; Ci # ¢ implies\/,; Ci € C.
No definition of neighborhood relationships (i.e., no

particular topology) has been assumed Eoiin the
definition of the connected clags

The subclasgy that has all members @fthat con-
tain x (i.e., Cx ={C:x e C e(}) defines an opening
called apoint opening[21]. The point opening of a
point X, denoted by, has as invariant class (i.e., the
class formed by those sets that are left unchanged by
yx) Cx U {#}. Forallx € E, A e P(E)

y(A) = \/{C:C e C <A} ()

The operation y, is therefore idempotent (i.e.,
Yx(¥x(A) = yx(A) or, equivalently,yxyx = ¥x)

and antiextensive (i.eyx(A) < A or, equivalently,
yx < |). Properties satisfied by (A) are:

(@) ¥x € E, i({xh) = {x}.

(b) YA € P(E), VX, ¥y € E, (A andyy(A) are
equal or disjoint.

(c) VA€ P(E), x ¢ Aimpliesyx(A) = 0.

When we associate, for example, the operation
with the usual connectivity iZ?, the openingy (A),

A € P (Z?), can be defined as the union of all paths
that containx and that are included . Figure 3
shows an example ofx(A) wherex belongs toA.

It can be seen that the point openipg simply has
the effect of selecting the connected componenfof
to which x belongs. A simple way to implement the
yx(A) operation is by iterating thgeodesic dilatiorof
the set{x} inside A until idempotence [8, 10, 22].

The dual operation ofy is the closingpx, which is
equaltoE\yx1 ¢(A), forall A € P(E), where\ denotes
set difference. Figure 4 shows a one-dimensional ex-
ample of both dual operationg and ¢y, along with
the pore extraction operation.

X

(a) Input set A (in black) (b) 7= (A)

Figure 3 Connected component extraction. The openiR@A)
extracts the connected componentato whichx belongs.
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|_| | s | | 3
e I t
x1 x2 | [ | [
(a) Input set A 4 - + 3
S e -
| t 2 { 2
x! 4 |2 |2 (3
(b) 7=y (4) | |
{a) Inpat image 1, () Flab wanes of U (fisard
t Figure 5 Flat zones example. For an input gray-level image (a),
x2 part (b) shows its four flat zones, i.e., those regions with a same
(€) paqy(A) function value. Notice that there ateo flat zones with intensity
value 2 (and not one) because pixels with value 2 form two separated
regions.
|
X2 . . . .
() 72y I(A) Definition. LetE be aspace equipped withandT a

complete lattice. The flat zones of a functibnE —
Figure 4 yx, ¢x, 1| one-dimensional example. Notice that T are defined as the largest connected components of
#ro(A) (part () is equal td\ o | “(A). pointsx e E with the same function value.

Notice that the flat zone of pointin setA, is Fx (A) =

The operation that extracts the pore to which a point e (A 1 S(A), A € P(E) [2].

x of the spacé belongs is not the dual operation of the
grain extraction operation. Figure 4(d) shows a pore
extraction operation. For a poirbf E, two equivalent
ways to extract the pore to whiochbelongs are| ¢

or | °p4. In the following, the first wayx | ¢ has been
(arbitrarily) chosen.

Definition.  An operatory is connectedif and only
if it extends the flat zones for its input function.

For the binary case, an equivalent definition of con-
nected operator is that in [26], which applies only to
binary morphology: an operatar : P(E) — P(E)
Connected OperatorsConnected operators belong to is said to be connected if and only if both set subtrac-
a class of operators thabnsiderthe connectivity of tions A\y (A) andy (A)\ A are formed exclusively by
an input setA, A € P(E). If two pointsx, y in E are connected components éfor of its complemenfA°.
connected inA or in A® (foreground and background Figure 6 shows an example.
are regarded symmetrically), then for a connected op-  The previous definition of connected operator, which
erator the paix, y will be connected either in the out-  applies both to binary and gray-level morphology, does
put set or in the complement of the output set. This not establish how each intensity level of an input func-
forces connected operators to process grains and poresion is processed. In addition, notice that growth is not
in an all-or-nothing way. If a grain is removed (i.e., considered in the definition.
the grain is modified) then all its component points Clearly, the class of connected operators is closed
will be removed. Similarly for pores: either they are under the sup, the inf and the composition of con-
filled or they are left unchanged. On the other hand, nected operators [26]. Figure 7 shows that disconti-
non-connected operators process sets without any re-nuities can be introduced by non-connected operators
striction on changes of connectivity from the input set and that they modify the shape of the preserved con-
to the output set. In particular, a morphological non- nected components.
connected operator must only be increasing.

The following definition of connected filter is due to
Serra and Matheron. Let us define first the concept of 1.3. Filters by Reconstruction
flat zone which is defined more generally for functions
rather than for sets [26]. Figure 5 gives an illustrative This section discusses animportant group of connected
example. filters, the so calleéllters by reconstructionFilters by
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o

(a) Input set A (in black) (b) ¥(4)

o

d

(c) A\ ¥(A) (d) ¥(A)\ A

Figure 6. Connected operator example Part (a) shows an inpuk sed part (b) displays the outpyit(A), wherey is a connected operator.
Both set difference#\ v (A) (part (c)) andy\ A (part (d)) are composed only of grains and pores of the inpulAset

-

(a) Input set A (in black) (b) v(A) (7: non-conn. opening) (c) ¥'(A) (7': conn. opening)

Figure 7. Differences between a non-connected and a connected opening. In this example, one of the two grains of (aptude bied(i).
Notice that image (b) shows a discontinuity that does not exist in (a).

reconstruction are defined by means of the concepts(2) A closinge, : P(E) — P(E) is atrivial closing
of trivial openingy, andtrivial closing ¢,, which ap- if forall A e P(E)
peared in [21].

(A) = E, if A satisfies an increasing criterion
Definition. Let E be any space. PV =1A, if A does not satisfy the incrrit.
(1) An openingy.:P(E) — P(E) is atrivial open- Increasing criteria often used to build a trivial open-
ing if forall A e P(E) ing y, or a trivial closingy, are: the area (or number

of pixels, when the space of points is a grid of points),

the length of the projection in a certain direction, a

A, if A satisfies an increasing criterion Minkowski operation (when the space is equipped with

Yo(A) :{Q), if A does not satisfy the incrcrit. translation), etc.
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Definition. Let E be a space equipped wiil. An
openingy : P(E) — P(E) (or respectively a closing
¢ :P(E) — P(E)) is anopening by reconstruction
(respectivelyclosing by reconstructior) if and only if

7=\ v <reSIO o=\ gaocox),

xeE xeE

wherey, is a trivial opening (respectively, is a trivial
CIOSing) (a) Grain G in set Ay (b) Grain G in set Az (A2 = Q)

Thus, the output of an opening by reconstructjon
performed on an input s& is the set formed by all
connected components @éf (grains of A) that satisfy
the increasing criterion of the trivial opening that
is associated witly. The processing preformed by a
closing by reconstructiof can be regarded in a similar
way; for each pord® of an input setA, the increasing e
criterion of g, is applied toE\ P.

Whenever the action gf or of ¢ on a particular flat (c) Pore P in set Ag (d) Pore P in set A4 (A3 = E\ P)

zone (gram or pore) of a point usmg different input Figure 8 Connected-component (c.c.) local operator. A c.c. local
sets must be studied, only the grain (fgror pore (for operator processes each grain independently of the rest of the input
@) of x matters. In [4]filters by reconstruction are  set (sets appear in black, and the spEcis shown). Therefore a
those combinations of opening}sand closingsﬁ by c.c. local operator preserves (or respectively removes) the Grain
reconstruction that are idempotent in A; (part (a)) if and only if it preserves (respectively removes)

in Az (part (b)). Similarly for pores. A c.c. local operator preserves
(or respectively fills) the por® in Az (part (c)) if and only if this
operator preserves (respectively filR)n A4 (part (d)).

E

2. Connected-Component Locality
and Adjacency Stability

(@ (A #0, sy (A) =0 = VB e P(E), x(A) =
¥x(B) 1y (B) = 0.

(0) ¥ (A =0, s (A) # 0 = VBeP(E), yxI “(A)=
yx1€(B) 1 yx ¥ (B) # 0.

The two constraints presented in this paper are intro-
duced in this section. The first one, called connected-
component (c.c.) locality, establishes a limit on which
part of the input can be used for computing the output
of a grain or pore. The second constraint, adjacency ) ] ]
stability, restrains in some way the behavior of adjacent That is, a connected operatpris c.c. local if, for all

flat zones, in particular the switch from grain to pore X € E and for allA € P(E), the fact whether or not
and vice-versa. x¥ (A) is empty or not (i.e., the fact whether or not

belongs toy (A)) depends exclusively op (A) or on

x| ¢(A). Figure 8 illustrates the c.c. locality concept.
2.1. Connected-Component Locality Furthermore, if different input sets possess an identical

grainG, a c.c. local operator will preserve or remove
The concept otonnected-component (c.c.) local op- G in all cases. The same applies to pores. Notice that
erator, which is defined next, embraces bothincreasing v, can be increasing or notin the c.c. locality definition
and non-increasing operators that treat each grain andand in Proposition 2.
pore independently of the rest of the input. For a c.c. local operatay, we can deduce, from

the definition, that: (ayx(A) # @, ¥ (A) = 0 =
Definition. Let E be a space equipped wiik. An W (A) = vy(A) = @ (part (a) of the definition
operatory : P(E) — P(E) is said to beconnected- whenB = y4(A)); and (b)yx(A) = @, yx¥ (A) # 0
component local(or c.c. loca) if and only if, VA € = ox¥(A) = Yox(A) = E (part (b) of the defini-
P(E),Vx € E tion whenB = ¢« (A)). Thus, a c.c. local connected



92  Crespo and Schafer

P1

E E

(o

A
G2

(a) Input set A (in black) (b) ¥(A)

Figure 9 Invariant class of a c.c. local filter. If a sAtis invariant
underyr as shown in the figure (i.eA = ¥ (A)), then its grains are
also invariant undey:. The same applies to the set difference of the
spaceE and each pore. Thus, in this case it is known theB1) =

G1, ¥(G2) = G2, ¥ (E\P1) = E\Py, andy (E\Pp) = E\P>.

operator is one that

(1) Fills grains and/or remove pores.
(2) Treats each grain or pore independently from the
rest of grains and pores.

Notice that, because of item (2), if a $tis invariant
under a c.c. local operatar (i.e., ¥ (B) = B), then
each grain oB is also invariant undey and, for each
pore P of B, the set formed bye\ P is also invariant.
Figure 9 shows an example. It is clear that in the c.c.
locality definition that grains and pores are treated sym-
metrically (see also items (1) and (2) above). There-
fore,the dual of a c.c. local operator is duale., if ¢
is c.c. local, therl ¢y 1 ¢ is also c.c. local.

The following proposition is a direct consequence of
the definitions ofy andg.

Proposition 1. The openingr and the closingy by
reconstruction are c.c. local filters.

(The proof of Proposition 1 is obvious from the defini-
tions of y andg.)

The following proposition states when a c.c. local
connected operator can commute with the filigrand

Vx-

Proposition 2. Let E be a space equipped wit If
¥ : P(E) - P(E)isac.c. local connected operator
then

(a) If ¥ is extensivey oy = px .
(b) If ¢ is antiextensivey yx = yx .

Proof. Let us prove part (a) (proof of part (b) is sim-
ilar). Let A € P(E).

(i) Casex € A. We have that: (apx(A) = E,
and thereforef ¢y (A) = E; (b) x € ¥ (A), and
ox ¥ (A) = E.

(i) Casex ¢ A. Then,px(A) = E\yl°(A). Since
Yl C(A) = w I S(E\yx | ©)(A), thenyr (extensive)
fills or leaves unchanged the pores (which are iden-
tical) of x in A and in E\yx1°(A) (definition of
c.c. local operator). If the pores are filled, then
Yox(A) = E = o (A). Otherwise o (A) =
E\l S(A) = o (A). O

From Proposition 1, together with Proposition 2 we
have as particular cases that, = yxy (presented in
[26]) andgex = ¢x¢.

The next proposition states when the combination of
c.c. local connected operators is c.c. local.

Proposition 3. The class of c.c. local connected op-
erators is closed under the sup and the inf operations.

Proof: Let A € P(E). Let us prove the proposi-
tion for the sup operation (the inf case is analogous).
Let {y1, ..., ¥n} be a family of c.c. local connected
operators.

(i) Casex € A, x & \/i Ui (A). If X & \/i ¥i (A),
thenx & v (A), Vi. Since alkj;, Vi, are local, then
VB € P(E) : yx(B) = yx(A), we havey i (B) =
B, Vi = vV, ¥i(B) = 0.

(i) Casex ¢ A, x € \V;¥i(A. If x e V,¥i(A),
thendig, X € ¥;,(A). Sincey;, is c.c. local, then
VB € P(E):»1%B) = yI°(A), we have that
Y¥io(B) # ¥ = w(\/; ¥i(B)) # 0. U

However, the sequential composition of c.c. local
operators is not c.c. local, in general. Nevertheless,
there are some cases in which the sequential com-
position of c.c. local operators is c.c. local, as stated
next.

Proposition 4. The sequential composition of exten-
sive c.c. local connected operators is c.c. locd
well as the sequential composition of antiextensive c.c.
local connected operators.

Proof: Let us prove the extensive operator case (the
anti-extensive operator case is analogous). Aet
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P(E). Lety; andy, be two extensive c.c. local op- 2.2. Adjacency Stability

erators, and let us consider the sequential composition

Y1 (the proof considering thé 1y, operator, and  The origin of the adjacency stability concept, which ap-

more operators, would be similar). peared firstin[5], was an study of the strong property of
An extensive operator can only fill pores. be# A, the connected operator class. This can be observed by

X € Y1 (A) = either (a)x € ¥ (A), andyr; hasfilled comparing the strong property Eg. (1) with the equation

the pore ofx in A; or (b) X ¢ ¥1(A), andyr, has filled that defines the adjacency stability below. The restric-

the pore ofx in ¥1(A). In both cases, the pore filled tion that the adjacency stability equation poses does not

is the pore ofx in A, because ix ¢ ¥1(A), then only affect whether or not the strong equation holds,
el S(A) = wI%Y1(A). Therefore,VB:yI%(B) = but also has implications regarding the idempotence
x| ¢(A), thenx € 1 (B). O or non-idempotence (weaker condition than the strong
property) of an operator, as will be seen in the next

section.
The alternating filter by reconstructigiy is not c.c. Let us define the concept of adjacency between

local (notice that the class of c.c. local operators is not two sets, which formalizes the intuitive notion of
closed under sequential composition). The fact that a contiguity. Two flat zonesF(A) and Fy(A) in a
grain G of the input set appears in the output is not a space E (equipped withy,) are said to beadja-
consequence only @& but also of its adjacent poresin  centif Fx(A) \/ Fx (A) = yx(Fx(A) \/ Fx (A)), i.e., if
the case thaG has been removed by. An example  Fx(A)\/ Fx(A), for all A€ P(E), is a connected set.
is shown in Figure 10. (Notice thatFy = y«x(A) V ¥xI¢(A).) Theadjacent
flat zone®f x in an input setA, symbolized byDy (A),
are the pores (ik € A) or the grains (ik ¢ A) that are
adjacent toF (A), i.e., Dx(A) = V/ {Fe(A) X €
J G L E, Fv (A V Fx(A) = yx(Fe (A Fx(A)}. An ex-
ample of the adjacent flat zones of a point is shown in
Fig. 11.
The concept of adjacency stability is established
__________________________________________________________ next. This requirement concerns how adjacent grains
(b) 3(4) and pores are treated by an operation.

Definition. Let E be a space equipped wiik. An
-------------------------------------------------------------------------------- operatony : P(E) — P(E) isadjacency stablef, for
(c) 7(4) allxe E

G Vx(l \/1//) = Vx\/yx‘//- 3)

(d) Input set B

Notice that whereagy, does not commute in gen-
eral under the sup, it commutes always under the inf:

)/x(/\i Yi) = /\i Vx Vi [2]

(e) %(B)
(f) 3%(B)
Figure 10 Example of sequential composition of c.c. local opera-
tors. This figure shows that the sequential composition of c.c. local
operators is not, in general, c.c. local. Consider the alternating filter
e - - ) x y x y
¢@y. Bothy and¢ are c.c. local as stated in the text. However, (a) Tnput set A (in black) (b) Da(A) (in black) (¢) Dy (4) (in black)

¢y is not. Imagine thaf removes the central grai@ in A andB

(identical grain). If¢ fills the resulting pore iy (A) (see part (b)) Figure 11 Adjacent flat zones of a point: (a) input s&t(set in
but not the one iy (B) (see part (e)), we have th@tis included in black); (b)Dx (A): adjacent flat zones of, and (c)Dy (A): adjacent
@y (A) (part (c)) but is not ingy (B) (part (f)). flat zones ofy.
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The consequences of adjacency stability ontherela- The adjacency stability Eq. (3) treats grains and
tionships between the grains of the input and the output pores symmetrically. We note this fact because only

are stated in the next proposition. the grain extraction operatiop (and not its dualy)
is employed in the definition of adjacency stability. The
Proposition 5. Let E be a space equipped with. reason is that what matters is the switch from grain to

A connected operataf : P(E) — P(E) is adjacency pore and vice-versa. Therefore either in the input set
stable if and only iffor all A € P(E), the grains of or in the output set we study only grains and, nev-

¥ (A) are a union of the ertheless, by doing so we study as well their adjacent
pores. This symmetrical treatment can be observed also

() grains of A in Corollary 1. Thus we can state thifie dual of an

(i) pores of A surrounded by grains (). adjacency stable operator is adjacency stable

Proof: Let A € P(E). Let us suppose that is an
adjacency stable operator and that there exists a grair|
G of ¥ (A) that contains a pore oA that is not sur-
rounded by the grains oA included iny (A). There-
fore, there exists a grai@’ of A that is not included

in ¥ (A) and that is adjacent t6&. Then, x € G’ =
VA =GV P # WV w)(A =G =

¥ is not adjacency stable. A contradiction has been

reached. O x x
(a) Input set A (in black) (b) ¥(A) (¢: adjacency unstable)

Corollary 1. Let E be a space equipped with. If
a connected operataf : P(E) — P(E) is adjacency
stable thenfor all A € P(E)

@) ¥ (A) =0, yx (A # 9 = Dx(A) = ¥ (A).
(0) ¥x(A) # @, yxir (A) =0 = Dx(A) < 1Y (A).

The grain-pore relationship is illustrated in Fig. 12. N x
For the adjacent unstable case displayed in (©) 72 (A) \ 1= 9(4) (@ 7 (I \ = 9)(4)
Fig. 12(b), Fig. 13 shows that the adjacency stabil-
ity equation does not hold for the point markedxas  Figure 13 Adjacency stability equation. Parts (a) and (b) display
(this point is not the only one). Notice that the fact respectively an input sei and the outputy (A), wherey is a con-

that tor beh di tabl nected operator. The adjacency stability equation does not hold,
al an operalor behaves as an adjacency stable Opéince there exists at least one paingin this case there are clearly

erator for some inputs does not imply it is adjacency more than one: all the points that compose the pore to whicé-
stable. The adjacency stability equation must hold for longs in part (a)) in whichx (A) \/ v« (A) (part (c)) is not equal to
all A P(E)and forallx € E. (I wx ) (A) (part (d)).

(a) Input set A (in black) (b) Output adj. unst. op. (¢) Output adj. st. op. (d) Output adj. st. op.

Figure 12 Adjacency stability. Notice that a pore of the input sgtas become a grain in (b) but that it is not surrounded by graidstb&it
appear in (b). This situation does not happen in cases (b) and (c).
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The fact that the class formed by adjacency sta- (i) /\; ¢i: Similarly as in (i).
ble operators is closed under certain operations is (iii) oy1: Let us suppose that,vr; is not adjacency

stated next in Theorem 1. The following lemma is stable. LetG be a grain ofA\yy1(A) that is
needed. connected to a grain af,v1(A) (notice thatG is
a grain of A). Because); and, are connected
Lemma 1. Let E be a space equipped with. A operators, eitheG’ > G, whereG' is adjacent
connected operatoyy : P(E) — P(E) is adjacency of ¥»¥1(A), must have appeared ifn(A), and
stable if and only iffor all A € P(E), ¥(A) and hencey, is non-stable, oG was not iny(A)
A\ (A) are not connected to each other. and therefore it was adjacent to a grain/af A),

in which case/; is not adjacency stable. In either

Proof: case, a contradiction has been reached.

O
() v (A andA\y (A) are notconnected to each other:
On the other hand, the combination of an adjacency

W(A), x € A\U(A) stable and an adjacency unstable operator is in general
Vx (A \/ I/’(A)) = gxtﬁ(A), Xtﬁ V(A adjacency unstable. However, there are cases in which
, otherwise

the result is adjacency stable: obviously, the inf (or

) respectively the sup) of an adjacency stafbleand an

. That s, (AV ¥ (A) = 1 (A) V 1 (A), VX, adjacency unstable onfgns:is stable whemys < Yunst

(i) vy isstable: Let us suppoge(A) andA\y (A) are (respectivelyiis: > Wuns)-
connected to each other, i.e., there exists at least” o complemgntation operattfis clearly an adja-
one grainG of y(A) and a grainG’ of AV (A) cency unstable operator. In fact, the operafois the
that are adjacent (becaugeis connectedG/ IS “prototype” of adjacency unstable operator because it
agran ofA). Letx e G, Then, (G V G) = switches all grains to pores and vice-versa. Thus, the
GV G > yx(G) V(G) = yx(G), andyx(AV adjacency stability Eq. (3) does not hold for any point

V(A) =GV G > (AN yi (A =G. The of the space (assuming the spdeés a connected set,
operatoryr would be adjacency unstable, and a i.e., thatE = »(E), x € E). Forallx e E and for all
contradiction has been reached. U A € P(E)\{#, E}

Theorem 1. The class of adjacency stable connected

operators is cIos.e'd under the suhe inf and the se- yx(l \/ |c)(A) _ A\/ AC—E #
quential composition operations.

Proof: Let us study each case separately. Let (A \/ I S(A) = Aor A°

{v1, ..., ¥n} be a family of adjacency stable opera-

tors. The case for the composition will be proved for ~ Notall adjacency unstable operators are notincreas-
the two operators case, and by induction this result ap- ing (as the complementation operat6). The median
plies for the composition of an arbitrary number of op- 0perator is an example of an increasing adjacency un-
erators. From Lemma 1, it is known that if a connected stable operator [2, 5]. Notice that the median operator
operatory : P(E) — P(E) is adjacency stable, then can be expressed as a sup of erosions [13, 16] (or an

A\ (A) is not connected tgr (A), A € P(E). inf of dilations) but that some of these erosions are not
antiextensive and are adjacency unstable. Therefore
(i) V; ¥i: Let us suppose thaY/; ¢; is not ad- the median operator is a sup of erosions but is not a sup

jacency stable. LetA € 7P(E) such that of adjacency stable operators (an operation that must
Ix: yX(A\/i Wi (A)) # (AN »(\V; ¥i (A). be adjacency stable, from Theorem 1). An example is
If G is grain of A such thaiG is not in\/; v (A) shown in Figure 14.

but G is connected to a grai’ of \/; ¥i (A), The next theorem establishes the adjacency stability
then clearlyG is connected to a certain gra@’ of all extensive and antiextensive operators, increas-
of ¥i,(A), wherey;, € {y;}, because the grains ing or not. This theorem is followed by a corollary

of \/; ¥i (A) are composed of grains #; (A)}. that guarantees the adjacency stability of any com-

However, this implies thaf;, is adjacency unsta-  bination of openings and closingsy, connected or
ble. A contradiction has been reached. not.
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Proposition 6. Lety be any operatgradjacency sta-
ble or not. The operators

=y A\l and yo=y\/I

are adjacency stable.

Proof: From Theorem 2, sincé; is antiextensive
andv; is extensive. O

(a) Input set A (in black) (b) Output of median operator

Figure 14 Adjacency unstability of the median operator. For the Theorem 3. Let E be a space equipped wifh.
input displayed in part (a), the 3 3 neighborhood median operator ANy unstable connected operatpr. P(E) — P(E)
gives part (b) as output. Since (b) is the complement of (a), it is clear admlts a smallest majoramr and a greatest mino-
that the adjacency stability equation does not hold for any point of rgnt W that are connected and adjacency stable. Let

the space. (The spaceZ$ and four-connectivity is assumed.) A € P(E). The expressmns of respectlve,l/yandijf
are
Theorem 2. Extensive and anti-extensive mappings R
are adjacency stable. vA = \/ w (WA) \/ A) 4)
XeY(A)
Proof: The proof is obvious from Eg. (3). VA = XQA) (Px( (A /\ A) ©)

(i) ¢ is extensive ¢ > 1): the left hand side of ) . R
Eq. 3) isyx(I \/ ¥) = »; and the right hand Proof:' We will prove only tAhe. majorany case (ex-
side, i \V/ ¥ = Wi pression (4)). Thfa _operato,t/ is clearly connected.
(i) ¥ is antiextensivey < 1): the left hand side of ~ From Lemma 1, it is also adjacency stable because,
Eq. 3)isyx(I \/ ¥) = yx; and the right hand side, VA € P(EB), by con_strugtlc_)mﬁ(A) IS not conpected
w Vv = . O to A\w(A). In addition, ¥ is the smallest adjacency
stable majorant ofs :  adds toy (A) all grains of A
A consequence of the previous result (and of thatdid not belong tgr(A) but that were connected to

Theorem 1) is thatiny composition of openingg ¥ (A), and each added grain @&fis necessary for the
and closingsy is adjacency stableClearly, erosions  adjacency stability ofy. m|

and dilations are also adjacency stable if they are anti-

extensive and extensive, respectively. If ¥ is adjacency stable, expressmns (4) and (5) give

In Figure 2, only the first, the second, the fourth, the clearly thatyy = ¢ = 1. Notice thatyy and+ are
seventh and the eight are outputs of stable filters. In all not necessarily extensive nor anti-extensive, unfike
other cases, Eq. (3) is not true for all Thus, in Fig. 2 and v, of Proposition 6. This is an expected result
all outputs that do not satisfy the stability equation since there exist adjacency stable operators that are not

cannot be obtained using openingsand closingsp extensive nor anti-extensive suchggs, y ¢, y ¢y, etc.
by reconstructionWe have discovered thatopenings  (which are all stable from Theorem 2).
and closing® by reconstructiortannotcompute any As an example of how the c.c. locality and adjacency

connected operation. Notice that this also applies to stability concepts can be employed, let us use them to

any kind of openings and closings: It is not possible prove, in the following example, the classical theorem

to compute any operation by means of openings and that establishes the strong-property of the alternating

closings. filters by reconstructiopy andy ¢. This theorem is a
The following proposition and theorem state how to simpler version of the theorem by Matheron and Serra

build an adjacency stable operator from an unstable that appeared in [21].

one. Proposition 6 gives an obvious result, which is

followed by Theorem 3 that establishes the smallest ad- Example. Prove that the connected alternating filters

jacency stable majorant (and minorant) of a connected ¢y andy ¢ are strong, wher¢ and¢ are respectively

operator. an opening and a closing by reconstruction.
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It is known that ¢y is an A-filter: ¢y = Proposition 7. Let E beR? or Z? equipped with
@7 (1 A ¢7) [20]. Let us show thapy is also a\/- . If a c.c. local operatory : P(E) — P(E) is
filter. translation invariant theny A € P(E),Vx € E

Let Abeaset. Sincgisc.c.local (Proposition 1), we
have, from Proposition 2, thgt=\/, »x7 =\, Y x. @) Y (A) £, y i (A) =B = ¥B e P(E), yx Tarx

Therefore, g7 (1 V@7) = @(Vy71)(1V é7). (A) = 0 (B), X' € Tuy(A): yue ¥ (B) = 0.
From Theorem 2¢7 is adjacency stable and (from ) (A = 0, (A # # = V¥B e P(E),
Lemma 1)@y (A) and A\¢y(A) are not connected. e Tark | S(A) = pol®(B), X € TupxlS(A):
Then,pyx (1 \/ ¢7)(A) is equal to Ve (B) # 0.
{JZVX(A) =0, xeAgyA). Proof: Let us prove part (a) (the proof of part (b)
Y@y (A, X egy(A). is similar). LetA € P(E). w(A) # 0, i (A) =
_ _ N o @ = yTuy(A) = @, sincey is translation invari-
Using again Proposition 2,\/,7yx@7 = ant. Because is c.c. local, then T,y (A) = @ =
Vyrxvgy = ygy. Finally, itis known (from [26])  vB € P(E): 1 (B) = e Tax(A), X' € Tarx(A), =
thaty ¢y = ¢y becaus@y < y¢. v (B) = 0. O

In_the example ab_ove the adjacency stability equation Clearly, the opening is not translation invariant:

arises when studying the strong property of an operator. v To # Tovx. The reason is that, obviously, the open-
ing yx depends o®. However, an important case arises

3. Translation Invariance Operators when, given a certain grai@, the openingx satisfies
that, after translating the grainxfbelongs to the trans-

Inthis section we will discuss translation invariance and lated grainyx recovers exactly the translated grain. If

study its relationship with connectivity, in particular ~this is the case, we will say thgj is pointwise trans-

with connected operators. Notice that c.c. locality, lation invariant[3], whose definition is stated next.

as defined previously, does not assume any translation

invariance. Definition. Let E beR? or Z? equipped withy,. The
openingyy is said to bepointwise translation invari-

. ) o ant if and only if, Vo, x € E, VA € P(E)

3.1. Translation Invariance and Connectivity

Let us denote the translation operator hy Wherex is Tayx(A) = v Tax(A), W€ Tup(A. (6)

the translating vector. We will restrict our discussion to

the spaceR? or Z2 (whereR andZ denote respectively

the set of real numbers and the set of integers). The

translation of a sefA by « is

As discussed in [3], ifx is not pointwise translation
invariant, therit can be impossible to build certain c.c.
local translation invariant operatorsAn example of
an openingyy in Z2 that is not pointwise translation
invariant arises when we employ 8-connectivity at the
left side of the space and 4-connectivity at the other
side. This is an unusual but possible choice; notice
thatyy is well defined for all points in the space (even
for those at the boundary of both sides).

Te(A) = {X:X—a € A}.

Definition. Let E beR?orZ2. An operaton) : P(E)
— P(E) is translation invariant if and only if, for all

A€ P(E)
YT (A =Toy (A). 3.2. Restriction to Subspaces
We can easily deduce that#yx = ¥ T,yx (from The c.c. locality and adjacency stability requirements
the translation-invariance definition), and thatx it can greatly restrict what an operator can do. This is
A T (E\IC(A) = v (EV Tuwxl ¢(A)) (taking particularly true when an operator, defined on a cer-
into account that, for alt, T,(E) = E, whereE is R? tain spacek, is regarded together with itestriction

orZ?). to subspaces oE. This is in fact quite common.
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We want in general that when a grain has been re-
moved or a pore has been filled in a certain space, the
same result could be reproduced for other subspace:
that contain the grain or pore. Thus, edeh < E
defines a “new” operator. We will define precisely,
for a c.c. local operator defined on a spdegits
restriction to a subspace @& since some theoreti-
cal results will be presented regarding it. In order
to simplify the problem, only c.c. local translation-
invariant operators are treated. Notice that, as discusse( (2) Input set A (in black) (note: A € P(E), 4 € P(E'))
in Section 3, it can be impossible to define certain
c.c. local and translation invariant operatorsyjf
does not satisfy the pointwise translation invariance

requirement.
Definition. Let E be a space equipped with and let

=
¥ :P(E) — P(E) be ac.c. local connected operator.

The subspace restricted classf v, denoted byCy,
is the set of operatorg; : P(E)) — P(E)), El < E,
that, for all A € P(E/)

(@) yx(A) # D = iy (A = py(A) /\ Ei/'
(0) (A =9 = i (E"\yxl °(A) = Y (E\yxl °(A))

N E.
Figure 15illustrates this concept. Notice thanhustbe

(b) “Grain input” to v’ (c) “Grain input” to ¥
included inE/, the domain definition of; . In addition, F

it can be noticed that the previous definition applies to

both translation-invariant and non translation-invariant E
operators.

Most often, ¢ and any element o€, are con-
sidered usually as the same operator. For example,rigyre 15 Subspace restriction of an operator. In (a) we can see
when we define and implement an erosion the fact the spaceE, a subspac&’ and an input sef (A < E’ < E). The
that a particular space mtached to that operation symbolvs denotes a c.c. local operator defined®nandy’ is its
is usually disregarded. Nevertheless when such an ero-Testriction to the subspade’. Parts (b) and (c) show the “inputs”

. . . _ that are considered by’ (in (b)) and by (in (c)) when a grairG
ston 1s applled to another space (We employ, for ex is processed (in this case = G). The definition of the subspace

ample, an image of di_ﬁe_ren_t si_ze), the op_erat_ion IS, restriction of an operator, implies th& will be preserved (or re-
strictly, different. The distinction is relevantin this pa- spectively removed) by’ in E’ if G is preserved (or respectively
per, and this is the reason why a precise definition of removed) by in E. Parts (d) and (e) show the pore processing case.
the restriction of an operator to a Subspace has beenThe poreP will be preserved (or respectively filled) by’ in E’ if

. P is preserved (or respectively filled) lpyin E.
given.

_The following proposition relates the adjacency sta- pyqf:
bility of each member of a clagk, with the extensivity

(d) “Pore input” to ¥’ (e) “Pore input” to v

and anti-extensivity ofy. (i) The implication in the leftwards sense is true from
Theorem 2.
Proposition 8. Let E beR?orZ?, andlety beac.c. (i) Let ¢ be a non-extensive and a non-antiextensive
local connected translation-invariant operator defined operator, and leG and P be respectively a grain
on E. Then and a pore that are variant undgr Since v
is translation-invariant (and sindg is eitherR?
Vi € Cy, i is adjacency stables v is extensive or Z?), we assume thaB and P are chosen to

or anti-extensive be disjoint and adjacent to each other. Let us
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call Ej, the subspace oE formed by G\/ P. However,y is not c.c. local (neithepy nory ¢ in (7)
Then, the restrictiony;, of ¥ to Ej, is adjacent  are c.c. local). Notice that the cage= (1 \/ 7) A ¢
unstable: (I \/ ¢¥')(G) = G\/P = E, # (which is self-dual, idempotent and c.c. local) is equal
(G yx¥(G) = G or P. O to the identity operatok.
A possible mistake could be to think that if there
Corollary 2. If ¥ is a c.c. local connected trans-  exists a certainy; e C, that is not adjacency stable,
lation-invariant operatorthen thenyr would be adjacency unstable. It is clearly un-
true when the operataf is not translation invariant,
but it is also untrue when it is. An additional condition
is that there must exist a way to place at least one vari-
ant grain and one variant pore adjacent to each other
in the spacekE of definition ofy. Figure 16 gives one
example in which this is not possible and another one
Vi € Cy, ¥ is adjacency stable> ¢ is an opening in which it is. Figure 16(a) and Fig. 16(b) refer to the
y or a closingg by rec. case of a connected translation-invariant operétog
that removes (or respectively fills) grains (respectively
Corollary 2 and Corollary 3 have important conse- pores) that have a circular shape and a certain area. The
quences. The first one shows that, if idempotence is restrictiony,, . of the operator t&E’ (see Fig. 16(a)),
desired for all members df,, wherey is a c.c. lo-  whereE’ is the union of a variant graiG and a vari-
cal translation-invariant operator, th¢rmustbe adja-  ant poreP, is clearly adjacency unstable (in Fig. 16(a),
cency stable. This result was followed by Corollary 3, we would havey/,.(A) = ¥,.(G) = 1%G) = P,
inwhichwe find the class gf andg as the onlytypesof  and the adjacency stability equation would not hold for
connected filters that form classes whose elements  anyx e E’). However, the operataf. is not adja-
can satisfy both the c.c. locality and the adjacency cency unstable because a circular grain and a circular
stability conditions. pore cannot be placed adjacentlyfn Fig. 16(c) and
In the next Corollary 4, the last one of Proposition 8, Fig. 16(d) refer to the case of another operaitqy, de-
the self-duality concept is linked to idempotence. An fined onE, that removes (or respectively fills) grains
operatory is self-dual when) = [y 1°. (respectively pores) that are square and that have a cer-
) tain area. In this case, not only some subspace restric-
Corollary 4. If ¢ is & c.c. local connected trans-  jons are adjacency unstable (in Fig. 16(c), in which
lation-invariant operator then the subspacg” is composed of a variant gra® and
. 3 _ ; a variant pore?’, we would havey/ (B) = ¢, (G') =
v i:jser?weplgti%? vo# 1= 3 e G thatis not I = P wherey,is the restriction c;]f/fsqto E”)qbutalso
the operatoi/sqitself. As shown in Fig. 16(d), variant
Therefore, the c.c. local treatment of grains and 9rains and variant pores can be placed in the sface
pores (as defined in the c.c. locality definition) can 2djacent to each other (in Fig. 16(d), the whole space
be non-compatible with idempotence when both pores E has been partitioned into variant grains and pores).
and grains are processed symmetrically. However, 1he output given byysqwhen the setin Fig. 16(d) is
Corollary 4 does not imply the impossibility of build- ~ the input would be its complement. _
ing self-dual morphological filters, besides the trivial  Similarly to the case concerning adjacency stabil-
identity operatorl case, whose subspace restrictions 1tY: the existence off; € Cy that is not idempotent
are filters as well. Thenorphological centeis a self- ~ d0€s not imply thai is not idempotent. (Notice that,
dual morphological filter [24] that can satisfy that its ©n the other hand, implications in the other sense do
subspaces restrictions are all idempotent. Neverthe-N0t méan anything: if is, for example, idempotent
less, it is not possible, as stated in Corollary 4, that then obviously there exists at least oftec Cy thatis
the self-dual morphological center be c.c. local. For idempotent becausg < Cy.)

¥ is adjacency unstable> 3y; € C, that is not
idempotent.

Corollary 3. If ¢ is a c.c. local connected trans-
lation-invariant filter, then

example, the operator Previous corollaries apply only to c.c. local oper-
ators. However, they have implications as well for
~ = - ~ -c.c. local operators since, when a class of oper-
¥ = (l soy) 7¢ (ry ~ honcc . W
\/ /\ ators is established, c.c. locality is normally a char-

is aself-dualfilter, and all elementsip are alsofilters.  acteristic desired for at least some components of the
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E E
(a)Set A (A=G; E'=G\/ P, A< E' < E) (b) Impossible case
G’ B
B
E . .
(c)Set B(B=G'; E" =¢' V P'; B<E'"<E) (d) Possible case

Figure 16 Variant grains and pores. ¥ is a c.c. local connected translation-invariant operator, defindg] ¢mat removes (or respectively
fills) grains (respectively pores) that have a circular shape and a certain area, then its restrietienadjacency unstable (see part (a)). We
would havey/;.(A) = ¥eirc(G) = 1 ¢(G) = P, and the adjacency stability equation would not hold forary E"). However,ycirc would not

be adjacent unstable because it is not possible to place any pair of adjacent grains and pores adjacent to edelfpahebi). On the other
hand, Ifysqis a c.c. local connected translation-invariant operator, definet, inat removes (or respectively fills) grains (respectively pores)
that are square and that have a certain area, then both its resnﬁgg‘imn E” is adjacency unstable (see part (c)), similarly to the cagiqf,
andysq. As shown in part (d), it is possible to place variant grains and pores adjacent to each other in tte 8pgdg the whole spac&

has been partitioned into variant grains and pores).

class. Notice that, in practice, the c.c. local case is ficient but not necessary (see, for example, the proof
most commonly used. Thus, when we want to build of Proposition 8). We have used it in this section be-
a class of filters (i.e., idempotence is desired for all causethereasoningwithtranslation-invariant operators
class members) adjacency stable operators should bés simplerthan withthe more general case. In part (i) of
used if c.c. locality is desired for some operators of the Proposition 8y does not need to be translation invari-
class. ant, rather it must be true that there exists at least one
Regarding the translation-invariant requirement in variant (under)) grainG and one variant por€ that
the previous theoretical results, this condition is suf- are adjacent (i.ex(G\/ P) =G\/ P,x € G\/ P).
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