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Abstract. A classifier is said to have good generalization ability if it performs on test data almost as well as it
does on the training data. The main result of this paper provides a sufficient condition for a learning algorithm to
have good finite sample generalization ability. This criterion applies in some cases where the set of all possible
classifiers has infinite VC dimension. The result is applied to prove the good generalization ability of support
vector machines by a exploiting a sparse-representation property.
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1. Introduction

I consider the classical problem of learning a classifier from examples which can be for-
malized as follows: LetZi = (Xi ,Yi ), i = 1, 2, . . . be iid random variables taking values
in Z = X × {−1,+1}. The problem is predictingYl+1 givenX1, . . . , Xl+1 andY1, . . . ,Yl .

The solution to the problem is a mapL :Z l → F , whereF is a space of classifier
functions, i.e., eachf ∈ F is a function f :X → {−1,+1}. Thus the prediction isY∗l+1 =
fL(Xl+1) where fL = L(Z1, . . . , Zl ).

The quality of the classifierfL may be measured using its expected error rate (also called
expected risk):

R= P(Y∗l+1 6= Yl+1).

The solutionL is usually geared toward finding a function which has low empirical error
rate (also called empirical risk):

Remp= 1

2l

l∑
i=1

| fL(Xi )− Yi |.

Therefore, it is often desirable to be able to obtain bounds for the difference between the
empirical and the expected error rates. The behavior of the difference will depend on the
underlying, unknown probability measure. The term generalization ability is used to describe
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the worst-case behavior of the difference between the empirical and expected error rate for
a specific algorithm. The smaller the probability for a large difference, the better is the
generalization ability of the algorithm.

One mapL commonly used is

L(Z1, . . . , Zl ) = arg min
f ∈F

l∑
i=1

|Yi − f (Xi )|.

This is known as the Empirical Risk Minimization (ERM) method. It has been shown that
the generalization ability of the algorithm can be determined by using the VC dimension
of the set of functionsF (Vapnik, 1998).

Other learning algorithms use maps of the form

L(Z1, . . . , Zl ) = arg min
f ∈L̃(Z1,...,Zl )

l∑
i=1

|Yi − f (Xi )|,

whereL̃ is an auxiliary map̃L : Z l → 2F . I call this type of algorithms Restricted Empirical
Risk Minimization (RERM) rules.

2. The main result

The following theorem guarantees the generalization ability of certain learning algorithms
even whenF has an infinite VC dimension:

Theorem 1. Denote

L̄(z1, . . . , z2l ) =
{
L
(
zi (1), . . . , zi (l )

)
: the i( j )’s are l distinct indices in the range

1, . . . ,2l
}
.

If

sup
z1,...,z2l∈Z

|L̄(z1, . . . , z2l )| = c(l ),

then

P(|R− Remp| > ε) < 2c(l ) exp−(lε2− 2ε).

Proof: Since for any Binomial variable,B, P(B > EB+ 1) < 0.5, it is enough to bound

pε′ = P

(∣∣∣∣∣ 1

2l

2l∑
i=l+1

| fL(Xi )− Yi | − Remp

∣∣∣∣∣ > ε′
)
,

whereε′ = ε − 1
l . This is done by conditioning on the values ofzi , i = 1, . . . ,2l and then

taking the expectation over the different possible orderings.
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To simplify the formulas, I use below1 f (z) as shorthand for

1

2
| f (x)− y|,

wherez= (x, y). Thus1 f (z) is either 0 or 1, and

pε′ = E
1

(2l )!

∑
σ

1

(∣∣∣∣∣ l∑
i=1

1 fL
(
Zσ(i )

)− 2l∑
i=l+1

1 fL
(
Zσ(i )

)∣∣∣∣∣ > lε′
)
.

Here, as below,
∑

σ means summing over all permutations of the numbers 1, . . . ,2l .

pε′ ≤ E
1

(2l )!

∑
σ

1

(
sup

f ∈L̄(Z1,...,Z2l )

∣∣∣∣∣ l∑
i=1

1 f
(
Zσ(i )

)− 2l∑
i=l+1

1 f
(
Zσ(i )

)∣∣∣∣∣ > lε′
)

≤ E
1

(2l )!

∑
σ

∑
f ∈L̄(Z1,...,Z2l )

1

(∣∣∣∣∣ l∑
i=1

1 f
(
Zσ(i )

)− 2l∑
i=l+1

1 f
(
Zσ(i )

)∣∣∣∣∣ > lε′
)

≤ E
∑

f ∈L̄(Z1,...,Z2l )

1

(2l )!

∑
σ

1

(∣∣∣∣∣ l∑
i=1

1 f
(
Zσ(i )

)− 2l∑
i=l+1

1 f
(
Zσ(i )

)∣∣∣∣∣ > lε′
)

≤ c(l ) exp−lε′2

≤ c(l ) exp−(lε2− 2ε).

The bound for the fraction of permutations giving a difference greater thanε′ was calculated
by Vapnik (1998, Sec. 4.13). 2

The proof above follows the argument of Theorem 4.1 of Vapnik (1998) which deals with
the generalization ability of ERM algorithms. The main difference is the reference to the
random set̄L(Z1, . . . , Z2l ) rather than to a fixed set of functions. Two variants of the result
stated in Theorem 4.1 of Vapnik (1998) are Theorem 4.2 of Vapnik (1998) and the main
result of Devroye (1982). Both can be adapted and proven for the setup here in a manner
similar to that of Theorem 1. The first variant gives better bounds when the empirical error
rate is small, and the other gives a better rate of convergence whenc(l ) is polynomial.

The next result follows immediately from Theorem 1:

Corollary 1. For maps L of the RERM type, the bound of Theorem1 holds provided that

sup
z1,...,z2l∈Z

| ¯̃L(z1, . . . , z2l )| = c(l ),

with

¯̃L(z1, . . . , z2l ) =
⋃

i (1),...,i (l )

L̃
(
zi (1), . . . , zi (l )

)
.

where the i( j )’s are l distinct indices in the range1, . . . ,2l.
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Example(r -sparse rules). Corollary 1 can be used to obtain a non-trivial generalization
property for any rule of the RERM type whereL̃ is of the form

L̃(z1, . . . , zl ) =
{

fzj (1),...,zj (r ) : j (i ) ∈ {1, . . . , l }, i = 1, . . . , r
}
,

since for any mapL of this type,| ¯̃L(z1, . . . , z2l )| ≤ (2l )r . Below, I refer to such rules as
sparse, orr -sparse rules.

Similar bounds for sparse rules were obtained by Littlestone and Warmuth (quoted in
Floyd and Warmuth (1995)), and by Graepel et al. (2000). These bounds were obtained
using an approach which is quite different than the one used here.

3. The support-vector setup

The support-vector machine (SVM) (Vapnik, 1998) creates a linear discriminant classifier
in a ball within a high dimensional, or an infinite dimensional, Euclidean space:

X = {x ∈ Rn : |x| ≤ 1},
F = { fa,b(x) = sign(a · x + b) : a ∈ Rn, b ∈ R, |a| = 1}.

To put the definition of an SVM into the framework presented here, I introduce the
following definitions:

Definition 1. Let S(x1, . . . , xl , t1, . . . , tl ), xi ∈ X , ti ∈ {−1,+1} be the set of classifiers
fa,b ∈ F such that for alli = 1, . . . , l , fa,b(xi ) = 1 iff ti = 1.

In other words, the setS(x1, . . . , xl , t1, . . . , tl ) is the set of classifiers which predictY = ti
when presented withX = xi , for all i = 1, . . . , l .

Definition 2. The margin of a classifierfa,b ∈ F with respect to a set of pointsx1, . . . , xl ∈
X is defined as

min
i=1,...,l

|a · xi + b|.

The maximum margin classifier (MMC) is the member,fa,b, of the setSwith the property
that its margin is the largest in the set.

The margin of the MMC is denoted bymarg(x1, . . . , xl , t1, . . . , tl ).

Using the definitions above, the SVM can now be defined as a RERM type rule with:

L̃(z1, . . . , zl ) = { fa,b = s(x1, . . . , xl , t1, . . . , tl ) : ti ∈ {−1,+1}, i = 1, . . . , l ,

marg(x1, . . . , xl , t1, . . . , tl ) ≥ h},
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wheres(x1, . . . , xl , t1, . . . , tl ) is some member ofS(x1, . . . , xl , t1, . . . , tl ) andh is some
fixed constant.

The setL̃(z1, . . . , zl ) may or may not contain a representative from the setS(x1, . . . ,

xl , y1, . . . , yl ). If it does contain such a representative,f , then f will have zero empirical
error rate, and therefore

L(z1, . . . , zl ) = f

will hold. If such a representative is not iñL(z1, . . . , zl ) then

L(z1, . . . , zl ) = s(x1, . . . , xl , t1, . . . , tl )

for somet1, . . . , tl and the empirical error rate of the algorithm will be equal to the cardinality
of the set{i : ti 6= yi }.

Based on heuristic appeal and experimental results,s is usually chosen to be equal to the
MMC. Here, however, I propose a different way to select a representative, for which the
generalization ability can be determined. Note that the empirical risk achieved is the same
for any choice of a representative.

The algorithm below, known as the perceptron algorithm (Minsky & Papert, 1998), may
be used to obtain a member ofS(x1, . . . , xl , t1, . . . , tl ). Let the representative,s, be the one
produced by the algorithm. This algorithm had been previously considered in this context
by Freund and Schapire (1998) and by Graepel et al. (2000).

– Initialization: Seta← 0, b← 0, k← 1
– Update: If tk(a · xk + b) > 0 then go to stepLoop
– Correction: Seta← a+ tkxk, b← b+ tk
– Loop: If a Correction step was not carried out in the lastl loops, stop. Otherwise, set

k← k+ 1(modl ) and go to stepUpdate

The Perceptron Convergence Theorem (Minsky & Papert, 1988) states that if the points
xi all lie inside the unit sphere, and

marg(x1, . . . , xl , t1, . . . , tl ) ≥ h,

then the algorithm will execute at mostb1/h2c corrections, after which the resultinga, b
parameters will provide a memberfa,b of S(x1, . . . , xl , t1, . . . , tl ). By construction the
resulting classifier isr -sparse withr ≤ b1/h2c.

Applying the bound forr -sparse rules leads to the following conclusion: For any fixed
h, if a support-vector method is employed and a classifier with a margin ofh and empirical
error rateRemp is found, then there exists anr (h)-sparse classifier for which the following
statement holds:

P(R> Remp+ ε) < 2(2l )b1/h2c exp−(lε2− 2ε). (1)

The perceptron algorithm can be used to obtain such a classifier.
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An important point about the perceptron algorithm is that it can be executed without
reference to the training vectors themselves but rather making use only of the inner products
between training vectors. The importance of this property stems from the fact that often
in applications of the support vector machine calculating inner products between training
vectors is feasible, but any explicit representation of the vectors is prohibitively expensive.

Equation (1) can be converted into a 1− δ upper confidence bound. With probability of
at least 1− δ, the following inequality holds:

R< Remp+
√

1

l

(
log 2l

h2
+ log

1

δ
+ log 2e2

)
. (2)

The upper confidence bound (2) holds under the assumption thath is fixed in advance.
It is common practice, however, to haveh random. This is, for example, the case when the
empirical error rate is pre-specified (e.g. zero).

A result suitable for the case of a randomh will have the form of simultaneous upper
confidence bounds forr = 1

h2 = 1, . . . , l . This is obtained by simply replacingδ by δ/ l
in (2), obtaining a 1− δ an upper confidence bound of the following form:

R< Remp+
√

1

l

(
log 2l

h2
+ log

l

δ
+ log 2e2

)
. (3)

Since insisting on a pre-specified empirical error rate may lead to a large upper confidence
bound, different procedures may be followed. One such procedure would be an adaptation
of the perceptron algorithm:

– Initialization: Seta(0)← 0, b(0)← 0, k← 1, j ← 0, R(0)← l
– Update: If yk(a( j ) · xk + b( j )) > 0 go to stepLoop
– Correction: Seta( j + 1)← a( j )+ ykxk, b( j + 1)← b( j )+ yk, j ← j + 1, R( j )←
|{i : yk(a · xk + b) ≤ 0}|

– Loop: If R( j ) = 0 or j = l , go to stepOptimization . Otherwise, setk← k+1(modl )
and go to stepUpdate

– Optimization: Set

j ∗ = arg min
0≤i≤ j

R(i )+
√

1

l

(
i log 2l + log

l

δ
+ log 2e2

)
.

Set fL = fa( j ∗),b( j ∗). Stop

At the termination of the algorithm,fL is a classifier with empirical error rateR( j ∗), and
which with probability of at least 1− δ has expected error rate no greater than

R( j ∗)+
√

1

l

(
j ∗ log 2l + log

l

δ
+ log 2e2

)
.
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4. Experimental results

The use of variants of the perceptron algorithm in the support vector context had been
previously suggested and implemented by Freund and Schapire (1998). They carried out
experiments using the perceptron algorithm for classifying images of handwritten digits and
report error rates which are somewhat larger than those obtained with maximum margin
classifiers.
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