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Abstract. In real-world environments it usually is difficult to specify target operating conditions precisely, for
example, target misclassification costs. This uncertainty makes building robust classification systems problematic.
We show that it is possible to build a hybrid classifier that will perform at least as well as the best available
classifier for any target conditions. In some cases, the performance of the hybrid actually can surpass that of the
best known classifier. This robust performance extends across a wide variety of comparison frameworks, including
the optimization of metrics such as accuracy, expected cost, lift, precision, recall, and workforce utilization. The
hybrid also is efficient to build, to store, and to update. The hybrid is based on a method for the comparison of
classifier performance that is robust to imprecise class distributions and misclassification costs. The ROC convex
hull (ROCCH) method combines techniques from ROC analysis, decision analysis and computational geometry, and
adapts them to the particulars of analyzing learned classifiers. The method is efficient and incremental, minimizes
the management of classifier performance data, and allows for clear visual comparisons and sensitivity analyses.
Finally, we point to empirical evidence that a robust hybrid classifier indeed is needed for many real-world
problems.
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1. Introduction

Traditionally, classification systems have been built by experimenting with many different
classifiers, comparing their performance and choosing the best. Experimenting with differ-
ent induction algorithms, parameter settings, and training regimes yields a large number of
classifiers to be evaluated and compared. Unfortunately, comparison often is difficult in real-
world environments because key parameters of the target environment are not known. The
optimal cost/benefit tradeoffs and the target class priors seldom are known precisely, and
often are subject to change (Zahavi & Levin, 1997; Friedman & Wyatt, 1997; Klinkenberg
& Thorsten, 2000). For example, in fraud detection we cannot ignore misclassification
costs or the skewed class distribution, nor can we assume that our estimates are precise or
static (Fawcett & Provost, 1997). We need a method for the management, comparison, and
application of multiple classifiers that is robust in imprecise and changing environments.

We describe theROC convex hull(ROCCH) method, which combines techniques from ROC
analysis, decision analysis and computational geometry. The ROC convex hull decouples
classifier performance from specific class and cost distributions, and may be used to specify
the subset of methods that are potentially optimal under any combination of cost assumptions
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and class distribution assumptions. TheROCCH method is efficient, so it facilitates the
comparison of a large number of classifiers. It minimizes the management of classifier
performance data because it can specify exactly those classifiers that are potentially optimal,
and it is incremental, easily incorporating new and varied classifiers without having to
reevaluate all prior classifiers.

We demonstrate that it is possible and desirable to avoid complete commitment to a
single best classifier during system construction. Instead, theROCCHcan be used to build
from the available classifiers a hybrid classification system that will perform best under
any target cost/benefit and class distributions. Target conditions can then be specified at run
time. Moreover, in cases where precise information is still unavailable when the system is
run (or if the conditions change dynamically during operation), the hybrid system can be
tuned easily (and optimally) based on feedback from its actual performance.

The paper is structured as follows. First we sketch briefly the traditional approach to
building such systems, in order to demonstrate that it is brittle under the types of impreci-
sion common in real-world problems. We then introduce and describe theROCCH and its
properties for comparing and visualizing classifier performance in imprecise environments.
In the following sections we formalize the notion of a robust classification system, and
show that theROCCHis an elegant method for constructing one automatically. The solution
is elegant because the resulting hybrid classifier is robust for a wide variety of problem
formulations, including the optimization of metrics such as accuracy, expected cost, lift,
precision, recall, and workforce utilization, and it is efficient to build, to store, and to update.
We then show that the hybrid actually can do better than the best known classifier in certain
situations. Finally, by citing results from empirical studies, we provide evidence that this
type of system indeed is needed.

1.1. An example

A systems-building team wants to create a system that will take a large number of instances
and identify those for which an action should be taken. The instances could be potential
cases of fraudulent account behavior, of faulty equipment, of responsive customers, of
interesting science, etc. We consider problems for which the best method for classifying
or ranking instances is not well defined, so the system builders may consider machine
learning methods, neural networks, case-based systems, and hand-crafted knowledge bases
as potential classification models. Ignoring for the moment issues of efficiency, the foremost
question facing the system builders is: which of the available models performs “best” at
classification?

Traditionally, an experimental approach has been taken to answer this question, because
the distribution of instances can be sampled if it is not known a priori. The standard approach
is to estimate the error rate of each model statistically and then to choose the model with the
lowest error rate. This strategy is common in machine learning, pattern recognition, data
mining, expert systems and medical diagnosis. In some cases, other measures such as cost
or benefit are used as well. Applied statistics provides methods such as cross-validation
and the bootstrap for estimating model error rates and recent studies have compared the
effectiveness of different methods (Dietterich, 1998; Kohavi, 1995; Salzberg, 1997).
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Unfortunately, this experimental approach is brittle under two types of imprecision that
are common in real-world environments. Specifically, costs and benefits usually are not
known precisely, and target (prior) class distributions often are known only approximately
as well. This observation has been made by many authors (Bradley, 1997; Catlett, 1995;
Provost & Fawcett, 1997), and is in fact the concern of a large subfield of decision analysis
(Weinstein & Fineberg, 1980). Imprecision also arises because the environment may change
between the time the system is conceived and the time it is used, and even as it is used.
For example, levels of fraud and levels of customer responsiveness change continually over
time and from place to place.

1.2. Basic terminology

In this paper we address two-class problems. Formally, each instanceI is mapped to one
element of the set{p, n} of (correct) positive and negative classes. Aclassification model
(or classifier) is a mapping from instances to predicted classes. Some classification models
produce a continuous output (e.g., an estimate of an instance’s class membership probability)
to which different thresholds may be applied to predict class membership. To distinguish
between the actual class and the predicted class of an instance, we will use the labels{Y,N}
for the classifications produced by a model. For our discussion, letc(classification, class)
be a two-place error cost function wherec(Y, n) is the cost of a false positive error and
c(N, p) is the cost of a false negative error.1 We represent class distributions by the classes’
prior probabilitiesp(p) and p(n) = 1− p(p).

The true positive rate, or hit rate, of a classifier is:

TP= p(Y | p) ≈ positives correctly classified

total positives

The false positive rate, or false alarm rate, of a classifier is:

FP= p(Y | n) ≈ negatives incorrectly classified

total negatives

The traditional experimental approach is brittle because it chooses one model as “best”
with respect to a specific set of cost functions and class distribution. If the target conditions
change, this system may no longer perform optimally, or even acceptably. As an example,
assume that we have a maximum false positive rateFP, that must not be exceeded. We want to
find the classifier with the highest possible true positive rate,TP, that does not exceed theFP
limit. This is the Neyman-Pearson decision criterion (Egan, 1975). Three classifiers, under
three suchFP limits, are shown in figure 1. A different classifier is best for eachFP limit;
any system built with a single “best” classifier is brittle if theFP requirement can change.

2. Evaluating and visualizing classifier performance

2.1. Classifier comparison: Decision analysis and ROC analysis

Most prior work on building classifiers uses classification accuracy (or, equivalently, undif-
ferentiated error rate) as the primary evaluation metric. The use of accuracy assumes that
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Figure 1. Three classifiers under three different Neyman-Pearson decision criteria.

the class priors in the target environment will beconstant and relatively balanced. In the
real world this rarely is the case. Classifiers often are used to sift through a large population
of normal or uninteresting entities in order to find a relatively small number of unusual
ones; for example, looking for defrauded accounts among a large population of customers,
screening medical tests for rare diseases, and checking an assembly line for defective parts.
Because the unusual or interesting class is rare among the general population, the class dis-
tribution is very skewed (Ezawa, Singh, & Nortan, 1996; Fawcett & Provost, 1996, 1997;
Kubat, Holte, & Matwin, 1998; Saitta & Neri, 1998).

As the class distribution becomes more skewed, evaluation based on accuracy breaks
down. Consider a domain where the classes appear in a 999 : 1 ratio. A simple rule—always
classify as the maximum likelihood class—gives a 99.9% accuracy. This accuracy may be
quite difficult for an induction algorithm to beat, though the simple rule presumably is unac-
ceptable if a non-trivial solution is sought. Skews of 102 are common in fraud detection and
skews exceeding 106 have been reported in other applications (Clearwater & Stern, 1991).

Evaluation by classification accuracy also assumesequal error costs: c(Y, n) = c(N, p).
In the real world, classifications lead to actions, which have consequences. Actions can be as
diverse as denying a credit charge, discarding a manufactured part, moving a control surface
on an airplane, or informing a patient of a cancer diagnosis. The consequences may be grave,
and performing an incorrect action may be very costly. Rarely are the costs of mistakes
equivalent. In mushroom classification, for example, judging a poisonous mushroom to be
edible is far worse than judging an edible mushroom to be poisonous. Indeed, it is hard to
imagine a domain in which a classification system may be indifferent to whether it makes
a false positive or a false negative error. In such cases, accuracy maximization should be
replaced with cost minimization.
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The problems of unequal error costs and uneven class distributions are related. It has
been suggested that, for training, high-cost instances can be compensated for by increasing
their prevalence in an instance set (Breiman et al., 1984). Unfortunately, little work has been
published on either problem. There exist several dozen articles in which techniques for cost-
sensitive learning are suggested (Turney, 1996), but few studies evaluate and compare them
(Domingos, 1999; Pazzani et al., 1994; Provost, Fawcett, & Kohavi, 1998). The literature
provides even less guidance in situations where distributions are imprecise or can change.

Given an estimate ofp(p | I ), the posterior probability of an instance’s class membership,
decision analysis gives us a way to produce cost-sensitive classifications (Weinstein &
Fineberg, 1980). Classifier error frequencies can be used to approximate such probabilities
(Pazzani et al., 1994). For an instanceI , the decision to emit a positive classification from
a particular classifier is:

[1− p(p | I )] · c(Y, n) < p(p | I ) · c(N, p)

Regardless of whether a classifier produces probabilistic or binary classifications, its
normalized cost on a test set can be evaluated empirically as:

Cost= FP · c(Y, n)+ (1− TP) · c(N, p)

Most published work on cost-sensitive classification uses an equation such as this to rank
classifiers. Given a set of classifiers, a set of examples, and a precise cost function, each clas-
sifier’s cost is computed and the minimum-cost classifier is chosen. However, as discussed
above, such analyses assume that the distributions are precisely known and static.

More general comparisons can be made with Receiver Operating Characteristic (ROC)
analysis, a classic methodology from signal detection theory that is common in medical
diagnosis and has recently begun to be used more generally in AI classifier work (Beck
& Schultz, 1986; Egan, 1975; Swets, 1988; Friedman & Wyatt, 1997). ROC graphs depict
tradeoffs between hit rate and false alarm rate.

We use the termROC spaceto denote the coordinate system used for visualizing classifier
performance. In ROC space,TP is represented on theY axis andFP is represented on theX
axis. Each classifier is represented by the point in ROC space corresponding to its(FP,TP)
pair. For models that produce a continuous output, e.g., posterior probabilities,TP andFP
vary together as a threshold on the output is varied between its extremes (each threshold
defines a classifier); the resulting curve is called the ROC curve. An ROC curve illustrates
the error tradeoffs available with a given model. Figure 2 shows a graph of three typical
ROC curves; in fact, these are the complete ROC curves of the classifiers shown in figure 1.

For orientation, several points on an ROC graph should be noted. The lower left point
(0, 0) represents the strategy of never alarming, the upper right point(1, 1) represents the
strategy of always alarming, the point(0, 1) represents perfect classification, and the line
y = x (not shown) represents the strategy of randomly guessing the class. Informally, one
point in ROC space is better than another if it is to the northwest (TP is higher,FP is lower,
or both). An ROC graph allows an informal visual comparison of a set of classifiers.

ROC graphs illustrate the behavior of a classifierwithout regard to class distribution or
errorcost, andso theydecoupleclassificationperformance fromthese factors. Unfortunately,
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Figure 2. ROC graph of three classifiers.

while an ROC graph is a valuable visualization technique, it does a poor job of aiding the
choice of classifiers. Only when one classifier clearly dominates another over the entire
performance space can it be declared better.

2.2. The ROC convex hull method

In this section we combine decision analysis with ROC analysis and adapt them for compar-
ing the performance of a set of learned classifiers. The method is based on three high-level
principles. First, ROC space is used to separate classification performance from class and
cost distribution information. Second, decision-analytic information is projected onto the
ROC space. Third, the convex hull in ROC space is used to identify the subset of classifiers
that are potentially optimal.

2.2.1. Iso-performance lines.By separating classification performance from class and
cost distribution assumptions, the decision goal can be projected onto ROC space for a
neat visualization. Specifically, the expected cost of applying the classifier represented by
a point (FP, TP) in ROC space is:

p(p) · (1− TP) · c(N, p)+ p(n) · FP · c(Y, n)

Therefore, two points, (FP1, TP1) and (FP2, TP2), have the same performance if

TP2− TP1

FP2− FP1
= c(Y, n)p(n)

c(N, p)p(p)

This equation defines the slope of aniso-performance line. That is, all classifiers cor-
responding to points on the line have the same expected cost. Each set of class and cost
distributions defines a family of iso-performance lines. Lines “more northwest” (having a
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largerTP-intercept) are better because they correspond to classifiers with lower expected
cost.

2.2.2. The ROC convex hull. Because in most real-world cases the target distributions are
not known precisely, it is valuable to be able to identify those classifiers that potentially
are optimal. Each possible set of distributions defines a family of iso-performance lines,
and for a given family, the optimal methods are those that lie on the “most-northwest” iso-
performance line. Thus, a classifier is optimal for some conditions if and only if it lies on
the northwest boundary (i.e., above the liney = x) of the convex hull (Barber, Dobkin, &
Huhdanpaa, 1996) of the set of points in ROC space.2 We discuss this in detail in Section 3.

We call the convex hull of the set of points in ROC space theROC convex hull(ROCCH) of
the corresponding set of classifiers. Figure 3 shows four ROC curves with the ROC convex
hull drawn as the border between the shaded and unshaded areas.D is clearly not optimal.
Perhaps surprisingly,B can never be optimal either because none of the points of its ROC
curve lies on the convex hull. We can also remove from consideration any points ofA and
C that do not lie on the hull.

Consider these classifiers under two distribution scenarios. In each, negative examples
outnumber positives by 5 : 1. In scenarioA, false positive and false negative errors have
equal cost. In scenarioB, a false negative is 25 times as expensive as a false positive (e.g.,
missing a case of fraud is much worse than a false alarm). Each scenario defines a family
of iso-performance lines. The lines corresponding to scenarioA have slope 5; those forB
have slope1

5. Figure 4 shows the convex hull and two iso-performance lines,α andβ. Line
α is the “best” line with slope 5 that intersects the convex hull; lineβ is the best line with

Figure 3. The ROC convex hull identifies potentially optimal classifiers.
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Figure 4. Linesα andβ show the optimal classifier under different sets of conditions.

Figure 5. ROC curves with convex hull.

slope1
5 that intersects the convex hull. Each line identifies the optimal classifier under the

given distribution.
Figure 5 shows the three ROC curves from our initial example, with the convex hull

drawn.

2.2.3. Generating the ROC convex hull.TheROC convex hull methodselects the poten-
tially optimal classifiers based on the ROC convex hull and iso-performance lines.



ROBUST CLASSIFICATION FOR IMPRECISE ENVIRONMENTS 211

Table 1. Algorithm for generating an ROC curve from a set of ranked examples.

Given: E: List of tuples〈I , p〉 where:
I : labeled example
p: numeric ranking assigned toI by the classifier

P, N: count of positive and negative examples in E, respectively.
Output: R: List of points on the ROC curve.

T count= 0; /* current TP tally */
Fcount= 0; /* current FP tally */
plast= −∞; /* last score seen */
R= 〈〉; /* list of ROC points */
sort E in decreasing order byp values;
while (E 6= ∅) do

remove tuple〈I , p〉 from head of E;
if (p 6= plast) then

add point (Fcount
N , T count

P ) to end of R;
plast= p;

end if
if (I is a positive example)then

T count= T count+ 1;
else /* I is a negative example */

Fcount= Fcount+ 1;
end if

end while
add point (Fcount

N , T count
P ) to end of R;

1. For each classifier, plotTPandFP in ROC space. For continuous-output classifiers, vary
a threshold over the output range and plot the ROC curve. Table 1 shows an algorithm
for producing such an ROC curve in a single pass.3

2. Find the convex hull of the set of points representing the predictive behavior of all
classifiers of interest, for example by using the QuickHull algorithm (Barber et al.,
1996).

3. For each set of class and cost distributions of interest, find the slope (or range of slopes)
of the corresponding iso-performance lines.

4. For each set of class and cost distributions, the optimal classifier will be the point on the
convex hull that intersects the iso-performance line with largestTP-intercept. Ranges of
slopes specify hull segments.

Figures 3 and 4 demonstrate how the subset of classifiers that are potentially optimal can
be identified and how classifiers can be compared under different cost and class distributions.

2.2.4. Comparing a variety of classifiers.The ROC convex hull method accommodates
both binary and continuous classifiers. Binary classifiers are represented by individual points
in ROC space. Continuous classifiers produce numeric outputs to which thresholds can be
applied, yielding a series of(FP,TP) pairs forming an ROC curve. Each point may or may
not contribute to the ROC convex hull. Figure 6 depicts the binary classifiersE, F andG
added to the previous hull.E may be optimal under some circumstances because it extends
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Figure 6. ClassifierE may be optimal for some conditions because it extends the ROC convex hull.F andG
cannot be optimal they are not on the hull, nor do they extend it.

the convex hull. ClassifiersF andG never will be optimal because they do not extend the
hull.

New classifiers can be added incrementally to anROCCH analysis, as demonstrated in
figure 6 by the addition of classifiersE, F, andG. Each new classifier either extends the
existing hull or it does not. In the former case the hull must be updated accordingly, but
in the latter case the new classifier can be ignored. Therefore, the method does not require
saving every classifier (or saving statistics on every classifier) for re-analysis under different
conditions—only those points on the convex hull. Recall that each point is a classifier and
might take up considerable space. Further, the management of knowledge about many
classifiers and their statistics from many different runs of learning programs (e.g., with
different algorithms or parameter settings) can be a substantial undertaking. Classifiers not
on theROCCHcan never be optimal, so they need not be saved. Every classifier thatdoes
lie on the convex hull must be saved. In Section 4.2 we demonstrate theROCCH in use,
managing the results of many learning experiments.

2.2.5. Changing distributions and costs.Class and cost distributions that change over
time necessitate the reevaluation of classifier choice. In fraud detection, costs change based
on workforce and reimbursement issues; the amount of fraud changes monthly. With the
ROC convex hull method, comparing under a new distribution involves only calculating the
slope(s) of the corresponding iso-performance lines and intersecting them with the hull, as
shown in figure 4.

The ROC convex hull method scales gracefully to any degree of precision in specifying
the cost and class distributions. If nothing is known about a distribution, the ROC convex hull
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shows all classifiers that may be optimal under any conditions. Figure 3 showed that, given
classifiersA, B, C andD, only A andC can ever be optimal. With complete information,
the method identifies the optimal classifier(s). In figure 4 we saw that classifierA (with a
particular threshold value) is optimal under scenarioA and classifierC is optimal under
scenarioB. Next we will see that with less precise information, the ROC convex hull can
show the subset of possibly optimal classifiers.

2.2.6. Sensitivity analysis.Imprecise distribution information defines arangeof slopes
for iso-performance lines. This range of slopes intersects a segment of the ROC convex
hull, which facilitates sensitivity analysis. For example, if the segment defined by a range
of slopes corresponds to a single point in ROC space or a small threshold range for a single
classifier, then there is no sensitivity to the distribution assumptions in question. Consider
a scenario similar toA andB in that negative examples are 5 times as prevalent as positive
ones. In this scenario, consider the cost of dealing with a false alarm to be between $10
and $20, and the cost of missing a positive example to be between $200 and $250. These
conditions define a range of slopes for iso-performance lines:1

5 ≤ m ≤ 1
2. Figure 7(a)

depicts this range of slopes and the corresponding segment of the ROC convex hull. The
figure shows that the choice of classifier is insensitive to changes within this range (and only
fine tuning of the classifier’s threshold will be necessary). Figure 7(b) depicts a scenario
with a wider range of slopes:15 ≤ m ≤ 3. The figure shows that under this scenario the
choice of classifier is very sensitive to the distribution. ClassifiersA, C and E each are
optimal for some subrange.

3. Building robust classifiers

Up to this point, we have concentrated on the use of theROCCHfor visualizing and evaluating
sets of classifiers. TheROCCH helps to delay classifier selection as long as possible, yet
provides a rich performance comparison. However, once system building incorporates a
particular classifier, the problem of brittleness resurfaces. This is important because the
delay between system building and deployment may be large, and because many systems
must survive for years. In fact, in many domains a precise, static specification of future
costs and class distributions is not just unlikely, it is impossible (Provost et al., 1998).

We address this brittleness by using theROCCHto producerobust classifiers, defined as
satisfying the following.Under any target cost and class distributions, a robust classifier
will perform at least as well as the best classifier for those conditions.Our statements about
optimality are practical: the “best” classifier may not be the Bayes-optimal classifier, but
it is at least as good as any known classifier. Srinivasan (1999) calls this “FAPP-optimal”
(optimal for all practical purposes). Stating that a classifier is robust is stronger than stating
that it is optimal for a specific set of conditions. A robust classifier is optimal under all
possible conditions.

In principle, classification brittleness could be overcome by saving all possible classifiers
(neural nets, decision trees, expert systems, probabilistic models, etc.) and then performing
an automated run-time comparison under the desired target conditions. However, such a
system is not feasible because of time and space limitations—there are myriad possible
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(a)

(b)

Figure 7. Sensitivity analysis using the ROC convex hull: (a) low sensitivity (only C can be optimal), (b) high
sensitivity (A, E, or C can be optimal).

classification models, arising from the many different learning methods under their many
different parameter settings. Storing all the classifiers is not feasible, and tuning the system
by comparing classifiers on the fly under different conditions is not feasible. Fortunately,
doing so is not necessary. Moreover, we will show that it is sometimes possible to dobetter
than any of these classifiers.

3.1. ROCCH-hybrid classifiers

We now show that robust hybrid classifiers can be built using theROCCH.
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Definition 1. Let I be the space of possible instances and letC be the space of sets of
classification models. Let aµ-hybrid-classifiercomprise a set of classification models
C ∈ C and a function

µ : I ×<× C→ {Y,N}.

A µ-hybrid classifier takes as input an instanceI ∈ I for classification and a numberx ∈ <.
As output, it produces the classification produced byµ(I , x, C).

Things will get more involved later, but for the time being consider that each set of cost
and class distributions defines a value forx, which is used to select the (predetermined)
best classifier for those conditions. To build aµ-hybrid classifier, we must defineµ and the
setC. We would likeC to include only those models that perform optimally under some
conditions (class and cost distributions), since these will be stored by the system, and we
would likeµ to be general enough to apply to a variety of problem formulations.

The models comprising theROCCHcan be combined to form aµ-hybrid classifier that is
an elegant, robust classifier.

Definition 2. TheROCCH-hybrid is aµ-hybrid classifier whereC is the set of classifiers
that form theROCCH andµ makes classifications using the classifier on theROCCH with
FP= x.

Note that for the moment theROCCH-hybrid is defined only forFP values corresponding to
ROCCHvertices.

3.2. Robust classification

Our definition of robust classifiers was intentionally vague about what it means for one
classifier to be better than another, because different situations call for different comparison
frameworks. We now continue with minimizing expected cost, because the process of
proving that theROCCH-hybrid minimizes expected cost for any cost and class distributions
provides a deep understanding of why and how theROCCH-hybrid works. Later we generalize
to a wide variety of comparison frameworks.

TheROCCH-hybrid can be seen as an application of multi-criteria optimization to classi-
fier design and construction. The classifiers on theROCCHare Edgeworth-Pareto optimal4

(Stadler, 1988) with respect to TP, FP, and the objective functions we discuss. Multi-criteria
optimization was used previously in machine learning by Tcheng, Lambert, Lu and Rendell
(Tcheng et al., 1989) for the selection of inductive bias. Alternatively, theROCCH can be
seen as an application of the theory of games and statistical decisions, for which convex
sets (and the convex hull) represent optimal strategies (Blackwell & Girshick, 1954).

3.2.1. Minimizing expected cost.From above, the expected cost of applying a classifier is:

ec(FP,TP) = p(p) · (1− TP) · c(N, p)+ p(n) · FP · c(Y, n) (1)



216 F. PROVOST AND T. FAWCETT

For a particular set of cost and class distributions, the slope of the corresponding iso-
performance lines is:

mec= c(Y, n)p(n)
c(N, p)p(p)

(2)

Every set of conditions will define anmec≥ 0. We now can show that theROCCH-hybrid
is robust for problems where the “best” classifier is the classifier with the minimum expected
cost.

The slope of theROCCHis an important tool in our argument. TheROCCHis a piecewise-
linear, concave-down “curve.” Therefore, asx increases, the slope of theROCCHis monoton-
ically non-increasing withk−1 discrete values, wherek is the number ofROCCHcomponent
classifiers, including the degenerate classifiers that define theROCCHendpoints. Where there
will be no confusion, we use phrases such as “points in ROC space” as a shorthand for the
more cumbersome “classifiers corresponding to points in ROC space.” For this subsection,
unless otherwise noted, “points on theROCCH” refer to vertices of theROCCH.

Definition 3. For any real numberm≥ 0, thepoint where the slope of theROCCH is m is
one of the (arbitrarily chosen) endpoints of the segment of theROCCHwith slopem, if such
a segment exists. Otherwise, it is the vertex for which the left adjacent segment has slope
greater thanm and the right adjacent segment has slope less thanm.

For completeness, the leftmost endpoint of theROCCHis considered to be attached to a
segment with infinite slope and the rightmost endpoint of theROCCH is considered to be
attached to a segment with zero slope. Note that everym ≥ 0 defines at least one point on
theROCCH.

Lemma 1. For any set of cost and class distributions, there is a point on theROCCHwith
minimum expected cost.

Proof: (by contradiction) Assume that for some conditions there exists a pointC with
smaller expected cost than any point on theROCCH. By equations 1 and 2, a point (FP2,
TP2) has the same expected cost as a point (FP1, TP1) if

TP2− TP1

FP2− FP1
= mec

Therefore, for conditions corresponding tomec, all points with equal expected cost form
an iso-performance line in ROC space with slopemec. Also by 1 and 2, points on lines
with larger y-intercept have lower expected cost. Now, pointC is not on theROCCH, so
it is either above the curve or below the curve. If it is above the curve, then theROCCH

is not a convex set enclosing all points, which is a contradiction. If it is below the curve,
then the iso-performance line throughC also contains a pointP that is on theROCCH(not
necessarily a vertex). If this iso-performance line intersects noROCCHvertex, then consider
the vertices at the endpoints of theROCCHsegment containingP; one of these vertices must
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intersect a better iso-performance line than doesC. In either case, since all points on an
iso-performance line have the same expected cost, pointC does not have smaller expected
cost than all points on theROCCH, which is also a contradiction. 2

Although it is not necessary for our purposes here, it can be shown thatall of the minimum
expected-cost classifiers areon theROCCH.

Definition 4. An iso-performance line with slopem is anm-iso-performance line.

Lemma 2. For any cost and class distributions that translate to mec, a point on theROCCH

has minimum expected cost only if the slope of theROCCHat that point is mec.

Proof: (by contradiction) Suppose that there is a pointD on theROCCHwhere the slope
is not mec, but the point does have minimum expected cost. By Definition 3, either (a) the
segment to the left ofD has slope less thanmec, or (b) the segment to the right ofD has slope
greater thanmec. For case (a), consider pointN, the vertex of theROCCHthat neighborsD
to the left, and consider the (parallel)mec-iso-performance linesl D andl N throughD and
N. BecauseN is to the left ofD and the line connecting them has slope less thanmec, the
y-intercept ofl N will be greater than they-intercept ofl D. This means thatN will have
lower expected cost thanD, which is a contradiction. The argument for (b) is analogous
(symmetric). 2

Lemma 3. If the slope of theROCCHat a point is mec, then the point has minimum expected
cost.

Proof: If this point is the only point where the slope of theROCCHis mec, then the proof
follows directly from Lemma 1 and Lemma 2. If there are multiple such points, then by
definition they are connected by anmec-iso-performance line, so they have the same expected
cost, and once again the proof follows directly from Lemma 1 and Lemma 2. 2

It is straightforward now to show that theROCCH-hybrid is robust for the problem of
minimizing expected cost.

Theorem 4. TheROCCH-hybrid minimizes expected cost for any cost distribution and any
class distribution.

Proof: Because theROCCH-hybrid is composed of the classifiers corresponding to the
points on theROCCH, this follows directly from Lemmas 1, 2, and 3. 2

Now we have shown that theROCCH-hybrid is robust when the goal is to provide the min-
imum expected-cost classification. This result is important even for accuracy maximization,
because the preferred classifier may be different for different target class distributions. This
rarely is taken into account in experimental comparisons of classifiers.

Corollary 5. TheROCCH-hybrid minimizes error rate(maximizes accuracy) for any target
class distribution.
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Proof: Error rate minimization is cost minimization with uniform error costs. 2

3.3. Robust classification for other common metrics

Showing that theROCCH-hybrid is robust not only helps us with understanding theROCCH

method generally, it also shows us how theROCCH-hybrid will pick the best classifier in
order to produce the best classifications, which we will return to later. If we ignore the need
to specify how to pick the best component classifier, we can show that theROCCHapplies
more generally.

Theorem 6. For any classifier evaluation metric f(FP,TP), if ∂ f
∂TP ≥ 0 and ∂ f

∂FP ≤ 0
then there exists a point on theROCCHwith an f-value at least as high as that of any known
classifier.

Proof: (by contradiction) Assume that there exists a classifierCo, not on theROCCH, with
an f-value higher than that of any point on theROCCH. Co is either (i) above or (ii) below
the ROCCH. In case (i), theROCCH is not a convex set enclosing all the points, which is a
contradiction. In case (ii), letCo be represented in ROC-space by(FPo,TPo). BecauseCo

is below theROCCHthere exist points, call one(FPp,TPp), on theROCCHwith TPp > TPo

andFPp < FPo. However, by the restriction on the partial derivatives, for any such point
f (FPp,TPp) ≥ f (FPo,TPo), which again is a contradiction. 2

There are two complications to the more general use of theROCCH, both of which are
illustrated by the decision criterion from our very first example. Recall that the Neyman-
Pearson criterion specifies a maximum acceptableFP rate. Standard ROC analysis uses
ROC curves to select a single, parameterized classification model; the parameter allows
the user to select the “operating point” for a decision-making task, usually a threshold on a
probabilistic output that will allow for optimal decision making. Under the Neyman-Pearson
criterion, selecting the single best model from a set is easy: plot the ROC curves, draw a
vertical line at the desired maximumFP, and pick the model whose curve has the largest
TP at the intersection with this line.

With theROCCH-hybrid, making the best classifications under the Neyman-Pearson cri-
terion is not so straightforward. For minimizing expected cost it was sufficient for the
ROCCH-hybrid to choose avertexfrom theROCCHfor anymec value. For problem formu-
lations such as the Neyman-Pearson criterion, the performance statistics at a non-vertex
point on theROCCHmay be preferable (see figure 8). Fortunately, with a slight extension,
theROCCH-hybrid can yield a classifier with these performance statistics.

Theorem 7. An ROCCH-hybrid can achieve the TP: FP tradeoff represented by any point
on theROCCH, not just the vertices.

Proof: (by construction) Extendµ(I , x, C) to non-vertex points as follows. Pick the point
P on theROCCHwith FP= x (there is exactly one). LetTPx be theTPvalue of this point.
If (x, TPx) is anROCCHvertex, use the corresponding classifier. If it is not a vertex, call the
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Figure 8. The ROC convex hull used to select a classifier under the Neyman-Pearson criterion.

left endpoint of the hull segment on whichP liesCl , and the right endpointCr . Letd be the
distance betweenCl andCr , and letpbe the distance betweenCl andP. Make classifications
as follows. For each input instance flip a weighted coin and choose the answer given by
classifierCr with probability p

d and that given by classifierCl with probability 1− p
d .

It is straightforward to show thatFP andTP for this classifier will bex andTPx. 2

The second complication is that, as illustrated by the Neyman-Pearson criterion, many
practical classifier comparison frameworks includeconstrainedoptimization problems (be-
low we will discuss other frameworks). Arbitrarily constrained optimizations are prob-
lematic for theROCCH-hybrid. Given total freedom, it is possible to devise constraints on
classifier performance such that, even with the restriction on the partial derivatives, an in-
terior point scores higher than anyacceptablepoint on the hull. For example, two linear
constraints can enclose a subset of the interior and excludethe entireROCCH—there will be
no acceptable points on theROCCH. However, many realistic constraints do not thwart the
optimality of theROCCH-hybrid.

Theorem 8. For any classifier evaluation metric f(FP,TP), if ∂ f
∂TP ≥ 0 and ∂ f

∂FP ≤ 0
and no constraint on classifier performance eliminates any point on theROCCHwithout also
eliminating all higher-scoring interior points, then theROCCH-hybrid can perform at least
as well as any known classifier.

Proof: Follows directly from Theorem 6 and Theorem 7. 2

Linear constraints on classifiers’FP : TP performance are common for real-world prob-
lems, so the following is useful.

Corollary 9. For any classifier evaluation metric f(FP,TP), if ∂ f
∂TP ≥ 0 and ∂ f

∂FP ≤ 0 and
there is a single constraint on classifier performance of the form a· TP+ b · FP≤ c, with
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a and b non-negative, then theROCCH-hybrid can perform at least as well as any known
classifier.

Proof: The single constraint eliminates from contention all points (classifiers) that do
not fall to the left of, or below, a line with non-positive slope. By the restriction on the
partial derivatives, such a constraint will not eliminate a point on theROCCHwithout also
eliminating all interior points with higherf-values. Thus, the proof follows directly from
Theorem 8. 2

So, finally, we have the following:

Corollary 10. For the Neyman-Pearson criterion, theROCCH-hybrid can perform at least
as well as that of any known classifier.

Proof: For the Neyman-Pearson criterion, the evaluation metric isf (FP,TP) = TP, that
is, a higherTP is better. The constraint on classifier performance isFP ≤ FPmax. These
satisfy the conditions for Corollary 9, and therefore this corollary follows. 2

All the foregoing effort may seem misplaced for a simple criterion like Neyman-Pearson.
However, there are many other realistic problem formulations. For example, consider the
decision-support problem of optimizingworkforce utilization, in which a workforce is
available that can process a fixed number of cases. Too few cases will under-utilize the
workforce, but too many cases will leave some cases unattended (expanding the workforce
usually is not a short-term solution). If the workforce can handleK cases, the system should
present the best possible set ofK cases. This is similar to the Neyman-Pearson criterion,
but with an absolute cutoff (K ) instead of a percentage cutoff (FP).

Theorem 11. For workforce utilization, theROCCH-hybrid will provide the best set of K
cases, for any choice of K .

Proof: (by construction) The decision criterion is to maximizeTPsubject to the constraint:

TP · P + FP · N ≤ K

The theorem therefore follows from Corollary 9. 2

In fact, many screening problems, such as are found in marketing and information re-
trieval, use exactly this linear constraint. It follows that for maximizing lift (Berry & Linoff,
1997), precision, or recall, subject to absolute or percentage cutoffs on case presentation,
theROCCH-hybrid will provide the best set of cases.

As with minimizing expected cost, imprecision in the environment forces us to favor
a robustsolution for these other comparison frameworks. For many real-world problems,
the precise desired cutoff will be unknown or will change (e.g., because of fundamental
uncertainty, variability in case difficulty, or competing responsibilities). What is worse, for
a fixed (absolute) cutoff merely changing the size of the universe of cases (e.g., the size of a
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document corpus) may change the preferred classifier, because it will change the constraint
line. TheROCCH-hybrid provides a robust solution because it gives the optimal subset of
cases for any constraint line. For example, for document retrieval theROCCH-hybrid will
yield the bestN documents for anyN, for any prior class distribution (in the target corpus),
and for any target corpus size.

3.4. Ranking cases

An apparent solution to the problem of robust classification is to use a model that ranks
cases, and just work down the ranked list. This approach appears to sidestep the brittleness
demonstrated with binary classifiers, since the choice of a cutoff point can be deferred
to classification time. However, choosing the best ranking model is still problematic. For
most practical situations, choosing the best ranking model is equivalent to choosing which
classifier is bestfor the cutoff that will be used.

An example will illustrate this. Consider two ranking functions,Ra andRb, applied to a
class-balanced set of 100 cases. AssumeRa is able to recognize a common aspect unique
to positive cases that occurs in 20% of the population, and it ranks these highest. Assume
Rb is able to recognize a common aspect unique to negative cases occurring in 20% of the
population, and it ranks these lowest. SoRa ranks the highest 20% correctly and performs
randomly on the remainder, whileRb ranks the lowest 20% correctly and performs randomly
on the remainder. Which model is better? The answer depends entirely upon how far down
the list the system will go before it stops; that is, upon what cutoff will be used. If fewer than
50 cases are to be selected thenRa should be used, whereasRb is better if more than 50 cases

Figure 9. The ROC curves of the two ranking classifiers,Ra andRb, described in Section 3.4.
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will be selected. Figure 9 shows the ROC curves corresponding to these two classifiers, and
the point corresponding toN = 50 where the curves cross in ROC space.

TheROCCHmethod can be used to organize such ranking models, as we have seen. Recall
that ROC curves are formed from case rankings by moving the cutoff from one extreme to
the other (Table 1 shows an algorithm for calculating the ROC curve from such rankings).
TheROCCH-hybrid comprises the ranking models that are best for all possible conditions.
Furthermore, for problems such as workforce utilization, theROCCH would yield better
rankings than eitherRa or Rb (cf. Theorem 7).

3.5. Whole-curve metrics

In situations where either the target cost distribution or class distribution iscompletely
unknown, some researchers advocate choosing the classifier that maximizes a single-number
metric representing the average performance over the entire curve. A common whole-curve
metric is “AUC,” the Area Under the (ROC) Curve (Bradley, 1997). The AUC is equivalent
to the probability that a randomly chosen positive instance will be rated higher than a
negative instance, and thereby is also estimated by the Wilcoxon test of ranks (Hanley &
McNeil, 1982). A criticism of AUC is that for specific target conditions the classifier with
the maximum AUC may be suboptimal (Provost et al., 1998), Indeed, this criticism may be
made of any single-number metric. Fortunately, not only is theROCCH-hybrid optimal for
any specific target conditions, it has the maximum AUC—there is no classifier with AUC
larger than that of theROCCH-hybrid.

3.6. Using the ROCCH-hybrid

To use theROCCH-hybrid for classification, we need to translate environmental conditions
to x values to plug intoµ(I , x, C). For minimizing expected cost, Eq. (2) shows how to
translate conditions tomec. For anymec, by Lemma 3 we want theFP value of the point
where the slope of theROCCHismec, which is straightforward to calculate. For the Neyman-
Pearson criterion the conditions are defined asFP values. For workforce utilization with
conditions corresponding to a cutoffK , the FP value is found by intersecting the line
TP · P + FP · N = K with theROCCH.

We have argued that target conditions (misclassification costs and class distribution) are
rarely known. It may be confusing that we now seem to require exact knowledge of these
conditions. TheROCCH-hybrid gives us two important capabilities. First, the need for precise
knowledge of target conditions is deferred until run time. Second, in the absence of precise
knowledge even at run time, the system can be optimized easily with minimal feedback.

By using theROCCH-hybrid, information on target conditions is not needed to train
and compare classifiers. This is important because of imprecision caused by temporal,
geographic, or other differences that may exist between training and use. For example,
building a system for a real-world problem introduces a non-trivial delay between the time
data are gathered and the time the learned models will be used. The problem is exacerbated
in domains where error costs or class distributions change over time; even with slow drift,
a brittle model may become suboptimal quickly. In many such scenarios, costs and class
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distributions can be specified (or respecified) at run time with reasonable precision by
sampling from the current population, and used to ensure that theROCCH-hybrid always
performs optimally.

In some cases, even at run time these quantities are not known exactly. A further benefit
of theROCCH-hybrid is that it can be tuned easily to yield optimal performance with only
minimal feedback from the environment. Conceptually, theROCCH-hybrid has one “knob”
that variesx in µ(I , x, C) from one extreme to the other. For any knob setting, theROCCH-
hybrid will give the optimalTP: FP tradeoff for the target conditions corresponding to that
setting. Turning the knob to the right increasesTP; turning the knob to the left decreases
FP. Because of the monotonicity of theROCCH-hybrid, simple hill-climbing can guarantee
optimal performance. For example, if the system produces too many false alarms, turn the
knob to the left; if the system is presenting too few cases, turn the knob to the right.

3.7. Beating the component classifiers

Perhaps surprisingly, in many realistic situations anROCCH-hybrid system can dobetter
than any of its component classifiers. Consider the Neyman-Pearson decision criterion. The
ROCCHmay intersect theFP-lineabovethe highest component ROC curve. This occurs when
theFP-line intersects theROCCHbetween vertices; therefore, there is no component classifier
that actually produces these particular (FP, TP) statistics, as in figure 8. By Theorem 7, the
ROCCH-hybrid can achieve anyTPon the hull. Only a small number ofFPvalues correspond
to hull vertices. The same holds for other common problem formulations, such as workforce
utilization, lift maximization, precision maximization, and recall maximization.

3.8. Time and space efficiency

We have argued that theROCCH-hybrid is robust for a wide variety of problem formulations.
It is also efficient to build, to store, and to update.

The time efficiency of building theROCCH-hybrid depends first on the efficiency of
building the component models, which varies widely by model type. Some models built
by machine learning methods can be built in seconds (once data are available). Hand-built
models can take years to build. However, we presume that this is work that would be done
anyway. TheROCCH-hybrid can be built with whatever methods are available, be there
two or two thousand. As described below, as new classifiers become available, theROCCH-
hybrid can be updated incrementally. The time efficiency depends also on the efficiency
of the experimental evaluation of the classifiers. Once again, we presume that this is work
that would be done anyway. Finally, the time efficiency of theROCCH-hybrid depends on
the efficiency of building theROCCH, which can be done inO(N log N) time using the
QuickHull algorithm (Barber et al., 1996) whereN is the number of classifiers.

The ROCCH is space efficient, too, because it comprises only classifiers that might be
optimal under some target conditions (which follows directly from Lemmas 1–3 and Def-
initions 3 and 4). The number of classifiers that must be stored can be reduced if bounds
can be placed on the potential target conditions. As described above, ranges of conditions
define segments of theROCCH. Thus, theROCCH-hybrid may need only a subset ofC.
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Adding new classifiers to theROCCH-hybrid also is efficient. Adding a classifier to
the ROCCH will either (i) extend the hull, adding to (and possibly subtracting from) the
ROCCH-hybrid, or (ii) conclude that the new classifiers are not superior to the existing
classifiers in any portion of ROC space and can be discarded.

The run-time (classification) complexity of theROCCH-hybrid is never worse than that
of the component classifiers. In situations where run-time complexity is crucial, theROCCH

should be constructed without prohibitively expensive classification models. It then will
find the best subset of the computationally efficient models.

4. Empirical demonstration of need

Robust classification is of fundamental interest because it weakens two very strong assump-
tions: the availability of precise knowledge of costs and of class distributions. However,
might it not be that existing classifiers already are robust? For example, if a given classifier
is optimal under one set of conditions, might it not be optimal under all?

It is beyond the scope of this paper to offer an in-depth experimental study answering this
question. However, we can provide solid evidence that the answer is “no” by referring to
the results of two prior studies. One is a comprehensive ROC analysis of medical domains
recently conducted by Andrew Bradley (1997).5 The other is a published ROC analysis of
UCI database domains that we undertook last year with Ron Kohavi (Provost et al., 1998).

Note that a classifierdominatesif its ROC curve completely defines theROCCH(which
means dominating classifiers are robust and vice versa). Therefore, if there exist more
than a trivially few domains where no single classifier dominates, then techniques like the
ROCCH-hybrid are essential if robust classifiers are desired.

4.1. Bradley’s study

Bradley studied six medical data sets, noting that “unfortunately, we rarely know what the
individual misclassification costs are.” He plotted the ROC curves of six classifier learning
algorithms (two neural nets, two decision trees and two statistical techniques).

Onnot oneof these data sets was there a dominating classifier. This means that for each
domain, there exist different sets of conditions for which different classifiers are preferable.
In fact, the running example in the present article is based on the three best classifiers from
Bradley’s results on the heart bleeding data; his results for the full set of six classifiers can
be found in figure 10. Classifiers constructed for the Cleveland heart disease data are shown
in figure 11.

Bradley’s results show clearly that for many domains the classifier that maximizes any
single metric—be it accuracy, cost, or the area under the ROC curve—will be the best for
some cost and class distributions and will not be the best for others. We have shown that
theROCCH-hybrid will be the best for all.

4.2. Our study

In the study we performed with Ron Kohavi, we chose ten datasets from the UCI repository,
each of which contains at least 250 instances, but for which the accuracy for decision trees
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Figure 10. Bradley’s classifier results for the heart bleeding data.

Figure 11. Bradley’s classifier results for the Cleveland heart disease data.

was less than 95%. For each domain, we induced classifiers for the minority class (for
Road, we chose the class Grass). We selected several induction algorithms fromMLC++
(Kohavi, Sommerfield, & Dougherty, 1997): a decision tree learner (MC4), Naive Bayes
with discretization (NB),k-nearest neighbor for severalk values (IBk), and Bagged-MC4
(Breiman, 1996). MC4 is similar to C4.5 (Quinlan, 1993); probabilistic predictions are
made by using a Laplace correction at the leaves. NB discretizes the data based on entropy
minimization (Dougherty, Kohavi, & Sahami, 1995) and then builds the Naive-Bayes model
(Domingos & Pazzani, 1997). IBk votes the closestk neighbors; each neighbor votes with
a weight equal to one over its distance from the test instance.

Some of the ROC curves are shown in figure 12. Foronly oneof these ten domains
(Vehicle) was there an absolute dominator. In general, very few of the 100 runs performed
(on 10 data sets, using 10 cross-validation folds each) had dominating classifiers. Some
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(a) Vehicle (b) CRX

(c) Road (Grass) (d) Satimage

Figure 12. Smoothed ROC curves from UCI database domains.

cases are very close, for example Adult and Waveform-21. In other cases a curve that
dominates in one area of ROC space is dominated in another. These results also support the
need for methods like theROCCH-hybrid, which produce robust classifiers.

As examples of what expected-cost-minimizingROCCH-hybrids would look like inter-
nally, Table 2 shows the component classifiers that make up theROCCH for the four UCI
domains of figure 12. For example, in the Road domain (see figure 12 and Table 2), Naive
Bayes would be chosen for any target conditions corresponding to a slope less than 0.38,
and Bagged-MC4 would be chosen for slopes greater than 0.38. They perform equally well
at 0.38.

5. Limitations and future work

There are limitations to theROCCHmethod as we have presented it here. We have defined
it here only for two-class problems. Srinivasan (1999) shows that it can be extended to
multiple dimensions. It should be noted that the dimensionality of the “ROC-hyperspace”
grows quadratically in the number of classes, so both efficiency and visualization capability
are called into question.

We have assumed constant error costs for a giventypeof error, e.g., all false positives
cost the same. For some problems, different errors of the same type have different costs. In
many cases, such a problem can be transformed for evaluation into an equivalent problem
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Table 2. Locally dominating classifiers for four UCI domains.

Domain Slope range Dominator

Vehicle [0,∞) Bagged-MC4

Road (Grass) [0, 0.38] NB

[0.38,∞) Bagged-MC4

CRX [0, 0.03] Bagged-MC4

[0.03, 0.06] NB

[0.06, 2.06] Bagged-MC4

[2.06,∞) NB

Satimage [0, 0.05] NB

[0.05, 0.22] Bagged-MC4

[0.22, 2.60] IB5

[2.60, 3.11] IB3

[3.11, 7.54] IB5

[7.54, 31.14] IB3

[31.14,∞) Bagged-MC4

with uniform intra-type error costs by duplicating instances in proportion to their costs (or
by simply modifying the counting procedure accordingly).

We also have assumed for this paper that the estimates of the classifiers’ performance
statistics (FP andTP) are very good. As mentioned above, much work has addressed the
production of good estimates for simple performance statistics such as error rate. Much
less work has addressed the production of good ROC curve estimates. As with simpler
statistics, care should be taken to avoid over-fitting the training data and to ensure that
differences between ROC curves are meaningful. One solution is to use cross-validation
with averaging of ROC curves (Provost et al., 1998), which is the procedure used to produce
the ROC curves in Section 4.2. To our knowledge, the issue is open of how best to produce
confidence bands appropriate to a particular problem. Those shown in Section 4.2 are
appropriate for the Neyman-Pearson decision criterion (i.e., they show confidence onTP
for various values ofFP).

Also, we have addressed predictive performance and computational performance. These
are not the only concerns in choosing a classification model. What if comprehensibility
is important? The easy answer is that for any particular setting, theROCCH-hybrid is as
comprehensible as the underlying model it is using. However, this answer falls short if
the ROCCH-hybrid is interpolating between two models or if one wants to understand the
“multiple-model” system as a whole.

Although ROC analysis and the ROCCH method were specifically designed for clas-
sification domains, we have extended them toactivity monitoringdomains (Fawcett &
Provost, 1999). Such domains involve monitoring the behavior of a population of entities
for interesting events requiring action. These problems are substantially different from stan-
dard classification because timeliness of classification is important and dependencies exist
among instances; both factors complicate evaluation.
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This work is fundamentally different from other recent machine learning work on com-
bining multiple models (Ali & Pazzani, 1996). That work combines models in order to boost
performance for a fixed cost and class distribution. TheROCCH-hybrid combines models for
robustness across different cost and class distributions. In principle, these methods should
be independent—multiple-model classifiers are candidates for extending theROCCH. How-
ever, it may be that some multiple-model classifiers achieve increased performance for a
specific set of conditions by (in effect) interpolating along edges of theROCCH. Cherikh
(Cherikh, 1989) uses ROC analysis to study decision making where the decisions of multiple
models are present. Unlike our work, the goal is to find optimal combinations of models for
specific conditions. However, it seems that the two methods may be combined profitably:
well-chosen combinations of models should extend theROCCH, yielding a better robust
classifier.

TheROCCHmethod also complements research on cost-sensitive learning (Turney, 1996).
Existing cost-sensitive learning methods are brittle with respect to imprecise cost knowl-
edge. Thus, theROCCHis an essential evaluation tool. Furthermore, cost-sensitive learning
may be used to find better components for theROCCH-hybrid, by searching explicitly for
classifiers that extend theROCCH.

6. Conclusion

The ROC convex hull method is a robust, efficient solution to the problem of comparing
multiple classifiers in imprecise and changing environments. It is intuitive, can compare
classifiers both in general and under specific distribution assumptions, and provides crisp
visualizations. It minimizes the management of classifier performance data, by selecting
exactly those classifiers that are potentially optimal; thus, only these need to be saved in
preparation for changing conditions. Moreover, due to its incremental nature, new classifiers
can be incorporated easily, e.g., when trying a new parameter setting.

The ROCCH-hybrid performs optimally under any target conditions for many realistic
problem formulations, including the optimization of metrics such as accuracy, expected
cost, lift, precision, recall, and workforce utilization. It is efficient to build in terms of
time and space, and can be updated incrementally. Furthermore, it can sometimes classify
better than any (other) known model. Therefore, we conclude that it is an elegant, robust
classification system.

We believe that this work has important implications for both machine learning applica-
tions and machine learning research (Provost et al., 1998). For applications, it helps free
system designers from the need to choose (sometimes arbitrary) comparison metrics before
precise knowledge of key evaluation parameters is available. Indeed, such knowledge may
never be available, yet robust systems still can be built.

For machine learning research, it frees researchers from the need to have precise class and
cost distribution information in order to study important related phenomena. In particular,
work on cost-sensitive learning has been impeded by the difficulty of specifying costs, and
by the tenuous nature of conclusions based on a single cost metric. Researchers need not
be held back by either. Cost-sensitive learning can be studied generally without specifying
costs precisely. The same goes for research on learning with highly skewed distributions.
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Which methods are effective for which levels of distribution skew? TheROCCHwill provide
a detailed answer.

Recently, Drummond and Holte (Drummond & Holte, 2000) have demonstrated an in-
triguing dual to theROCCH. Their “cost curves” represent expected costs explicitly, rather
than as slopes of iso-performance lines, and thereby provide an insightful alternative per-
spective for visualization.

Note: An implementation of theROCCHmethod in Perl is publicly available. The code and
related papers may be found at:http://www.hpl.hp.com/personal/Tom Fawcett/
ROCCH/.
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Notes

1. For this paper, we consider error costs to include benefits not realized, and ignore the costs of correct classifi-
cations.

2. The convex hull of a set of points is the smallest convex set that contains the points.
3. There is a subtle complication to producing ROC curves from ranked test-set data, which is reflected in the

algorithm shown in Table 1. Specifically, consecutive examples with the same score can give overly optimistic
or overly pessimistic ROC curves, depending on the ordering of positive and negative examples. The ROC
curve generating algorithm shown here waits until all examples with the same score have been tallied before
computing the next point of the ROC curve. The result is a segment that bisects the area that would have resulted
from the most optimistic and most pessimistic orderings.

4. Edgeworth-Pareto optimality is the century-old notion that in a multidimensional space of criteria, optimal
performance is the frontier of achievable performance in this space. In cases where performance is a linear
combination of the criteria, the optimality frontier is the convex hull.

5. Bradley’s purpose was not to answer this question; fortunately, his published results do anyway.
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