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Hypersequential programming is a new paradigm of concurrent programming.
The original concurrent program is first serialized, then the sequential version
is tested and debugged, and finally the target concurrent program is synthesized
by parallelizing the debugged sequential version. In hypersequential program-
ming, testing and debugging are performed on the sequential version of the
program and the correctness is preserved in the subsequent parallelization pro-
cess. Therefore, it offers both higher productivity and enhanced reliability. This
paper describes a practical approach to hypersequential programming using the
execution history called scenario. It also formalizes the parallelization process
using a new equivalence relation called scenario graph equivalence, and gives the
parallelization algorithm.
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1. INTRODUCTION

A rapidly growing trend towards parallel and distributed computer systems
has increased demand for programmers writing concurrent application
programs. In particular, Java has made multithreaded concurrent program-
ming remarkably popular. However, concurrent programs are in general
more difficult to develop than sequential programs.(1) In particular, testing
and debugging are major bottlenecks in concurrent programming.(2)

Hypersequential programming(3) is a new programming paradigm to
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Fig. 1. Concept of hypersequential programming.

provide a solution to these bottlenecks. Figure 1 illustrates the concept of
hypersequential programming. The original concurrent program is first
serialized. Then testing and debugging are performed on the sequential ver-
sion. Finally the reliable version of the concurrent program is reconstructed
through parallelization of the debugged sequential version. Hypersequential
programming makes concurrent programs as easy to test and debug as
sequential programs since testing and debugging are performed on the
serialized version. The correctness of the debugged sequential version is
preserved in the parallelization process. Therefore, the generated con-
current program is as reliable as the sequential version.

Hypersequential programming can be implemented in a variety of
ways. Uchihira et al. have presented an implementation based on petri-net-
rewriting.(3) In this paper, another practical approach, called scenario-based
hypersequential programming, is proposed (Fig. 2). A scenario is a sequen-
tial execution history that the programmer tests. The programmers can
construct a set of scenarios (represented by scenario graph) as if they were
performing conventional sequential program testing. The parallelization
algorithm presented in this paper uses such scenarios to automatically
reconstruct the final concurrent program.

Fig. 2. Simple example of scenario-based hypersequential programming.
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The rest of the paper is organized as follows: Section 2 shows an over-
view of scenario-based hypersequential programming. Section 3 formalizes
the approach and gives a parallelization algorithm in detail. Section 4 uses
an example to present how scenario-based hypersequential programming
works. Sections 5 and 6 give related works and a conclusion, respectively.

2. SCENARIO-BASED HYPERSEQUENTIAL PROGRAMMING

In scenario-based hypersequential programming, programmers develop
a concurrent program in the following four steps:

Step 1. Modeling the target system and coding the initial con-
current program. Model the target system using concurrency and non-
determinacy. Write a program in a concurrent programming language (e.g.,
Ada, Java, C with a multi-tasking library), exploiting such concurrency
and nondeterminacy.

Step 2. Testing the program under a set of scenarios and construct-
ing a scenario graph.

Step 2.1. Execute the concurrent program sequentially (step-by-
step) and store its execution history. The resulting execution history is
called a scenario. In this step, a conventional-debugger-like graphical user
interface (GUI) is helpful. It allows the programmer to interactively specify
which process (or statement) is executed next (Fig. 3). In this figure,
executable processes (or statements) are displayed in a menu at each step,
then the programmer selects one of them, and the selected process (or
statement) is executed by one step. A sequence (path) of selected state-
ments represents one scenario in the scenario graph browser.

Step 2.2. Using a conventional testing and debugging scheme for
sequential programs, make sure each scenario satisfies the programmer's
intention. If bugs are detected, go back to Step 1 and modify the original
source code. Otherwise, go back to Step 2.1 for more scenarios until all test
cases that the programmer intends are inspected.

Step 2.3. After all the intended scenarios are obtained, a global
state transition system, called a scenario graph, is constructed. In the
scenario graph, a node is a global program state. An edge is a program
statement which caused the transition between the global states. A scenario
is represented by a path from the initial node. Such a path represents a
feasible intended behavior of the concurrent program. Note that the
scenario graph does not contain untested and unexpected nondeterministic
behaviors which often cause serious bugs.
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Fig. 3. Scenario selection and testing tool.

Step 3. Parallelization of the scenario graph involves the following
three steps: insertion of pseudo-synchronization operations (adding nodes
and edges to the graph), dividing the graph to processes (constructing the
local scenario graphs), and removing redundant pseudo-synchronization
from the local scenario graphs (Fig. 4).

Step 3.1. Insert pseudo-synchronization actions sync(ID) into the
scenario graph. This will be used for a global synchronization between pro-
cesses in the next step. For the sake of simplicity, synchronization actions
are inserted, in this discussion, after every statement and before every
branch statement (Fig. 4b).

Step 3.2. Divide the scenario graph to the set of local scenario
graphs by projection. The projection assigns a statement-action (a t-edge)
to the process it originally belongs to, and assigns empty actions (= actions)
to other processes. It also assigns all synchronization-actions (s-edges) to
all processes. Nodes of the local scenario graph are first created by corre-
sponding to nodes of the original scenario graph, then every two nodes
connected with an = action are shrunk into one node. For example, the
local scenario graph of P1 in Fig. 4c consists of P1's own statements
(t-edges: t1�2 , t12 , t13 , t14 , t15) and pseudo-synchronization actions (s-edges:
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Fig. 4. Parallelization from scenario graph SGC .

s1 ,..., s12). It does not contain P2's local statements (t22 , t23) because these
are shrunk as = actions. The unoptimized local scenario graphs represent
graphical versions of concurrent processes which are synchronized with
each other step-by-step, using explicit pseudo-synchronization actions.
Note that the concurrent program composed of these unoptimized local
scenario graphs faithfully reproduces one of the scenarios (intended
behaviors) specified by the programmer. The inserted pseudo-synchroniza-
tion actions guarantee this behavior.

Step 3.3. Optimize each local scenario graph by removing redun-
dant global pseudo-synchronization actions. This corresponds to restora-
tion of the original concurrency and nondeterminacy. In this step,
automatic parallelization techniques of the compiler are utilized to identify
the set of dependent statements. Pseudo-synchronization actions which are
needed to keep precedence constraints of inter-dependent critical state-
ments must be preserved, and other pseudo-synchronization actions can be
removed.

Step 4. Code generation. The final concurrent program is gener-
ated from the optimized local scenario graphs and the original program.
Based on the optimized local scenario graph, each process is reconstructed
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by inserting synchronization statements (such as semaphores and
monitors) between the original statements. The inserted synchronization
statements force the program to behave in the same way of the optimized
local scenario graphs. Generic source code optimization can be applied
afterwards.

3. FORMALIZATION AND PARALLELIZATION ALGORITHM

This section gives a formal definition of the scenario-based hyperse-
quential programming and provides a parallelization algorithm.

3.1. Formalization

The formal definition starts from the definition of Petri Net and the
communicating transition systems (CTS). Then, the scenario graph is
defined and a new equivalence relation called the scenario graph equivalence
is introduced. The scenario-based hypersequential programming is a
problem to synthesize an optimal CTS which is equivalent to the scenario
graph specified by a programmer.

Definition 1 (Petri Net). N=(P, T, F, m0) is a Petri net where:

v P=[ p1 , p2 ,..., pn] is a finite set of places,

v T=[t1 , t2 ,...tm] is a finite set of transitions,

v F/(P_T ) _ (T_P) is a set of arcs,

v m0 : P � [0, 1, 2,...] is the initial marking, and

v P & T=< and P _ T{<.

In this discussion, the conventional transition firing rules change the
marking m: P � [0, 1, 2,...] of a Petri net. m( p) is a number of tokens in
a place p. Additional notations are defined as follows:

v vt=[ p | ( p, t) # F ] and tv=[ p | (t, p) # F ] represent input and
output places of a transition t, respectively.

v m[t) denotes that t # T is enabled at a marking m. m[t) m$ rep-
resents the transition t # T from a marking m to a new marking m$.
m1[%) mk if %=t1 } } } tk&1 is a transition sequence which satisfies
m1[t1) m2 , m2[t2) m3 ,..., mk&1[tk&1) mk .

v R(N )=[m | _% # T*.m0[%) m] is a set of reachable markings of
Petri net N, where T* is a set of finite sequences over T.

v %[i]=t # T is the i th element of %.
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v c(%, i)=(t, k) if t=%[i] and t appears k times in %[1],..., %[i].
c(%, i) represents a transition t with a counter k.

v % |T is a projection operator where % | T=%$ such that %$[i]=%[i] if
%[i] # T, %$[i]== (empty sequence), otherwise.

Definition 2 (Communicating Transition Systems). CTS C=
(N, 9 ) is a specific Petri net N=(P, T, F, m0) with a process structure 9=
[(P1 , T1), (P2 , T2),..., (Pn , Tn)] where

v (Pi , Ti) is a process. For 1�\i�n, Pi/P and Ti/T.

v P=P1 _ P2 _ } } } _ Pn . For 0�\i<\j�n, Pi & Pj=<.

v T=T1 _ T2 _ } } } _ Tn , and some transitions may be included by
multiple processes (i.e., t # Ti & Tj), which realize process syn-
chronization.

v Each process is a finite state transition system which satisfies the
following formula:

:
p # Pi

m( p)=1 and |tv& Pi |=|vt & Pi |=1 for 1�\i�n, \m # R(N )

Figure 5 shows an example of CTS C=(N, 9 ) where 9=[(P1 , T1),
(P2 , T2)]. (P1 , T1) and (P2 , T2) are transition systems with one synchro-
nization transition t1�2 # T1 & T2 . Here, a transition represents a program
statement and a place represents a local program state (program counter,
memories, etc.) of the target concurrent program.

A state space SS(C) generated from CTS C is formalized as a global
state transition system. SS(C) represents all possible behaviors of C.

Fig. 5. Communicating transition systems (CTS) C.
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Definition 3 (State Space). A state space SS(C) generated from
CTS C=(N, 9 ) is a labeled transition system SS(C)=(S, T, $, m0) such
that

v S=R(N ),

v $/S_T_S is a transition relation,

v \m, \m$ # S, \t # T. (m, t, m$) # $ iff m[t) m$

In scenario-based hypersequential programming, a firing transition
sequence % (m0[%) ) which the programmer interactively selects is called a
scenario. The scenario graph is constructed from a set of scenarios which
can be represented by a labeled transition system (a selected subgraph of
the original state space). Every path in the scenario graph is a scenario.

Definition 4 (Scenario Graph). A scenario graph SG=(S, T, $$, s0)
is a subgraph of a state space SS(C)=(S, T, $, s0) such that $$/$.

Figure 4a is an example scenario graph of the CTS (Fig. 5). In this
graph, a node represents a global state (marking), and an edge represents
a transition.

A transition corresponds to a program statement such as an assign-
ment statement (e.g., a=b&1) or a conditional statement (e.g., a==b).
Concurrent programs with shared memory variables require to consider
dependencies between transitions accessing shared variables. Let D(C) be a
dependence relation in the CTS C. (ti , tj) # D(C) represents a dependence
between ti and t j . D(C) is a symmetric (commutative) relation. For a given
transition sequence %, a precedence constraint relation (O) among transi-
tions with counters c(%, i)=(t, k) in % is defined according to the transition
dependency.

Definition 5 (Precedence Constraint). For a given firing sequence
% of CTS C, c(%, i)Oc(%, j) iff (%[i], %[ j]) # D(C) and i< j.

Based on the precedence constraint relation, the equivalence relation
between scenario graphs (rs : scenario graph equivalence) is defined. The
scenario graph equivalence is an extended trace equivalence(5) considering
precedence constraints. In the definition of trace equivalence, SG1 and SG2

are trace equivalent if SG1 and SG2 have the same set of scenarios (traces).
In the following definition of scenario equivalence, precedence constraints
must be equivalent but the order of transitions can be ignored if these tran-
sitions are independent (e.g., abrs ba when a and b are independent transi-
tions) Adoption of bisimulation equivalence instead of trace equivalence is
unnecessary since a scenario graph is a deterministic transition system.
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Definition 6 (Scenario Equivalence). For given scenarios %1 and %2 ,
%1rs %2 iff

v \i ._j .c(%1 , i)=c(%2 , j) and \j ._i .c(%2 , j)=c(%1 , i)
v \i1 , i2 ._j1 , j2 . (c(%1 , i1)=c(%2 , j1) and c(%1 , i2)=c(%2 , j2) and

c(%1 , i1)Oc(%1 , i2) O c(%2 , j1)Oc(%2 , j2))

v \j1 , j2 ._i1 , i2 . (c(%1 , i1)=c(%2 , j1) and c(%1 , i2)=c(%2 , j2) and
c(%2 , j1)Oc(%2 , j2) O c(%1 , i1)Oc(%1 , i2))

Definition 7 (Scenario Graph Equivalence). For given scenario
graphs SG1=(S1 , T1 , $1 , s01) and SG2=(S2 , T2 , $2 , s02), SG1rs SG2 iff
\%1 in SG1 ._%2 in SG2 .%1 |T1 & T2

rs %2 |T1 & T2
and \%2 in SG2 ._%1 in

SG1 .%1 |T1 & T2
rs %2 |T1 & T2

.

The pseudo-synchronization actions should be ignored in checking
scenario equivalence. This is a reason that this definition uses %1 | T1 & T2

rs

%2 |T1 & T2
instead of %1rs %2 .

Using the scenario graph equivalence, the scenario-based hypersequen-
tial programming can be formalized as follows:

Problem (Scenario Graph Equivalent CTS Synthesis). For a given
scenario graph SGC of CTS C=(N, 9 ) where N=(P, T, F, m0) and
9=[(P1 , T1),..., (Pn , Tn)], synthesize a new CTS C$=(N$, 9$) where
N$=(P$, T $, F $, m$0) and 9$=[(P$1 , T $1),..., (P$n , T $n)] such that

v Ti/T $i for each process (Pi , Ti),

v SGCrs SS(C$)

The synthesized CTS C$ has the same process structure as the original
CTS C. However its behavior is restricted by additional pseudo-syn-
chronization actions sync(ID) to guarantee SGCrs SS(C$). (Figure 6
shows CTS synthesis of the example of Fig. 5.)

Fig. 6. Scenario graph equivalent CTS synthesis.
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There can be multiple scenario-equivalent CTSs. The optimal CTS is
the CTS with the fewest pseudo-synchronization transitions are appended.
Such a CTS restores the most concurrency and nondeterminacy present in
the original program. The measure of optimality is given by the con-
currency rate, a simple index of concurrency and nondeterminacy.

Definition 8 (Concurrency Rate). The concurrency rate }(C) of
CTS C is defined as }(C)=|$|�|S| where SS(C)=(S, T, $, m0).

}(C) is an average number of outgoing edges per state. It indicates
how many processes are active and executable concurrently at a typical
state.

3.2. Parallelization Algorithm

Based on the formalization, we introduce a concrete parallelization
algorithm corresponding to Step 3 of Section 2. The parallelization algo-
rithm consists of 3 steps (introduction of pseudo-synchronization, projec-
tion, and optimization). First of all, an optimization algorithm (Step 3.3)
for an acyclic CTS is introduced. An acyclic CTS corresponds to a set of
local scenario graphs without any loop structures. [Note: A set of local
scenario graphs which is generated in Step 3.2 (projection) is straight-
forward represented by a CTS. We use an CTS instead of a set of local
scenario graphs since the CTS is formally defined.] The acyclic-case
optimization algorithm constructs Co from Cn (unoptimized CTS) such that
SS(Co)rs SS(Cn) and }(Cn)�}(Co). Before proceeding to the algorithm,
a couple of definitions and a theorem need to be introduced.

Definition 9 (Transition Count). For a given finite transition
sequence %, (t, k) is a transition count where the transition t is taken k
times in %.

Definition 10 (Counting Trace). For a given finite transition
sequence %, a counting trace ct(%) is:

ct(%)=(TCset, PCset)

where TCset is a set of all proper transition counts, and PCset is a set of
all precedence constraints. A proper transition count is defined as a transi-
tion count except pseudo-synchronization.
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For example, if %=abcba and (a, c) # D(C), ct(%)=([(a, 2), (b, 2),
(c, 1)], [c(%, 1)Oc(%, 3), c(%, 3)Oc(%, 5)]).

Definition 11 (Counting Trace Set). For a given acyclic CTS
C=(N, 9 ) and N=(P, T, F, m0), a counting trace set ctset(C) is:

ctset(C)=[ct(%) | m0[%) m 7 \t # T .c(m[t) )]

(i.e., % is a possible and maximal firing transition sequence in C, and m is
a terminal (deadlock) state.)

For an acyclic CTS C, the size of ctset(C) is finite.

Theorem 1 (Scenario Graph Equivalence of Acyclic CTS). For
given acyclic CTSs C1 and C2 ,

SS(C1)rs SS(C2) iff ctset(C1)=ctset(C2)

Proof. When sequences %1 , %2 are finite, %1rs %2 � ct(%1)=ct(%2) by
definition. The rest of the proof is trivial.

Definition 12 (Prefix Element of Counting Trace Set). For a given
finite transition sequence % and a given acyclic CTS C=(N, 9 ) and N=
(P, T, F, m0), % #prefix ctset(C)=(TCset, PCset) iff

v \t # T . (t, k) is a transition count of % O _(t, k$) # TCset .k�k$, and

v \i, j .c(%, i)Oc(%, j) O c(%, i)Oc(%, j) # PCset.

Definition 13 (Deviation Path and Deviation Inductor). For a
given acyclic CTS C and a given transition sequence %, % is a deviation
path in C iff ct(%) � ctset(C). i is a deviation point in the deviation path
% iff %[1] } } } %[i&1] #prefix ctset(C) and %[1] } } } %[i&1] %[i ] �prefix ctset(C).
%[k] is a deviation inductor iff %[k] is a nonsynchronization action, k�i
and \j�i. %[ j] is a nonsynchronization action O j�k, where % is a devia-
tion path and i is a deviation point.

A deviation inductor means a nonsynchronization action closest to a
deviation point in a deviation path.

Algorithm 1 (Optimization Algorithm (Acyclic Case)). For a
given acyclic CTS Cn with pseudo-synchronization actions (Fig. 7b), redun-
dant synchronization actions can be eliminated by the following steps.
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Step 1. Insert one local nonsynchronization action nsync(Pi , ID)
for each pseudo-synchronization action sync(ID) in each process Pi

(Fig. 7c). nsync(Pi , ID) has the same input and output places of sync(ID)
but does not synchronize with others. Let this extended CTS be Ce . Let the
set of all inserted non-synchronization actions be ANS.

Step 2. Generate a state space SS(Ce) from Ce (Fig. 7d).

Step 3. Detect a deviation path % in SS(Ce) such that ct(%) �

ctset(Cn). This indicates some precedence constraints are violated in %, or
a deadlock appears�disappears. Then, find the nonsynchronization action
nsync(Pi , ID) which is a deviation inductor (Fig. 7d). The deviation is
caused by the introduction of nsync(Pi , ID). Therefore, the synchroniza-
tion action sync(ID) is necessary (not redundant).

Fig. 7. Simple example of optimization.
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Step 4. Let the set of detected nonsynchronization actions be DNS.
If nsync(Pi , ID) # ANS&DNS then sync(ID) of Pi is redundant. The
optimized CTS Co is obtained after all redundant synchronization actions
are eliminated from Cn . Theorem 1 gives SS(Co)rs SS(Cn).

This optimization algorithm is quite naive and inefficient because it is
based on enumeration over the finite state space. It is possible to make it
more efficient by introducing several heuristics.

The parallelization algorithm is based on the acyclic optimization
algorithm presented earlier. The scenario graph is first partitioned into
acyclic subgraphs. Each subgraph is projected onto the original process
structure, and local scenario graphs are obtained. Then, they are optimized
by Algorithm 1. Finally, optimized local scenario graphs are merged into
one. This hierarchical approach is similar to the task-level parallelization
approach of Girkar and Polychronopoulos.(6) The parallelization algo-
rithm is shown as follows. It is explained by a simple example (Fig. 8a).

Algorithm 2 (Parallelization Algorithm).

Step 3.1. Preparation.

1. Normalize the scenario graph as a regular expression (Fig. 8b, c).
In this expression, each loop is represented as B*. As in usual
regular expressions, ``* '' represents a repetition of actions and ``+''
represents alternative actions. An algorithm which transforms a
transition system (finite automaton) to an equivalent regular
expression is well known.(7)

Ex. SGr=(b1(a1a2a3)* a1(a2b2+b2a2) b3a3)*. SGr is a regular
expression corresponding to a normalized scenario graph (Fig. 8c).

2. Partition the scenario graph into acyclic subgraphs Bk hierarchi-
cally. In each hierarchical level, Bk* is regarded as one action.
Ex.

v SGr=B1*

v B1=b1B2*a1(a2b2+b2a2) b3a3

v B2=a1a2a3

3. Insert pseudo-synchronization actions si (an abbreviation of
sync(i)), after every action and before every branch action and a
first action of each block.
Ex. B1=s0 b1s1B2*s2a1s3(s4a2 s5b2s6+s7b2s8a2s9) b3s10a3s11 , B2

=s12a1s13a2s14a3s15 .
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Fig. 8. Example of parallelization.

Step 3.2. Projection. Project the scenario subgraph Bk on to the
original process structure. Bk | Pi

is a projection of Bk to Pi . a |P is defined
as a |P=a if a is a P 's action, otherwise a | P==. % | P=%[1] |P %[2] | P } } } .
Ex. B1=s0 s1(B2 |P1

)* s2a1s3(s4a2s5s6+s7 s8 a2s9) s10a3s11 & s0b1s1(B2 | P2
)*

s2s3(s4s5 b2 s6+s7b2 s8s9) b3s10s11 , B2 |P1
=s12a1s13a2s14a3s15 , B2 | P2

=
s12s13s14s15 .

Step 3.3. Optimization.

1. Optimize each acyclic subgraph by removing redundant pseudo-
synchronization actions using Algorithm 1.
Ex. B1=(B2 |P1

)* s2a1a2s10a3 & b1(B2 |P2
)* s2b2b3s10 , B2 |P1

=
a1 a2 a3 , B2 |P2

==. ``&'' means parallel composition of processes.

2. Merge the optimized hierarchical acyclic local scenario subgraphs
into one local graph per process.
Ex. SGr=((a1a2 a3)* s2a1 a2s10a3 & b1s2b2 b3s10)*
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3. Then, apply the distribution rule ((B1 & B2)* O B1* & B2*) (Fig. 8d).
[Note: We also apply a simple rule when transforming a regular
expression back to a transition system.]
Ex. SGr=((a1a2a3)* s2a1a2s10a3 & b1 s2b2 b3s10)* O SGr=((a1a2

a3)* s2a1a2s10a3)* & (b1s2b2b3s10)*

Figure 4a is one of the possible scenario graphs SGC for the CTS C in
Fig. 5. After inserting pseudo-synchronization actions (s1 ,..., s12), Figure 4b
is obtained (Step 3.1). Naive projection of the graph on to two processes
(Step 3.2) produces the two local scenario graphs (Fig. 4c). Suppose
(t12 , t22) # D(C) and (t13 , t22) # D(C). Obviously, there are several redun-
dant pseudo-synchronization actions. Since these local scenario graphs
have loop structures, Algorithm 2 works as follows.

Step 3.1. Insert synchronization actions.

SG=s0 t1�2s1(s3 t12s4 t22s5 t23s6 t14 s7+s8 t22s9 t13s10t23s11 t15s12)

Step 3.2. Project it to the original process structure.

SG=s0 t1�2 s1(s3 t12s4s5s6 t14s7+s8s9t13s10s11 t15s12) &

s0t1�2 s1(s3 s4 t22s5 t23s6s7+s8t22s9 s10 t23s11s12)

Fig. 9. (a) Optimized local scenario graphs; and (b) their CTS
representations.
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Step 3.3. Finally, the optimized local scenario graphs are
generated by eliminating the redundant synchronization actions s0 , s1 , s5 ,
s6 , s7 , s10 , s11 , s12 (Fig. 9a).

SG=t1�2(s3 t12s4t14+s8s9 t13t15) & t1�2(s3s4 t22t23+s8 t22s9 t23)

The CTS Co reconstructed from these optimized graphs is scenario
equivalent to SGC (i.e., SGCrs SS(Co)) (Fig. 9b).

4. WORKING THROUGH AN EXAMPLE

This section gives a simple and nontrivial example to illustrate how
the scenario-based hypersequential programming works. The example uses a
shard-memory concurrent program P consisting of two processes P1 and P2 ,
and two shared memory variables m1 and m2 .

Step 1. Modeling and coding. Figure 10 gives the initial program
P=P1 & P2 written by C with function calls to the multi-tasking library in
which the semaphores (signal and wait) are available as synchronization
mechanism.

Step 2. Testing scenarios and constructing a scenario graph. Sup-
pose the programmer expects P2 to print ``hello'' only after P1 prints ``say
hello'' and the same for ``good-bye'' (Fig. 11). If P2 prints ``hello'' just after

Fig. 10. Original concurrent program (source code).
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Fig. 11. Programmer's test cases.

P1 prints ``say good-bye,'' it is an incorrect behavior. We call this bug the
``hello-good-bye-bug.''

The programmer executes the program step-by-step, based on the test
case, and examines the program behavior. If bugs are detected, the source
code must be modified. Suppose the programmer has detected the bug
where P2 accesses m2 (c=m2) before m2 is initialized in P1 (m2=0) in the
first scenario. Then the programmer can fix it by inserting signal(1) and
wait(1). The modified concurrent program and its CTS representation are
shown in Figs. 12 and 13, respectively. Then, the programmer executes and
tests the modified one. Suppose the programmer has not tested the ``hello-
good-bye-bug,'' and it remains in the program as it is. [Note: ``hello-good-
bye-bug'' sequence=P2: t1 � P1 : t1 � P1 : t2 � P1 : t3 � P1 : t4 � P2 : t2 �
P2 : t3 � P1 : t5 � P1 : t9 � P1 : t10 � P2 : t4 � P2 : t5 � P2 : t6 . Pi : tj is a
statement tj of a process Pi in Fig. 13].

Fig. 12. Modified concurrent program after fixing one bug.
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Fig. 13. CTS representation C.

Suppose the programmer has obtained the execution histories which
corresponds to the scenario graph SGC (Fig. 14a). For example, a path
% = P2 : t1 � P1 : t1 � P1 : t2 � P1 : t3 � P1 : t4 � P2 : t2 � P2 : t3 � P1 : t5

� } } } is a scenario. Since both P1 : t1 and P2 : t3 access the shared memory
variable m1 (i.e., (P1 : t1 , P2 : t3) # D(C)), there exists the precedence con-
straint c(%, 2)=(P1 : t1 , 1)Oc(%, 7)=(P2 : t3 , 1) in %. This step of testing
and the construction of the scenario graph is supported by the GUI
(Fig. 3). Note that this scenario graph does not include an execution

172 Uchihira, Kawata, and Tamura



File: 828J 029719 . By:XX . Date:26:01:00 . Time:09:36 LOP8M. V8.B. Page 01:01
Codes: 906 Signs: 486 . Length: 44 pic 2 pts, 186 mm

history which produces the ``hello-good-bye-bug'' since such a sequence is
not tested.

Step 3. Parallelization. After inserting pseudo-synchronization
transitions sync(k), the scenario graph is divided into the two local
scenario graphs. Then, redundant pseudo-synchronization transitions are
computed and removed by the parallelization algorithm. Figure 14b shows
the optimized local scenario graphs Co .

Fig. 14. Scenario graph and optimized local scenario graph.
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Fig. 15. Code generation pattern.

Step 4. Code Generation. Each process of the concurrent program
can be directly reconstructed from the corresponding local scenario graph.
Figure 15 gives examples of code generation patterns. Straightforward code
generation sometimes causes source code duplications. Some of such
duplicated blocks of code can be folded into one. In this example, Block11

and Block12 , Block21 and Block22 , Block23 and Block24 of Fig. 14 can be
folded into single blocks, respectively. [Note: Block11 and Block12 have
duplicated codes (t5 , t12 , t4) and different codes (t9 , t10 , t11 , t6 , t7 , t8).
Different codes are manipulated by using ``if-then-else'' structures.]

Figure 16 gives the final concurrent program. The absence of the
``hello-good-bye-bug'' can be easily observed. The bug has been automati-
cally eliminated from the program even though the programmer has never
encountered the bug. Table I gives the concurrency rates for this program.
The concurrency and nondeterminacy are restored to 1.68 in the final
program from 1.05 of the scenario graph. The original program has the rate
of 1.99.

5. RELATED WORKS

Tai et al. proposed deterministic execution debugging of concurrent
Ada programs.(8) This method implements a serialization mechanism based

Table I. Concurrency Rate

Original program Scenario graph Final program

Size (edge�node) 473�237 39�37 411�243
Concurrency 1.99 1.05 1.68
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Fig. 16. Final concurrent program.

on a given execution history (a scenario). Although their serialization
scheme is similar to ours, execution histories in their method are used only
for testing and debugging while our method also uses them for the
reconstruction of the final program. Automatic detection of harmful non-
determinacy from the execution histories has been studied;(9) but the results
have not been applied for automatic elimination of such nondeterminacy.
Parallelization of sequential programs has been studied extensively over the
past 30 years and many automatic parallelization techniques have been
developed.(10) You might ask why we do not start with a sequential
program instead of a concurrent one that is serialized afterwards. The
answer is that the topology of concurrent programs is useful for modeling
in many target domains. It would be easier to map natural concurrency on
to a concurrent program and start from there than to write a sequential
program and automatically parallelize it later. Hypersequential program-
ming preserves the topology of the original program during serialization
and restores it during parallelization (Fig. 17) as opposed to extracting
parallelism out of the sequential program.
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Fig. 17. Hypersequential programming preserves original concurrent structure.

Supervisor control(11) and program adjustment(12) are techniques to
automatically modify the program to detect and eliminate harmful non-
deterministic behaviors. These approaches require a formal specification to
explicitly determine intended behaviors and harmful behaviors. However, it
is difficult and impractical to describe a complete formal specification of
industrial programs. Hypersequential programming assumes untested
behaviors to be harmful. Therefore, it does not require any formal
specifications.

6. CONCLUSION

Hypersequential programming can be applied to a wide range of
concurrent programming, including parallel programs for shared-memory
parallel computers, multi-task programs for embedded systems, and
network protocol programs for distributed systems. A CASE tool, based on
hypersequential programming, is currently under development. Several
heuristics are incorporated to improve the parallelization and optimization
algorithm presented in this paper. In order to make the CASE tool practi-
cal to use, the following improvements would be needed:

6.1. Global State Abstraction

Examples in this paper assumed all memory states can be represented
to identify the global states of the scenario graph. However, a program
may access a large amount of memory which is impractical to keep track
of. Therefore, some abstraction of global states would be required.
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6.2. Hierarchical Scenario

Since it is tedious to make all scenarios at the source code (statement)
level, hierarchical and top-down construction of scenarios would be
necessary.

Some reader may think hypersequential programming is too radical
since there are cases where untested behaviors should not be prevented.
In that case, we can also choose the less aggressive approach in which
untested actions are only delayed (not prevented) until tested actions
happen, and if there is no tested action to happen after a while, untested
actions are permitted. This approach can be implemented by slight
modification of a hypersequential programming tool. We call this ``timing
tranquilizer.'' The timing tranquilizer does not eliminate all harmful
behaviors, but works fine for many practical cases.
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