
International Journal of Parallel Programming, Vol. 28, No. 6, 2000

Containers on the Parallelization of
General-Purpose Java Programs1

Peng Wu2 and David Padua2

Received January 2000; revised March 2000

Static parallelization of general-purpose programs is still impossible, in general,
due to their common use of pointers, irregular data structures, and complex
control-flows. One promising strategy is to exploit parallelism at runtime. Run-
time parallelization schemes, particularly data speculations, alleviate the need to
statically prove independent computations at compile-time. However, studies
show that many real-world applications exhibit limited speculative parallelism
to offset the overhead and penalty of speculation schemes. This paper addresses
this issue by using compiler analyses to compensate for speculative paralleliza-
tions. We focus on general-purpose Java programs with extensive use of Java
container classes. In our scheme, compilers serve as a guideline of where to
speculate by ``lazily'' detecting dependences that are mostly static, while leaving
those that are more dynamic to runtime. We also propose techniques to
enhance speculative parallelism in the programs. The experimental results show
that, after eliminating static dependences, the four applications we study exhibit
significant parallelism that can be gainfully exploited by a speculative parallel-
ization system.

KEY WORDS: Compiler analysis; parallelism; data speculation; dependence
analysis.

589

0885-7458�00�1200-0589�18.00�0 � 2000 Plenum Publishing Corporation

1 This work is supported in part by Army contract DABT63-95-C-0097; Department of
Energy contract B341494; the National Science Foundation and the Defense Advanced
Research Projects Agency under the OPAAL initiative and Grant NSF DMS 98-7394; and,
a Partnership Award from IBM. This work is not necessarily representative of the positions
or policies of the Army or Government.

2 Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 W.
Springfield Ave., Urbana, Illinois 61801. E-mail: [pengwu, padua]�cs.uiuc.edu.



1. INTRODUCTION

Static parallelization of general-purpose programs is still not possible, in
general. The difficulty lies in the need to prove independent computations
statically in the presence of pointers, irregular data structures, and complex
control-flows. One promising alternative is to defer dependence detection to
runtime when program states are easily available. Various data speculation
schemes have been proposed to implement such an approach.(1�5) Using
speculative parallelization, a program can be parallelized with potential
dependences. A dependence detection scheme will safeguard correct program
semantics during the execution by monitoring every memory access at runtime.
When dependence violations occur, a recovery mechanism will bring the
execution back to a safe program point. Due to the overhead of runtime depen-
dence checking and the penalty of miss speculation, speculative parallelization
is feasible only for programs that have rare occurrences of dependences at run-
time. However, as shown in the study, (3) many real-world general-purpose
programs exhibit limited speculative parallelism. Applying data speculation
blindly to such programs will always result in performance degradation.

This paper addresses this issue by using compiler techniques to com-
plement speculative parallelization. In our scheme, the compiler serves as
a guideline of where to speculate by ``lazily'' detecting some dependences.
Dependences can be characterized into two types: static dependences and
dynamic dependences. Static dependences refer to those that most likely
occur regardless runtime execution paths or the input data set. Dynamic
dependences refer to those that usually occur along rarely-executed paths or
under abnormal conditions. Our ``lazy'' dependence test aims at capturing
and eliminating as much as possible static dependences. At the same time, our
``lazy'' scheme tolerates dynamic dependences so that speculative parallelism
will not be compromised by overshooting ``rarely occurring'' dependences.

The results reported in this paper are based on a study of four Java
applications: javac, javap, javadoc, and jar. We observe that, of the four
applications, the majority of static dependences are introduced by opera-
tions on Java container classes, particularly by Vector and Hashtable
operations. We, therefore, focus our analyses on these two classes. The
semantics of containers are crucial for the analyses to succeed. In our
scheme, the semantics of container classes are built into the compiler as if
they were primitive data types since such information is very difficult to be
extracted automatically by the compiler.

This work consists of two core parts:

v We present a qualitative analysis of the dependences that occur
during the program execution and the effects of these dependences
on speculative parallelizations.

590 Wu and Padua



v We focus on dependences that are introduced by container operations
(i.e., container-induced dependences) and propose compiler tech-
niques to detect and eliminate such dependences.

The experimental results show that, after eliminating container-
induced dependences, all of the four applications exhibit significant paral-
lelism that can be gainfully exploited by a speculative parallelization system.

This paper is structured as follows. Section 2 classifies container-induced
dependences that occur in the programs we studied. Section 3 presents the
analyses to detect container-induced dependences. Section 4 introduces
transformation techniques to eliminate container-induced dependences. Sec-
tion 5 presents our experimental results, and Section 6 concludes the work.

2. DEPENDENCES AND CONTAINER-INDUCED DEPENDENCES

The results reported in this paper are based on a study of four Java
applications from SUN's JDK1.1.5 package: javac, javap, javadoc, and jar.
Javac is a Java compiler; javap is a bytecode disassembler; javadoc is a
document generator for Java sources; and jar is a compression tool. The
rest of the section is organized as follows: Section 2.1 gives a qualitative
analysis of the dependences we found in the programs; Section 2.2 covers
the basics of Java container classes; Section 2.3 introduces basic container-
induced dependences; and Section 2.4 presents dependences resulting from
composite container operations.

2.1. Understanding Dependences in the Programs

All four applications suggest potential coarse-grain loop-level paral-
lelism at the algorithm level. For instance, javadoc takes multiple Java
source files as input and generates html-documents for each source file
independently. At the coding level, however, most major loops of the
programs contain cross-iteration dependences. To better understand the
impact of such dependences on a speculation system, we classify them into
dynamic dependences and static dependences. Note that the dependences we
discuss here are ``real'' dependences in the sense that there exists a feasible
execution path of the program under which the dependence will occur.

2.1.1. Static Dependences

Static dependences are dependences that most likely occur regardless
of runtime execution paths or input data-sets. In the programs we studied,
static dependences are mainly introduced by multiple reads and writes
to one scalar variable or to fields of one object, or by I�O operations

591Parallelization of General-Purpose Java Programs



that write to the standard output. Among them, dependences resulting
from multiple accesses to one container object, primarily Vector and
Hashtable(6) objects, occur the most frequently.

Usually occurring along frequently executed paths of a program, static
dependences become a limiting factor of the amount of speculative
parallelism in a program. For this reason, the four applications we studied,
without any transformation, would benefit little from a data speculation
scheme. It may be possible, however, to identify and eliminate some static
dependences at compile-time. The rest of the paper will focus on how to
identify and eliminate such static dependences, particularly container-
induced static dependences. Static dependences that can not be eliminated
can guide the runtime system on where not to speculate.

2.1.2. Dynamic Dependences

Dynamic dependences refer to dependences that usually occur along
rarely-executed program paths (e.g., under abnormal conditions) or those
that are input-dependent. For example, a loop that may throw exceptions
(e.g., null-pointer-exceptions or array-out-of-bound-exceptions) contains
potential loop-carried control dependences. Without proving the loop to be
exception-free, a static analysis has to assume, conservatively, loop-carried
dependences in the loop. This excludes most Java loops from being stati-
cally identified as parallelizable. Another type of dynamic dependence
particular to javac, javap, and javadoc, is introduced by multiple reads and
writes to one hash-table. Hash-tables are addressed by keys (see Section
2.2). If two iterations access one hash-table using the same key, and at least
one of them is a write, then there is a loop-carried dependence. In javac,
javap, and javadoc, there is one hash-table that is frequently looked-up and
updated by different iterations. Since the keys used in these accesses are
from input data, a static dependence test has to assume a potential loop-
carried dependence.

Speculative parallelization provides a great opportunity to exploit
parallelism in loops that contain mainly dynamic dependences. Static
parallelizations always fell short in exploiting this kind of parallelism. The
main reason is that many dynamic dependences tend to be realized only
under rarely executed program paths (e.g., exceptions that are due to
abnormal program executions). For the benchmarks we studied, except for
javac, most dynamic dependences are not realized under normal input sets.

2.2. Java Container Classes

Java container objects store object references. The elements of a con-
tainer refer to object references that are stored in the container. An empty

592 Wu and Padua



File: 828J 735005 . By:XX . Date:19:09:00 . Time:07:33 LOP8M. V8.B. Page 01:01
Codes: 1782 Signs: 1251 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Vector.

container contains no elements. A container object usually consists of a
major storage for its elements and other auxiliary fields that hold informa-
tion such as the size of the container, etc. An iterator, when associated with
a container, provides a way to access the elements of a container in a
certain order.

Standard Java class library provides a variety of container classes.(6)

In this work, we focus on two of the container classes: Vector and
Hashtable. Vector implements extensible arrays. Figure 1 shows the fields
and operations of Vector used in the programs we studied. Modifier
synchronized ensures the method to be executed atomically. Method
elementAt provides an interface to access a vector through indices. A
vector also can be accessed using iterators of type java.util.Enumeration.
The class declaration of Enumeration is shown in Fig. 4.

Hashtable implements hash-tables that store pairs of object references.
The first entry of a pair is referred to as the key; the second entry is called
the value object. Hash-tables are accessed by keys. Keys of a hash-table are
kept distinct. [Note: Two Java object references are distinct if they contain

Fig. 2. Hashtable.

593Parallelization of General-Purpose Java Programs



File: 828J 735006 . By:XX . Date:19:09:00 . Time:07:44 LOP8M. V8.B. Page 01:01
Codes: 2266 Signs: 1509 . Length: 44 pic 2 pts, 186 mm

Fig. 3. Iterator-base loops.

different values; otherwise they are duplicate.] Figure 2 shows the fields
and operations of Hashtable used in the programs we studied. Both keys
and value objects of a hash-table can be accessed through iterators of
Enumeration type.

2.3. Container-Induced Dependences

Roughly speaking, a container-induced dependence can be any memory
conflict resulting from read- and write- accesses to the same field of a
container object. For example, consider the following code:

...
s: v.addElement (o1);
t: v.addElement (o2);

v is a vector. Statements s and t both read and write to field v.element
Count and v.elementData (refer to Fig. 1). In this simple example, there
are anti-, output-, and flow-dependences between s and t. In Vector,
method addElement modifies the internal fields of a vector. In general,
there are dependences when two operations are applied to the same vector
and at least one of them is an addElement. In Hashtable, the equivalent of
Vector.addElement is method put. Similar dependences are produced when
two operations are applied to a hashtable and at least one of them is a put.

A pair of container operations are said to be conflicting if they intro-
duce dependences when being applied to the same container object. For
example, for Hashtable, two puts, and a put and a get are conflicting
operations. Tables I and II summarize the conflicting operations of Vector
and Hashtable, respectively. These tables are referred to as dependence tables.

Fig. 4. Enumeration.

594 Wu and Padua



Table I. The Dependence Table of Vector

addElement

size X
elements X
elementAt X
contains X
addElement X

Table II. The Dependence Table of Hashtable

put

size X
keys X
elements X
get X
contains X
put X

Iterator operations introduce dependences as well. For example, the
following code enumerates elements of hash-table h through iterator enum.

for (e=h.elements(); e.hasMoreElements();)
o=e.nextElement();

e.nextElement accesses elements of h through an internal pointer, and then
advances the internal pointer to the next element. e.hasMoreElement com-
pares the internal pointer with the end position of the container. There are
dependences between an e.hasMoreElements and an e.nextElement, and
between two occurrences of e.nextElement. Note that if a vector or a
hash-table is structurally modified at any time after the iterator is created,
accessing the container through the iterator will throw a concurrent-
modification exception. For this reason, we need not consider dependences
between operations that modify a container and operations that access the
container through iterators.

2.4. Composite Container-Induced Dependences

In the programs we studied, most container-induced dependences are
manifested by a composition of several container operations. This section

595Parallelization of General-Purpose Java Programs



File: 828J 735008 . By:XX . Date:19:09:00 . Time:07:52 LOP8M. V8.B. Page 01:01
Codes: 2342 Signs: 1600 . Length: 44 pic 2 pts, 186 mm

presents three patterns that are composed from multiple container operations:
iterator-based loops, unique updates, and Put-get.

2.4.1. Iterator-Based Loop

Iterator-based loops are loops whose iterations are controlled by
enumerating elements of a container through an iterator. Iterator-based
loops take on different forms depending on the iterators being used. Figure 3
shows an iterator-based loop using an iterator of type Enumeration. As
discussed earlier, operations on iterators introduce cross-iteration depen-
dences on iterator-based loops.

2.4.2. Unique Update

Vectors usually do not contain duplicate elements. Unique updates are
used to update vectors whose elements are always kept distinct. This is
done, as shown in Fig. 5a, by adding an object to a vector only if it has
not been added into the vector before. Figure 5b shows another common
implementation of unique updates. It uses an auxiliary hash-table to keep
track of all elements that have being put into a vector. For each pair of
objects stored in the hash-table, the key and the value object are the same.
We refer to such a hash-table as a hash-set [Note: In Java API1.2,
HashSet becomes a standard Java class.]. It is more common to implement
a unique update by hash-sets.

Fig. 5. Unique updates.

2.4.3. Put-Get

Put-get provides a special way to ``get'' an element from a hash-table.
Put-get acts as an ordinary get when the hash-table contains the element
to be retrieved; otherwise, it puts a new element into the hash-table (i.e.,
the ``put'' part), and return the element (i.e., the ``get'' part). Figure 6 shows
an example of put-get.

596 Wu and Padua



File: 828J 735009 . By:XX . Date:19:09:00 . Time:07:52 LOP8M. V8.B. Page 01:01
Codes: 2552 Signs: 1991 . Length: 44 pic 2 pts, 186 mm

Fig. 6. Put-get.

Put-get combines put and get operations together. In javac, javap,
and javadoc, a hash-table operated by put-get implements the symbol
table. Put-get is also used to access internal hash-tables in class sun.tools.
java.Identifier and sun.tools.java.Type. Identifier maintains a hash-table that
registers all the Identifier objects being created. Put-get ensures that, for
any given identifier name, there exists only one Identifer object. Type uses
put-get for the same purpose.

3. ``LAZY'' DEPENDENCE TESTS

A ``lazy'' dependence test assumes that all computations in the
programs are independent, by default, unless they can be proven otherwise.
For this ``over-optimistic'' dependence test to work correctly, a ``lazy''
dependence test needs to be combined with a runtime scheme. The latter
will detect dependences at runtime and safeguard the correct execution of
the program.

In this section, we propose two ``lazy'' dependence tests: the first
detects container-induced dependences; the other, referred to as the access
analysis, determines whether two computations access the same element of
a container. In many respects, access analysis for containers is analogous
to the array-based dependence test for arrays.

3.1. Detecting Container-Induced Dependences

The analyses presented in this work are based on the semantics of
container classes and their operations. This information is directly built
into the compiler so that the compiler treats container classes as primitive
data types, and container operations as primitive and atomic. We also built
into the compiler the dependence table (see Section 2.3) of each container
class. Since internal states of a container object are accessible only through
its operations, detection of container-induced dependences is fairly simple
when provided with the dependence table of the class. There are dependences
if any two conflicting operations are applied to the same container object.

597Parallelization of General-Purpose Java Programs



We still need alias analyses to determine the set of container opera-
tions that are applied to a container object and its aliases. For example, in
the following code,

v=new Vector();
u=v;

s: v.addElement();
t: u.addElement();

both statements s and t updated the same container object. However, this
alias problem is much easier to handle than a general alias problem. A nice
property is that fields of a container object are exposed only to the con-
tainer object, its aliases (i.e., those that point to the same object), and any
iterator associated with it. Many existing pointer analyses(7�12) can handle
this case. In addition, with the help of type information, the analyses can
be fast and simple.

3.2. Access Analysis

For Vector and Hashtable, the fields (i.e., field elementData and table)
to store container elements are arrays of object references. Because it would
be too imprecise to treat such fields as one unit in the dependence test, we
name positions for containers and treat different positions of a container as
different memory accesses. For Vector, positions are named by integers.
For example, the first element of a vector is considered at position 0, and
an access v.elementAt(i) will be interpreted as accessing the position i of
the vector v. For Hashtable, positions are named by keys.

Access analysis summarizes accesses to container elements in terms of
positions. There are three ways to access elements of a vector: through
iterators of type Enumeration, through indices using method elementAt,
and through method addElement. The first two read from the major
storage of a vector, while the last one writes to it. For iterator-based
accesses, we associate each iterator with a variable curr. Curr indicates the
position of the container pointed to by the iterator. When an iterator is
created through method elements, curr is set to zero. When an element is
accessed through nextElement, it is interpreted as accessing the position
curr of the container. It also increments curr by one. Method addElement
is interpreted as accessing position end of the container. It increments end
by one afterwards. After such mapping, reads and writes to the major
storage of a vector can be summarized as ranges of integers. An index-
based dependence test similar to the one for arrays can be applied. For
instance, if two iterations access the same position of a container and at

598 Wu and Padua



least one iteration modifies the accessed element, then there is a loop-carried
dependence. The dependence test is ``lazy'' because different ``positions'' of
a vector may contain the same object reference.

Positions of hash-tables are named by keys. A hash-table can be
accessed by get, contains, put, or iterators. Operations get(key), con-
tains(key), and put(key, obj) access the position key of the hash-table.
For accesses through iterators, we assume that they can access any position
of the hash-table. Since the keys of a hash-table are usually string objects
or general objects, it is difficult to summarize keys statically and symboli-
cally. We consider a runtime access analysis most feasible for hash-tables.
The runtime access analysis can record all the keys used to access a hash-
table. A runtime dependence test can determine whether two iterations
access the same position of a hash-table by comparing the keys. [Note:
Hash-table compares two keys using the equals method of the key object.
The runtime test needs to compare key objects using their equals method
if necessary.]

4. ELIMINATING CONTAINER-INDUCED DEPENDENCE

4.1. Iterator-Induced Dependences

Iterator-based loops, as discussed in Section 2.4.1, contain loop-carried
dependences. We handle such dependences by transforming iterator-based
loops into index-based loops. The following shows the index-based loop
that is transformed from the iterator-based loop shown in Fig. 3.

Vector v;
Enumeration e;
for (int i=0; i<v.size(); i++) [

o=v.elementAt(i);
. . . loop body . . .

]

4.2. Hashtable-Induced Dependence

When two hash-table operations are applied to the same object and at
least one of them is a put, there are hashtable-induced dependences. Such
dependences can be tolerated in a parallel execution if they can be proven
commutable.

Traditional commutativity analysis(13) proves two operations com-
mutable if executing the operations in different orders will produce the
same states of the memory. This condition, however, is too restrictive for

599Parallelization of General-Purpose Java Programs



File: 828J 735012 . By:XX . Date:19:09:00 . Time:07:54 LOP8M. V8.B. Page 01:01
Codes: 2017 Signs: 1363 . Length: 44 pic 2 pts, 186 mm

handling hash-table operations. For example, applying two put to a hash-
table in different orders may produce different internal states of the
hashtable. Therefore, we introduce a more relaxed commutable relation,
i.e., two operations are commutable if the computation that follows is
insensitive to the order in which the operations are executed. For example,
consider the following code sequence, which assumes that key1, key2, and
key3 are different.

. . .
s: ht.put(key1, obj1);
t: ht.put(key2, obj2);
u: ht.get(key3, obj3);

Since each statement accesses a different position of ht, u is not affected by
s and t. Statements s and t are commutable. We define two hash-table
operations as commutable as follows:

Definition 4.1. Let ..., hi ,..., hj ,..., hn be a sequence of operations
applied to a hash-table. Two operations, hi and hj , are commutable if any
operation hl in the sequence, where i<l, always produces the same result
under either execution order of hi and hj .

Algorithm 1 shows how to determine whether two hash-table opera-
tions (i.e., two put; a put and a get; or, a get and a put) are commutable.

Algorithm 1. hi and hj are two hash-table operations and at least
one of them is a put. hi ,..., hj ,..., hn is a sequence of operations applied to
one hash-table. keyl is the key used by operation hl . The algorithm deter-
mines whether hi and hj are commutable.

600 Wu and Padua



File: 828J 735013 . By:XX . Date:19:09:00 . Time:07:55 LOP8M. V8.B. Page 01:01
Codes: 2941 Signs: 2322 . Length: 44 pic 2 pts, 186 mm

The algorithm first checks whether operations between hi and hj in the
sequence are affected by the reordering of hi and hj (line 1t10). For opera-
tions such as get, put, and contains, the test is based on the keys used.
Operation elements or keys, however, return an enumeration of the value
objects or keys of a hash-table. They are sensitive to the re-ordering of hi

and hj . Then, the algorithm checks whether operations after hj in the
sequence will be affected if hi and hj are re-ordered (line 11t13).

Hash-tables that are accessed through put-get operations need to be
handled specially. Instead of treating each hash-table operation in a put-
get individually, we treat put-get as one operation. Put-get operations
have a nice property: a sequence of put-get operations are commutable no
matter which keys are used.

Commutable operations can be gainfully exploited in loop parallelization.
Consider the following loop:

We can prove that any two instances of put in statement s are com-
mutable. If these hashtable-induced dependences are the only dependences
in the loop, the loop can be parallelized provided that put executed atomi-
cally. This is done automatically since put is synchronized. When paral-
lelizing loops with put-gets, however, we need to add synchronizations to
ensure that each put-get is executed atomically.

4.3. Vector-Induced Dependence

Dependences occur when two addElement operations are applied to
the same vector. Such dependences may be eliminated by proving the
operations associable. For instance, given a sequence of operations that are
applied to a vector, if all of them are addElement operations, the sequence
is associable. We refer to such a sequence of operations as associative
updates. Parallelizing associable updates is analogous to parallelizing
reduction variables: for each parallel task, we allocate a local vector that
will be updated during the execution of the task; after all the iterations are
finished, local vectors are merged into one vector. Since associable updates
are not commutable, the merging process has to be done in the order of the
iterations. More complicated scheduling schemes, such as self-scheduling,
may require auxiliary data structures to associate an iteration number with
the elements of the local vector.

601Parallelization of General-Purpose Java Programs



A sequence of unique updates is also associable. Again, we treat a
unique update as one operation. To parallelize associable unique updates,
for each parallel task, we allocate a local vector and, if the unique update
uses hash-tables, a local hash-table. Each task updates its local vector and
hash-table during the execution. After all the iterations are finished, local
vectors and hash-tables are merged. In the merging process, an element is
added into the vector only if it is not in the local vectors of previous tasks.
In another words, local vectors need to be merged into the global vector
using unique updates.

5. EXPERIMENTAL RESULTS

5.1. Hand-Parallelization

To measure the parallelism exposed after eliminating static dependences,
we hand-parallelized javac, javap, javadoc, and jar.3 We consider a loop
``parallelizable'' if it is free of static dependences and free of dynamic
dependences under normal input sets. Since we do not have a speculation
system for experiments, we avoid dynamic dependences by carefully choos-
ing input sets. Fortunately, for the applications we studied, most dynamic
dependences are not realizable under normal input sets.

We apply the techniques proposed in this paper by hand to transform
container-induced dependences. Iterator-based loops are converted into
iterator-based loops. Commutable put-get operations are declared as syn-
chronized. For associable updates, we allocate local containers for each
thread and implement the procedures to merge local containers. For other
static dependences, we apply reduction parallelization and privatization by
hand. I�Os that write to standard output can be out of order. Table III
summarizes the loops that are ``parallelizable'' after these transformations,
the percentage of execution time each loop takes up, and the container-
induced dependences each loop contains. I-loop stands for iterator-based
loops. Unique stands for unique updates. Basic covers basic container-
induced dependences that are not part of the previous three.

5.2. Performance

We measure the performance on a SUN Enterprise 450 server with
four UltraSPARC 167 nodes. All the programs run under JDK1.2Beta. The

602 Wu and Padua

3 For jar, a recursive algorithm is changed to be nonrecursive. The output of javap is changed
so that disassembled class-files are put into separate files instead of standard output. In
javac, the class loading and class resolution algorithm was simplified and the inlining pass
and supports for inner classes were disabled.



Table III. Container-Induced Dependences in Major Loops

Program-loop 0Tseq I-loop Put-Get Unique Basic

javac-parse 240 X X X
javac-compile 400 X X X
javap-main 980 X X
javadoc-parse 310 X X X
javadoc-gen 540 X X X
jar-addFiles 750 X X

measured performance does not include runtime overhead and speculation
penalty of a speculation system. The execution of a Java program consists
of class loading, class verification, just-in-time (JIT) compilation, inter-
pretation, and garbage collection. Source-level parallelization can directly
improve only the interpretation time. To make the reported speedups a
reasonable indicator of the speculative parallelism that can be exposed by
source-level parallelization, we set up the experiment so that time spent on
other parts of the JVM is minimized. We disable JIT and the class-file
verification pass of the JVM. Run-time heap is specified large enough so
that no garbage collection occurs during the experiments. We also pre-load
all the necessary classes to eliminate class loading time.

As shown in Fig. 7, for each program, we measure speedups of
``parallelizable'' loops as well as speedups of overall programs under two-,
three-, and four-processors, respectively. The numbers above each bar
show the speedups. With realistic inputs, most parallel loops achieve very
good speedups under two- and three- processor executions. However,
execution time under four processors does not improve much from that
under three processors. This is because most loops we parallelized contain
a limited number of iterations (tensthundreds), while each iteration con-
tains a large amount of computation. Because of the coarse-grained
parallelism we exploit, execution under four processors suffers severe load
imbalance.

6. CONCLUSIONS

Container-induced dependences contribute to a large portion of static
dependences occurring in general-purpose programs. Such dependences
greatly limit the inherent parallelism available in general-purpose programs.
In this work, we studied two standard Java container classes: Vector and
Hashtable. We proposed analysis techniques to detect container-induced

603Parallelization of General-Purpose Java Programs



File: 828J 735016 . By:XX . Date:19:09:00 . Time:07:56 LOP8M. V8.B. Page 01:01
Codes: 388 Signs: 44 . Length: 44 pic 2 pts, 186 mm

Fig. 7. Summary of the speedups

604 Wu and Padua



dependences and transformation techniques to eliminate some container-
induced dependences.

REFERENCES

1. L. Rauchwerger and D. Padua. The lrpd test: Runtime parallelization of loops with
privatization and reduction parallelization, ACM SIGPLAN'95 Conf. Progr. Lang. Design
and Implementation (June 1995).

2. J. G. Steffan and T. C. Mowry, The potential for using thread-level data speculation
to facilitate automatic parallelization, Proc. Fourth Int'l. Symp. on High-Performance
Computer Architecture (February 1998).

3. L. Hammond, M. Willey, and K. Olukotun, Data speculation support for a chip multi-
processor, Proc. Eighth ACM Conf. on Architectural Support for Progr. Lang. Operat.
Syst. (October 1998).

4. J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. Lam, and K. Olukotun, Software and
hardware for exploiting speculative parallelism with a multiprocessor. Technical Report
CSL-TR-97-715, Stanford University Computer Systems Lab (February 1997).

5. G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors, Proc. 22th Int'l.
Symp. Computer Architecture (July 1995).

6. Sun Microsystem, Java platform 1.2 api specification. http:��www.javasoft.com�products�
jdk�1.2�docs�.

7. D. R. Chase, M. Wegman, and F. K. Zadeck, Analysis of pointers and structures, Proc.
ACM SIGPLAN Conf. Progr. Lang. Design and Implementation (June 1990).

8. L. J. Hendren and G. R. Gao, Designing programming languages for analyzability:
A fresh look at pointer data structures, Proc. Int'l. Conf. Computer Lang. (April 1992).

9. R. Ghiya and L. J. Hendren, Putting pointer analysis to work, 25th ACM Symp. Principles
Progr. Lang. (January 1998).
Proc. Int'l. Conf. Computer Lang. (April 1992).

10. J. Hummel, L. J. Hendren, and A. Nicolau, A general data dependence test for dynamic,
pointer-based data structures, Proc. ACM SIGPLAN Conf. Progr. Lang. Design and
Implementation (June 1994).

11. R. Ghiya and L. J. Hendren, Is it a tree, a dag, or a cyclic graph? A shape analysis for
heap-directed pointers in C, Proc. 23rd ACM SIGPLAN SIGACT Symp. on Principles
Progr. Lang. (January 1996).

12. J. Hummel, L. J. Hendren, and A. Nicolau, A language for conveying the aligning properties
of dynamic, pointer-based data structures, Proc. Eighth Int'l. Parallel Processing Symp.
(April 1994).

13. M. C. Rinard and P. C. Diniz, Commutativity analysis: A new analysis technique for
parallelizing compilers, ACM Trans. Progr. Lang. Syst. 19 (November 1997).

605Parallelization of General-Purpose Java Programs


